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Continuous-variable systems find valuable applications in quantum information processing. To deal with an
infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks
such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to
experimentally demonstrate entanglement criteria based on a periodic structure of coarse-grained measurements.
The periodization of the measurements allows an efficient evaluation of entanglement using spatial masks acting
as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct

the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility
of the derived criteria with a success rate in entanglement detection of ~60% relative to 7344 studied cases.
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I. INTRODUCTION

The efficient preparation and manipulation of high-
dimensional quantum systems allow the processing of large
amounts of quantum information. In addition to advantages,
such as increased transmission rates, a number of interesting
fundamental aspects related to quantum entanglement [1,2],
nonlocality [3], and contextuality [4] only become evident with
the use of quantum systems of high dimension.

The transverse spatial modes of single or entangled photons
constitute an interesting experimental platform for the study
of high-dimensional quantum systems [5]. In principle, spatial
degrees of freedom (DOF) are described by an infinite set of
modes: the transverse position or momentum modes provide
the continuous-variable (CV) description of the spatial DOF,
while infinite-dimensional discrete basis can also be explored
by using, for instance, the orbital angular momentum [6,7] and
radial modes [8,9]. In the latter approach, a finite-dimensional
space can be achieved by simply isolating a subset of the entire
set of spatial modes. For these d-dimensional states, entangle-
ment detection [10-16] is performed with tools developed for
finite-dimensional quantum systems [17,18].

In the CV regime, on the other hand, the observation of
spatial entanglement typically requires the measurement of the
joint distributions for the position and momenta of the photons
[19-22], from which criteria devoted to CV systems are
used to test for nonseparability [23-25], Einstein-Podolsky-
Rosen (EPR) [26-28] correlations, and “steering” [29]. Albeit
fundamentally continuous, real-world experiments are subject
to the coarse graining imposed by the detector resolution [30]
as well as the limited detector range [31]. Both of these issues
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can lead to false positives concerning detection of quantum
correlations [31,32]. Even though typical CV entanglement
and EPR criteria have been adapted for coarse-grained mea-
surements [32,33], the experimental assessment of the position
and momentum correlations typically require a large number
of measurements.

A number of techniques have been applied in an effort to
reduce the number of measurements necessary to identify en-
tanglement in these systems while maintaining the full range of
detection events. For instance, Howland ef al. [34] have shown
that the use of compressive sensing techniques allows the
reconstruction of the spontaneous parametric down-conversion
(SPDC) joint detection probabilities with an efficiency im-
provement over a raster scanning procedure with equivalent
resolution. In this case, nevertheless, the identification of
entanglement is still bound to the application of the typical
CV entanglement criteria [35] based, for example, on the
evaluation of the moments [23-25] or entropy [36,37] of the
reconstructed distributions.

In the present contribution, we develop and test experi-
mentally convenient entanglement criteria based on periodic
coarse-grained measurements. We start by establishing an un-
certainty relation (UR) for the localization of a single quantum
particle in a periodic array of position and momentum bins. The
developed UR is expressed in terms of the cross-correlation
function between a periodic analyzer and the distributions for
the position and momentum variables. We then use this UR to
build entanglement criteria devoted to bipartite CV quantum
systems and apply them to test for spatial entanglement of
photon pairs from spontaneous parametric down-conversion.
In this optical setup, the developed criteria are experimentally
accessible via the joint transmission of the photons through
periodic apertures playing the role of spatial-mode analyz-
ers. This measurement strategy using periodic spatial mask
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FIG. 1. Paraxial propagation of a single-photon through an optical
Fourier transform system. The transverse field distribution of the
photon at the front () and back (¢) focal plane of the lens is
illustrated in red. The transmission probability of the photon through
a spatial mask analyzer based on a periodic aperture is used to probe
the photon’s transverse structure in position or momentum domain.
The inset illustrates the geometry of the spatial mask analyzer.

analyzers acting over the entire transverse field structure of
the photons enables approximately uniform single-photon and
higher coincidence detection rates than the traditional binning
with single apertures, thus yielding better signal-to-noise
ratios. In addition, the periodicities of the spatial masks used
in position (7;) and momentum (7,) measurements work as
free parameters that can be independently tuned to optimize
the entanglement detection. In our experiment, we tested 7344
different combinations of spatial mask geometries, achieving
a success rate in entanglement detection of about 60%.

