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The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical
secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the
reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the
secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed
encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on
the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate
much higher excess noise and enables us to reach a much longer secure transmission distance even at lower
reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the
known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography
with continuous variables.

DOI: 10.1103/PhysRevA.97.042311

I. INTRODUCTION

Quantum key distribution (QKD) provides an efficient way
for two trusted parties to share a secure secret key string
through an untrusted channel which is assumed to be controlled
by the potential eavesdropper Eve. Nowadays, two families
of QKD protocols are proposed: the discrete-variable QKD
(DVQKD) [1,2] and continuous-variable QKD (CVQKD)
[3–7] protocols. The secret key bits are encoded on the discrete
spectrum of single photons and obtained by photon-counting
measurements for the former one, while in the latter one, the
secret key information is commonly encoded on the values
of the light field quadratures of multiphoton quantum states,
which are obtained by coherent detections. So far, the DVQKD
and Gaussian-modulated coherent-state (GMCS) [4] CVQKD
protocols have been proved secure against individual [8–11],
collective [12–15], and coherent attacks [16–18] even when
taking into account the finite-size effects [19–21].

The CVQKD protocol inherits the merits of high detection
efficiency, high channel capacity, and superior compatibility
with intense classical optical channels [22] from coherent opti-
cal communications. However, its secure transmission distance
is too short compared to its counterpart. One of two main
reasons is that the CVQKD protocol is quite sensitive to excess
noise, which includes the unavoidable channel excess noise and
the extra noise originated from the practical CVQKD system
[23,24]. The other one is that CVQKD schemes require unique
and a far more complicated error correction procedure, which
further restricts the secure transmission distance. The proposal
of discrete-modulated (DM) CVQKD [25,26], where the secret
keys are encoded on the signs of the values of the quadratures, is
just for the purpose of improving the reconciliation efficiency
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at low SNR by using a binary error correction code (ECC)
to increase the secure transmission distance. Although other
approaches, such as developing an efficient error-correcting
code for Gaussian signals [27] and controlling the system
excess noise directly [28] or by using a locally generated
local oscillator [29–32], can be used to improve the secure
transmission distance of GMCS CVQKD to some extent, the
property of high sensitivities to excess noise and reconciliation
efficiency of these value-encoding (VE) CVQKD schemes still
fundamentally restricts their performance. The unavoidable
high level of channel excess noise is common in practical
application of the CVQKD protocol [33], and its fluctuation
will further lower the reconciliation efficiency. Moreover, a
recent report [34] shows that the frame error rate [28,35,36] of
the ECC may further restrict the real reconciliation efficiency.

In this paper, we develop a QKD protocol which encodes
secret keys on the discrete-distributed measurement bases of
the Gaussian-modulated coherent states while not directly
encoding the secret information on the continuous-distributed
quadrature values as usual. Physically, this way may dra-
matically weaken the effects of channel excess noise and
reconciliation efficiency on the secret key rate. We exemplify
the security of the proposed scheme under a typical non-
Gaussian individual attack, i.e., the partial intercept-resend
attack combined with the beam-splitting attack [37]. In such
a scenario, the proposed scheme may reduce observably
the bound of leaked information to the eavesdropper, and
subsequently, much higher performance may be obtained than
that of the previous GMCS CVQKD scheme even with lower
reconciliation efficiency.

II. THE BASIS-ENCODING QKD PROTOCOL

The proposed protocol, which is depicted in Fig. 1, executes
the following steps: (1) Alice draws two random values, i.e.,
XA, PA, with Gaussian distributions N ∼ N (0,VA) to prepare
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FIG. 1. Diagram of the basis-encoding CVQKD protocol. Src,
coherent source; RNG, random number generator; AM, amplitude
modulator; PM, phase modulator; HD, homodyne detector.

a coherent state |XA + iPA〉 and sends it to Bob. (2) Bob mea-
sures either quadrature X or P according to an independently
generated random binary value b and obtains measurement
results XB , PB related to XA, PA, respectively. (3) Alice and
Bob perform a parameter estimation processing. In detail,
Alice and Bob randomly choose a fraction of measurement
results, and then Alice discards the uncorrelated quadrature
to share a set of correlated Gaussian variables, which is
used to evaluate the modulation variance, excess noise, and
transmission efficiency. (4) For the residual measurement
results, Bob informs Alice about the outcome values of his
homodyne detection, and Alice judges the measurement basis
Bob has used. For example, when b = 0, Bob measured the X

quadrature and Alice also guesses that Bob has measured the
X quadrature; then she decodes this value correctly as secret
key 0, otherwise she gets an incorrect secret key 1. After these
operations, Alice and Bob share a set of correlated binary raw
key. (5) Alice and Bob perform reconciliation with binary
codes and privacy amplification to distill a final secret key.
We note that the quantum state transmission and the parameter
estimation run the same as the conventional CVQKD protocol,
while the obtained raw key and the following processing are
different.

The decoding rules employed in the Step IV) are summa-
rized as follows:

Correct decoding:
When XE > PE, βx

EXB > CE or β
p

EPB < CE

When XE < PE, βx
EXB < CE or β

p

EPB > CE

Incorrect decoding:
When XE > PE, βx

EXB < CE or β
p

EPB > CE

When XE < PE, βx
EXB > CE or β

p

EPB < CE

where CA = 1
2 (XA + PA), and βx

A and β
p

A are the coefficients
employed to give minimum variances of �X = βx

AXB − XA

and �P = β
p

APB − PA, respectively. The basic principle is
comparing the distances from the adjustment of Bob’s mea-
surement result to the two original conjugate quadratures.