This paper is structured as follows. In Secs. II-IV, we
provide the theoretical background necessary for the develop-
ment of our entanglement criteria, which is derived in Sec. V.
Our experimental scheme and measurements with the periodic
spatial masks are described in Sec. VI, and the analysis of
our experimental data with the derived entanglement criteria
is presented in Sec. VII. We provide concluding remarks in
Sec. VIIIL.

II. PRELIMINARIES
A. Optical Fourier transform

The paraxial propagation of a monochromatic single pho-
ton through a lens system implementing an optical Fourier
transform is illustrated in Fig. 1. The propagation direction is
along the positive z axis and we denote ¥ (x) = (x|¢) the input
transverse field distribution at the front focal plane of the lens.
We thus consider an input pure single photon whose quantum
state in position representation is

V) = /dxlﬁ(X)IX), ey

where X = (x,y) is the transverse coordinate at the input plane.
We also introduce the function ¥ as the field distribution
at the back focal plane of the lens (the Fourier plane). The
transformation connecting these two wave functions is

. 1 o
I =5 / Pxp(x)e ¥, ®)

where X’ = (x’,y") represents the transverse spatial coordinate
at the Fourier plane and o = fA/2m is a constant related
to the optical system: XA is the wavelength of the photon
and f the focal length of the lens. It is straightforward to
recognize that the Fourier-transformed field distribution v
maps the transverse structure of the input photon in momentum
representation, ¢(p) = (p|¥):

U(x') o p(p). 3)

Equation (3) implicitly assumes (we set i = 1) the relation
x' = ap between the transverse momentum component p =
(px,py) of the photon at the input plane and the spatial
coordinate at the Fourier plane.

B. Periodic spatial mask analyzers

We consider spatial mask analyzers given by periodic
aperture functions M whose transmittance obey |M|> = M,
so that M assumes either the value of 0 or 1 across the whole
transverse plane. Over a single transverse dimension, such
apertures are described by periodic square waves with two
independent parameters: the periodicity 7 and an extra spatial
parameter s that we name the bin width. Explicitly, we define
the periodic spatial mask analyzer as

) )1, 0<x(modT) < s,
M(x;T.5) = {0, otherwise. )
For a given choice of T and s, the periodic aperture function is
uniquely specified by Eq. (4), provided that the mask’s origin
is fixed. In general, we allow extra displacement parameters
representing positioning degrees of freedom setting the origin.
It will be useful to consider the Fourier series expansion of

Eq. (4):
M(x;T.s) =) ca(ts)e™™, (5)

nez

where T = 27/ T and

&) = (7™ — 1) (6)
2nn
are the coefficients of the Fourier expansion.

In Fig. 1 we illustrate the periodic spatial mask analyzer
over the single transverse degree of freedom x (x’). We thus
work with a single pair of conjugate variables satisfying
the commutation relation [%, p] = [£,%']/«a = i. The periodic
analyzer is inserted in the path of the photon, either in the front
or back focal plane of the lens, and we allow distinct parameters
T and s for the apertures used to probe the position (T, sy)
and momentum (7, s,,) distributions. We name it a symmetric
arrangement whenever 7y /s, = T, /s, = d, butin general any
combination of periodic analyzers is allowed; note that since
the transverse momentum variable p is mapped to the Fourier
coordinate x’ by means of the scaling factor « = f1/2m, the
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individual choice of the periodicity and bin width is irrelevant
in a symmetric arrangement as long as the ratio 7y, /s, = T, /s,
is preserved. We further define 7, = aT), and s,» = as), as the
physical spatial parameters (units of length) of the analyzer
used in the Fourier plane of the lens, whereas T, and s,
express the associated quantities in momentum domain (units
of inverse length). From now on, unless specified, we adopt
the pair x and p in our analysis.

Our figure of merit for the development of the UR and
entanglement criteria is the photon transmission probability
through the periodic analyzer. Denoting P(x) = |/ (x)|*> and
P(p) = |#(p)|?, these transmission probabilities are

P& = / dx M(x — & T, 5) P (), (7a)
R

P&y = /de M(p —&p:Tp.s,)P(p), (7b)
where P(x) = [p dyP(x) and P(p) = [ dp, P(p) represent
the marginal probability distributions along the relevant degree
of freedom. In Egs. (7), the parameters &, and &, describe
the transverse displacement of the spatial mask analyzer. The
transmission probabilities (7) can be understood as the cross-
correlation function between the probability density of the
photon and the spatial mask analyzer. This cross-correlation
provides the probability that the photon is transmitted as a
function of the analyzer’s transverse position. In other words,
the spatial mask of Eq. (4) acts as a filter that is used to analyze
the spatial structure of the photon field in the position [Eq. (7a)]
or momentum [Eq. (7b)] domain. It is worth mentioning that
since the considered analyzer is an amplitude mask, no phase-
sensitive measurements are necessary in the characterization of
Eq. (7). This is in contrast with mode analyzers based on spiral
[38—40] or multisector [41-43] phase masks that have been
utilized in measurements of multidimensional orbital-angular-
momentum entanglement.

III. UNCERTAINTY RELATION BASED
ON PERIODIC ANALYZERS

As it is known, the Fourier transform (2) implies that the
photon’s transverse field distribution cannot be arbitrarily well
localized in both focal planes of the lens. In this paper we
explore this complementarity to build an uncertainty relation
based on the transmission probabilities of the photon through
periodic apertures. To this end, it is convenient to use the
Fourier decomposition of the periodic analyzer in Eq. (5) to
write the transmission probabilities in Eq. (7) in the following
form:

PE) =) ca(tes)®nr)e "5, 7, = 2T—” (8a)

X

nez

D 5 —inty&, 27

PEp) =Y cultpsp)®(nty) e ", 7, = - (8b)
nezZ P

where (1) = [ dxP(x)e’™ and ®(L) = [p dxP(p)e'™?
stand for the characteristic functions associated with the
probability densities P(x) and P( p), respectively. Using the
uncertainty relation for characteristic functions reported in

Ref. [44], it is straightforward to show (see Appendix) that
the cross-correlation functions (7) satisfy the inequality

1 [T 1 5P y
= [ asperrs o [ dgiper<o o

T,/2 p J-T,2
with
: S s
— Cmax Cmm 2 ; g X _P’ 10
Q Z[n + CMG(n’ T, 7)) Tx+T,, (10)
neZ
where
Cr/min = max / min {|c, (te5,) % en(Tpsp) P}, (1)
and the function G(-) reads [45]
2 —4/1—cos
Q(y)=2«/§f W _y. (12)

1+ cos(y)

Note that 0 < G(y) < 1. Moreover, the notation in Eq. (9)
involving the moduli of the probability distributions (real, non-
negative) is technically speaking unnecessary. Equation 9 is
presented in that manner in order to ease the manipulations of
apparently complex formulas (8).

The upper bound Q = O(T,,s,,T},,s,) is a function of
the periodic analyzer parameters used to probe the field
distribution in position and momentum domains. Since the
functional dependence of the Fourier coefficients (6) is only
on the ratio 7' /s, the bound function (10) turns into a simpler
form whenever working with a symmetric arrangement [see
Eq. (20)]. To briefly summarize, the cross-correlation between
the periodic analyzer and the transverse field structure of a
single photon measured in complementary domains is subject
to the uncertainty relation given in Eq. (9). This uncertainty
relation constitutes the first theoretical result of the paper.

IV. COARSE GRAINING AND FAITHFUL SAMPLING

Real-world measurements of a CV degree of freedom are in-
evitably subjected to the coarse graining imposed by detection
resolution [30]. Here the resolution limitation appears due to
the necessarily discretized transverse displacements in the ex-
perimental characterization of the cross-correlation functions
(7) instead of its (unfeasible) sampling over a continuum of
displacements &,(,y. Realistically, the experimentalist holds
discretized distributions P = P(kAE,) and P, = P(kAE »)
by employing a finite set of displacements with scanning reso-
lution A&, and A§,, respectively. To sample the full periodicity
of the analyzer, say in the position domain, a number N, =
T,/ A&, of transmission probability measurements are required
(k=0,1,...,N, — 1). Here we argue that the minimal resolu-
tion expected for a “faithful” sampling is such that A&, < s,:a
displacement step greater than the analyzer bin width is unable
to sample the entire field distribution. Interestingly, when
using an analyzer geometry with anintegerd = T, /s, > 1,the
discretized cross-correlation function obtained in the limiting
case A&, = s, corresponds to the periodic coarse graining
[46] of the single-photon detection probability distribution.
In this case, the set of analyzer displacements corresponds to
mutually exclusive outcomes of a d-dimensional measurement
with N, = d.
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V. ENTANGLEMENT CRITERIA

In this section we aim to derive experimentally conve-
nient entanglement criteria along the lines discussed in the
previous section, i.e., based on transmission probabilities
through periodic analyzers acting as spatial filters in position
and momentum domains. We consider bipartite entanglement
present in the spatial degrees of freedom of a photon pair. In
this scenario, the relevant transmission probability is that of the
photon pair, serving as an indicator of the spatial correlations.

We name p4p the quantum state associated with the
transverse spatial structure of photons A and B, and restrict
ourselves to the analysis of their spatial structure in a single
transverse degree of freedom x. The generalization to both
transverse dimensions is straightforward. Following the def-
initions of the previous section, we consider the detection
probabilities in the conjugate planes of lenses placed in the
path of the photons A and B. Explicitly, we define the joint
probability distributions as

(13a)
(13b)

P(x4,Xp) = (Xa| ® (Xploas|Xa) ® |Xp),
P(ps.ps) = (P4l ® (Psloaslps) ® IPs).

As before, we look at the marginals along the relevant degree
of freedom that is probed by the analyzer’s periodic aperture:

P(xarxn) = / dy. / dysP(xaxp),  (14a)
R R

F(pA,pB)z/ﬂ;dpy/\[deyRP(pA,pB)- (14b)

The distributions defined in Eqs. (14) describe spatial corre-
lations of the photons in position and momentum domains,
respectively. The probabilities that both photons are transmit-
ted through identical analyzers placed in their propagation path
are indicative of the shape and strength of the correlations in
question. Our entanglement criteria shall thus be based on such
transmission probabilities as quantifiers of the position and
momentum correlations shared by the two-photon state p45.
The relevant quantities are clearly given by the two-variable
counterparts of the cross-correlation functions (7):

P(éxA,éxB)=/RdxA/Rdx3 P(xa,xp)Map(xa,xp),
(15a)

PEpasbpy) = /deA /R dps P(pa.p)Mag(pa,pp),
(15b)
where
Map(za,zp) = M(za — &, T;,5 )M (zp — &5 T,,5;). (16)

In the two-photon case, the joint distributions P(x4,Xxp)
and P(pa,pg) are probed by the product of the individual
periodic apertures [Eq. (16)] each photon is subjected to. Obvi-
ously, the maximal amount of information on the two-photon
correlations is achieved by complete characterization of the
cross-correlation functions given in Eqgs. (15). This complete
characterization requires the evaluation of the joint transmis-
sions for all possible values of the transverse displacement of

(a) Pump laser

SLMA

(b) Analyser A Analyser B

_> position displacements _>
i——»| momentum displacements <@¢—

<>

T (p)

<>

Ta(p)

FIG. 2. (a) Experimental setup. Spatial correlations of entangled
photon pairs from SPDC are probed by spatial mask analyzers defined
by periodic apertures and displayed on SLMs. The blue (red) lenses
are used for measurements in the position (momentum) domain. BS:
beam splitter; SLM: spatial light modulator; SPAD: single-photon
avalanche diode; BBO: beta barium borate nonlinear crystal. (b)
Periodic analyzers for photons A and B. The coincidence counts
registered while the analyzers are displaced in the same (position)
or opposite (momentum) directions are used to test for spatial
entanglement.

the analyzers used for photons A and B. Nevertheless, as we
shall now show, the use of periodic apertures allows entangle-
ment verification with the evaluation of the cross-correlation
functions (15) along single directions in phase space.

We begin by defining P.(&) = P(&,, £ &) as the joint
transmission probabilities obtained by displacing the apertures
for photons A and B along the same (4) or opposite (—)
directions over the full periodicity of the apertures. In other
words, Py encode the cross-correlation function (15a) along
the diagonal or antidiagonal direction of the parameter space
given by the individual displacements of the analyzers. Analo-
gously, we define a similar quantity in the momentum domain
as ﬁi(ép) = 75($p, £ &,). We further introduce

| T2
(i) = — / de, P, £ &), (17a)
x J-Ty/2
< | TE
(Pr) = — / a5, P&, ££) (1)
p J=T,/2

as the averages of P(£,) and Py (& »), respectively. In Fig. 2(b)
we illustrate the transverse displacement procedure required
for the evaluation of the average joint transmission probabili-
ties in Eqgs. (17). We are now in position to establish our second
theoretical result, namely, the entanglement criteria. The sum
of the average transmission probabilities

<Pi> + <,ﬁ:|:> g Q(T)CvsxaT[hS[)) (18)
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is upper bounded by Q given in Eq. (10), whenever g4 is
separable. A violation of Eq. (18) thus implies that psp is
entangled.

Proof. As the starting point we observe that the
left-hand side of Eq. (18) is a linear (thus convex)
functional of the quantum state, so one can restrict
further discussion to separable pure states |V), ® |W)p.
In this special case, the joint transmission probabilities
factorize: P(&,, £ &) = Pa(&,)Pp(££,). The single-photon
probabilities P4 and Pp, evaluated for |V), and |¥),
respectively, are given by Eq. (7a). The same factorization
scheme applies to the momentum domain.

In the second step we use the basic arithmetic-geometric
mean inequality, (a> + b?)/2 > ab, to separate the A and B
parts of the joint transmission probabilities. More explicitly
1 /T*/z dt IPaEl + |Pp(£E)

(Py) < T

, 1
r./2 2 4
and similarly for the momentum term. These initial steps are
similar to those of Spengler et al. [17], where entanglement
criteria for discrete systems in terms of mutual predictabilities
have been derived.

In fact, the sign combination for the B part and the labeling
of subsystems (pure quantum states) both stop playing a role
from now on. The sign ambiguity is removed by the symmetric
integrals with respect to & while the second assertion is true
because in the sum (Py) + (753F) we find pairs of probabilities
to be bounded by Eq. (9) independently for each subsystem.
This observation concludes the proof.

Due to the symmetry of integrals in Eq. (17), the same bound
as Eq. (18) applies to the even sign combination (P) + (P).
This is not at all surprising, as it is a generic feature of
other criteria for continuous variables like those for variances
[23,24] or entropies [32,36,37]. However, as in the case of
the variance and entropic-based inequalities, for the same sign
these are true uncertainty relations necessarily obeyed by all
bipartite quantum states. At the same time, the corresponding
inequalities with different signs need to be satisfied only by
separable states. They are also maximally violated by the EPR
state, given by normalized versions of 1 (x4,xp) = §(x4 — xp)
and ¢(pa,pp) = 8(pa + pp)-

Even though the grid geometry provided by the periodic
analyzers chosen does not allow an immediate validation of the
first assertion (UR for the same signs), one can easily verify
the second one. By a direct calculation one can see that for the
EPR state (P;) = s,/ T, and (P_) = 5,/ T,,. The sum of both
quantities is equal to the upper bound in Eq. (10). Thus, for
adequate choice of parameters the EPR state violates inequality
(18).

VI. EXPERIMENTAL SCHEME

In the experimental part of our investigations we use an
SPDC source to generate photon pairs entangled in their
transverse spatial variables. As explained in the previous
section, we probe their transverse position and momentum
correlations using spatial mask analyzers defined by periodic
aperture functions.

Our experimental setup is sketched in Fig. 2(a). We adjust
the SPDC source, pumped by a 325-nm He-Cd laser, to emit

frequency-degenerate down-converted photons at A = 650 nm
in a collinear configuration. The down-converted photons are
split by a 50:50 beam splitter and directed to spatial light
modulators (SLMs) that are programed to display the periodic
apertures [Eq. (4)] in the horizontal direction x, as illustrated
in Fig. 2(b). A switchable lens system placed before the beam
splitter is used to produce either the image or the Fourier
transform of the SPDC source onto the SLMs. The imaging
system is characterized by an optical magnification of M =5,
while the optical Fourier transform system has an effective
focal length f, = 333 mm. The optical magnifications both
for image plane (IP) and far-field (FF) configurations were
chosen in order to maximize the spatial resolution of our mea-
surements while keeping the down-converted beams enclosed
within the SLM panel. Our SLMs (HOLOEYE PLUTO) have
an active area of 15.36 x 8.64 mm? with a high-resolution
array of 1920 x 1080 pixels of width 8 um. The photons
reflected from the SLMs are lens coupled to multimode optical
fibers connected to single-photon avalanche diodes (SPADs).
The spatial masks displayed on the SLMs work as aperture
functions, reflecting the photons incident upon the white stripes
(where M = 1) and discarding the photons incident upon the
black region (where M = 0). In our experiment, the joint
transmission of the photons through the analyzers are measured
as coincidence counts over a sampling time of 1 s. To convert
the photodetection rates to transmission probabilities we also
record the overall joint detection rates. This measurement
procedure is realized independently for each configuration
(position and momentum) and analyzer geometry tested in our
experiment.

To maximize the joint transmission through the periodic
analyzers, we perform a calibration procedure to match the
relative displacement of the analyzers with the symmetry of
the EPR-like correlations displayed by the SPDC photons—
-position correlation or momentum anticorrelation [47]. Ac-
cording to the periodic aperture definition (4), maximal coin-
cidence counts in position measurements are obtained using a
relative displacement of the analyzers given by &,, —&,, =0
(mod 7), whereas momentum measurements require &,, +
&, =T, — 5, (mod T,). The result of this calibration can
be visualized in Fig. 3, where we plot the measured trans-
mission probability of the photons as a function of analyzer’s
B displacement. All displayed measurements were acquired
using an analyzer geometry given by 7y /s, = T, /s, = 5, and
each set of data points (plotted in different colors) represents
five different displacements of analyzer A. Note that in the
symmetric case, for which T,/s, =T,/s, =d, the upper
bound (10) derived in this paper simplifies to the form

Qym = Y _ lea@r/d)’[1 + G(n*T, 7).

neZ

(20)

In the measurements presented in Fig. 3(a) we used a pe-
riodicity of 0.480 mm (60 pixels) to define the apertures
displayed on the SLMs. This SLM periodicity led to ana-
lyzer periodicities—related to the position and momentum
variables at the source—of 7, = 0.480 mm/M = 0.096 mm
and T, = 0.480 mm/o = 13.92 mm ™. In this case the joint
transmission of the photons through the periodic apertures
were independent of the analyzer displacement. In other words,
these periodicities lead to bin widths s, and s, that are too
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FIG. 3. Joint transmission probabilities of photon pairs through

periodic analyzers measured while scanning analyzer B displacement

over a full period of the analyzer. Each set of data points represents

a distinct displacement for analyzer A, as shown in the legend. The

periodicities of the apertures used in the SLM are equivalent to (a) 60
and (b) 330 pixels of the SLM.

small to capture the spatial correlations of the photons. On
the other hand, the joint transmission measurements plotted
in Fig. 3(b) present peaks that depend on the displacement of
analyzer A. This type of conditional displacement is somewhat
typical in experiments that exploit the EPR-type correlation of
the photons. In this latter case, an SLM periodicity 5.5 times
larger was used.

Over the scanning distance of one analyzer period, one
coincidence peak is expected for each set of data points,
the position of which depends on the displacement of the
analyzer A and the symmetry of the correlations displayed
at the detection plane (position or momentum). As seen in
Fig. 3(b), the transmission peak for position measurements
occurs whenever &,, = &,,, while the peak transmission for
momentum occurs for &, = —&,, +4s, (since T, = 55, in
these measurements). The strength of the spatial correlations
is inferred from the visibility of the peaks, whose shape
is approximately a triangular function resembling the auto-
correlation function of a slit of width s, or s,: ideal EPR
correlations would generate perfect triangular peaks reaching
the maximum transmission probability of s.(p)/ Tx(p) = 20%.
Since the five different displacements used for analyzer A are
Exa(pa) = kSx(py withk =0, ... 4, we can use the peak values
of the transmission probabilities to calculate the average joint

transmission probabilities (17) involved in the entanglement
criteria (18):

d—1

1
(P =+ gmsx,ksx), Q1)
N 1
(P)= > Plksy.T, — s, — ksp). (22)
k=0

where d = T, /s, = T,/s, is the number of samples (five for
the current measurements). Indeed, the upper bound (20) of
inequality (18) calculated for the analyzer parameters used in
these measurements [Fig. 3(b)] limits the sum of the average
transmission probabilities in position and momentum domain
to Qgm = 27.18%. Our measurements provide averages of
(Py) = (1234 0.3)% and (P_) = (16.6 £ 0.3)% for posi-
tion and momentum, respectively, leading to a violation of the
criteria (18),

(Py) + (P_) = (28.9+0.4)% £ 27.18%,  (23)

by over 4 standard deviations. The presented errors are
calculated assuming Poissonian statistics for the measured
coincidence counts.

VII. EXPERIMENTAL RESULTS

Prompted by the successful experimental verification of
spatial entanglement exemplified in Eq. (23), we now examine
the effectiveness of the derived entanglement criteria (18) for
a wider set of periodic analyzer geometries. In the symmetric
case, as studied in the last section, the function (20) upper
bounding the sum of the average transmission probabilities
depends solely on the product of the analyzer periodicities
(T, Tp) and on the ratio d = T, /sy = T,/s,. The red solid
line in Fig. 4 displays Qgm for d =5 as a function of
T.T,/2m. Rather than a simple shape, Qg presents an intri-
cate functional dependence on 7, T, including an oscillatory
structure for 7,7,/2m < 1 (see inset). Interestingly, Qsym
assumes its maximal possible value of 2/d [see Eq. (10)]
whenever T, T, = 27 /m for all m € N, shown as the upper
dashed line for d =5 in Fig. 4. This is in full agreement
with the fact that compatible observables do exist in periodic
coarse-graining structures with these particular combinations
of periodicities in position and momentum domains [46,48,49].
Obviously, no useful entanglement tests exist in this case.
On the other hand, the lower dashed line indicates the value
(Py) + (P_) = 1/d + 1/d? that represents the average joint
transmission achieved with perfect correlation in one domain
(1/d) and the absence of correlation in the conjugate domain
(1/d?). This construction of maximal correlations in only one
basis is typical of entanglement criteria for quantum systems
of finite dimension [17]. As seen from the inset, the lowest
values attained for Qg do not exactly reach this minimum in
general (we find that Qy,, does saturate to this minimum for
d = 2), but lie slightly above.

Our experimental data are plotted as blue dots in Fig. 4.
Using the SPDC setup described in the last section, we recorded
a series of transmission probability measurements while vary-
ing the analyzer periodicities displayed on the SLMs from
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FIG. 4. Experimental data (blue dots) obtained for the sum of the
average joint transmission of photon pairs through periodic analyzers
positioned in the image plane (position) and far field (momentum) of
the source. The analyzer geometry used is a symmetric arrangement
with d = 5. The red curve indicates the bound function (20). Spatial
entanglement is detected whenever (P,) + (P_) > Qgm- The inset
shows the oscillating structures of Qg for small values of 7, T, /2.

0.24 to 8.64 mm. The dark-blue data points with error bars
correspond to position and momentum measurements taken
with matching SLM periodicities (in IP and FF configurations),
while the light-blue dots represent the sum of the average
transmission probabilities for all other combination of analyzer
periodicities. As expected, both (P, ) and (P_) increase as a
function of the analyzer periodicity, leading to violations of
the entanglement criteria for sufficiently large periods. Also,
we obtain (P,) ~ (P_) & 1/d* when using the smallest SLM
periodicity of 0.24 mm. This is evidence that the correlation
width of the photons [50] is greater than (or of the order of) the
associated bin width, which at the SLM corresponds to 48 um
(with d = 5). Evidently, the EPR-like spatial correlations of
the photons are not sharp enough to allow entanglement
verification with the product 7,7, lying in the range shown
in the inset of Fig. 4.

The optimal analyzer geometry leading to successful en-
tanglement verification is highly dependent on the spatial
correlations; both the periodicity and the bin width can be
adjusted to optimize entanglement detection. For the EPR-like
spatial correlations generated in our experiment, the most
relevant parameter to maximize the joint transmission is the
bin width of the periodic analyzer. To show this, we compare
(P.) and (P_) measured for four different analyzer geometries
(d =4,5,6, and 8) as a function of the bin width. Since the
maximal value allowed also depends on d, we normalize the
measured quantities with those associated with ideal EPR
correlations: (P4 )gpr = (75_)ng = 1/d. As seenin Figs. 5(a)
and 5(b), the same trend is observed for the average joint
transmissions as a function of the bin width, regardless of the
parameter d. It is also possible to recognize that the far-field
correlations in our setup are stronger than those in the image
plane of the source (note that the plots abscissas are the physical

bin widths of the apertures displayed on the SLMs). Since the
largest periodicity applied to the SLMs (8.64 mm) was the
same for all analyzer geometries, the largest used bin width is
smaller for larger d.

Each data point in Fig. 5(c) represents an entanglement
test calculated from the average transmission probabilities
displayed in Figs. 5(a) and 5(b). For these tests, we mixed only
position and momentum data with the same d, thus correspond-
ing to a symmetric arrangement of analyzers. Entanglement
is successfully detected according to our criteria for every
data point lying above the red horizontal line representing
(Py) + (P_) — Qsym = 0. An optimal range of analyzer pa-
rameters leading to the greatest violations of inequality (18) is
centered around s,.s, ~ 4. This product value corresponds, for
example, to position and momentum data taken with the same
SLM bin width of Ms, = as, ~ 0.83 mm. These bin widths
are wide enough to allow a large joint transmission of the
correlated photons, but not so large as to unnecessarily increase
Qym via its dependence on the product 7,7, = d%s.s p-Asa
consequence, the success rate of entanglement detection as
well as the largest achieved violation decreases with d. The
success rate of entanglement tests in our experiment is shown
in Fig. 5(d). These success rates were calculated from 1296
entanglement tests for eachd < 6 and 144 tests foreachd > 6.
The largest SLM periodicity used in these tests was the same
for all d. The lower part of the error bars represent violations
by less than one standard deviation [the error as in Eq. (23)],
while the upper part accounts for unsuccessful tests by less
than one standard deviation. In total, we were able to detect
entanglement in 4432 out of 7344 tests, thus achieving an
overall success rate of about 60%.

VIII. DISCUSSION

We have demonstrated that the entanglement present in a
bipartite continuous variable system can be detected using a
special kind of coarse-graining measurement using periodic
sampling projectors. We illustrate the usefulness of the method
with an experiment using twin photons from parametric
down-conversion entangled in transverse spatial variables. The
results have shown that the method works very well and can
be easily extended to other CV systems. In comparison with
the traditional method of binning the measurement variable,
our method presents the advantage of working with higher
signal-to-noise ratios. This advantage comes from the peri-
odicity of the analyzers used which allows the light to be
transmitted through more than one slit, while in the standard
binning only one slit is allowed. Moreover, to achieve enough
resolution, traditional binning usually requires very thin slits.
In contrast with this requirement, our method was shown
to prove entanglement even using slit widths that would be
considered very large for the standard binning procedure.

The reported criteria may be a convenient and robust test
of entanglement present in nontrivial CV states that present
periodic phase-space structures [51-53]. It is worth noting that
our results are applicable to any quantum continuous variable,
and can be used even if a complete CV measurement has
been made, since it is possible to post process the measured
distributions into the necessary periodic binning structure.
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FIG. 5. Normalized average transmission probabilities for analyzer geometries d = 4,5,6,8 for (a) position (near-field) measurements and
(b) momentum (far-field) measurements as a function of the physical bin width of the periodic analyzers. (c) Entanglement test for average
transmission probabilities obtained from data points shown in (a) and (b). One can see that entanglement is best observed near s..s, ~ 4. (d)
Overall success probability for entanglement detection as a function of the analyzer parameter d, using data corresponding to all bin widths

(see text for more details).
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APPENDIX: CONCISE PROOF OF THE UNCERTAINTY
RELATION FOR PERIODIC ANALYZERS

The formula (8a) based on the Fourier expansion of the

spatial mask function trivially leads to (An = n’ — n):

IPEI = D caltes )l (Ts) T )% (7 )e 475

n.n'el

(AL)

The integral with respect to d&, present in Eq. (9) shall only
involve the last factor, namely, ¢'~"%%+_ Since we integrate over
the whole period, the integration provides 7,8, ,. With this
result we can perform the sum with respect to n’ and obtain

T./2
Tix /_ d€x|7’(§x)|2 = Z |Cn(Tx5x)|2|q)(n-L—x)|2' (A2)

/2 neZ

The same line of reasoning applies to the second term associ-
ated with the momentum variable. As a result, we find that the
left-hand side of Eq. (9) is equal to

D llen(tes) Pt + len(Tps )P DT, .
neZ

(A3)

In the last step, we maximize the above quantity with respect
to both characteristic functions, independently for each value
of n. The optimization procedure is subject to the constraint

|P(nT)* + | DT> < 1+G(n’n,T,),  (Ad)
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which is a particular instance of the uncertainty relation for
the characteristic functions derived in [44]. Also, from the
sole definition of the characteristic function, we know that
|®(nt,)*> < 1 and |(nt,)|* < 1. In mathematical terms, we
are thus maximizing the function aX 4 bY with respect to
(X,Y). All a,b,X,Y are real and non-negative, and we have
the constraints: X < 1, Y < l,and X +Y <1+ G with0 <
G < 1. Since the above inequalities define a convex set, the
maximum is obtained at the edge points. If a < b then the
maximizing edge is ¥ = 1 and X = G, while when a > b we
shall pick up X = 1 and Y = G. As a result (considering both
cases together) we obtain the first desired inequality (exact
formula for Q).

The second inequality part pops up after one bounds
g(nzm,,) by 1. Then

Q < Y llea(res)* + len(Tps,p)Il.

nez

(AS5)

Since within a single period, the transmittance | M (x)|? is equal
to 1 for 0 < x (mod T') < s and vanishes elsewhere, we obtain
the relations

i—i/Td IM@P = le(es)P
T=T ; X x)|© = c,(19)|%,

nez

(A6)

which turns Eq. (A5) into the inequality part of Eq. (10).
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