In the finite-size scenarios, the secret key rate of the
proposed protocol is given by

R = n

N
[βIAB − IE − �(n)], (1)

where IAB is the Shannon mutual information between Alice
and Bob, IE is the leaked information to Eve, �(n) is related to
the security of the privacy amplification, β is the reconciliation
efficiency, N is the block size of the shared data between
Alice and Bob, and n is the number of the pulses used for
key generation.

III. THE SECURITY AGAINST INDIVIDUAL ATTACK

Now we exemplify the security of the proposed scheme
under the non-Gaussian individual attack, which combines
partial intercept-and-resend (IR) and beam-splitting (BS) at-
tacks with an assumption that the channel excess noise εc is
introduced only in the IR part. In detail, Eve intercepts and
resends a fractionμof the pulses, while she performs a standard
BS attack on the remaining fraction 1 − μ of the pulses. In
the IR part, Eve performs a simultaneous measurement of
both X and P quadratures of the coherent states sent by
Alice. Then she produces new ones displaced according to
her measurement results and resends them to Bob. For Alice
and Bob, the heterodyne measurement and reproduction of the
quantum signal will introduce 2N0 excess noise, where N0 is
the shot noise variance. For Bob and Eve, Eve’s IR operation
will increase 2N0 modulation variance. In the BS part, Eve
will replace the quantum channel with a perfect lossless and
noiseless one connecting with a beam splitter with transmission
efficiency T , where the extra input of the beam splitter is
a Gaussian vacuum state. Then she will perform heterodyne
detection on the split coherent state and obtain the results XE

and PE . Finally, she will decode the secret information with
XE and PE according to Bob’s measurement results.

Suppose that the transmission efficiency is T , the channel
excess noise is εc, and Bob uses homodyne detection with an
efficiency η and electronics noise νel , then the quadratures of
received Gaussian-modulated coherent states in Bob’s station
can be expressed as

XB =
√

ηT XA +
√

ηT δXex + δXv + δXel,

PB =
√

ηT PA +
√

ηT δPex + δPv + δPel, (2)

where δXex (δPex), δXv (δPv), and δXel (δPel) are the added
extra quadratures arising from channel excess noise, shot noise,
and electronic noise of homodyne detection, respectively, and
they satisfy 〈δX2

ex〉 = 〈δP 2
ex〉 = εc, 〈δX2

v〉 = 〈δP 2
v 〉 = 1, and

〈δX2
el〉 = 〈δP 2

el〉 = νel in shot noise units, respectively.
We first consider the error rates of Alice’s and Eve’s

decoding according to Bob’s measurement results for the BS
attack in the asymptotic regime. For a more general BS attack
model, the extra input of the beam splitter is a thermal state.
Then a channel excess noise εc results. According to Eq. (2),
the quantum bit error rate (QBER) between Alice and Bob can
be calculated as

P AB
e =

∫ +∞

0

1√
2πσn1

erf

(
n√
2σm

)
e
− n2

2σ2
n1 dn

= arctan

(
σn1

σm

)
/π, (3)

where σ 2
m = 2VA, σ 2

n1
= 4εc + 4

ηT
(1 + νel), and erf(x) =∫ x

0 e−t2
dt is the error function (see Appendix A for details).

After receiving Bob’s measurement results, Eve will decod-
ing the data from her heterodyne detection. The principle of
her secret key decoding procedure is similar as Alice’s, which
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FIG. 2. The QBERs P AB
e,f and P BE

e,f as a function of transmission
efficiency for different channel excess noise εc. From bottom to top,
εc = 0.1,0.16,0.22.

can be summarized as

Correct decoding:
When XE > PE, βx

EXB > CE or β
p

EPB < CE

When XE < PE, βx
EXB < CE or β

p

EPB > CE

Incorrect decoding:
When XE > PE, βx

EXB < CE or β
p

EPB > CE

When XE < PE, βx
EXB > CE or β

p

EPB < CE

where CE = 1
2 (XE + PE), and βx

E and β
p

E are the coefficients
employed to give minimum variances of �X = βx

EXB − XE

and �P = β
p

EPB − PE , respectively. The QBER between Bob
and Eve is given by

P BE
e = 1 −

∫ +∞

−∞

e
− m2

2σ2
m

2
√

2πσm

erfc

(
m√
2σn2

)

erfc

(
m√
2σn3

)
dm

= 1 − Fe, (4)

where Fe = ∫ +∞
−∞

e
− m2

2σ2
m

2
√

2πσm

erfc( m√
2σn2

)erfc( m√
2σn3

) dm is

an integrable function with a numerical solution,
σ 2

n2
= 4

1−T
+ 2( T

1−T
)
2
εc, and σ 2

n3
= T 2+(2−T )2

(1−T )2 εc + 4
ηT

νel +
4−T
1−T

+ (2
√

1−T
T

+
√

T
1−T

)
2
+ 4(1−η)

ηT
(see Appendix A for

details).
Considering the finite-size effect [24], the transmission

efficiency T and the channel excess noise εc in Eqs. (3) and
(4) should be renewed. Here we denote Alice’s and Eve’s
renewed QBERs as P AB

e,f and P BE
e,f in the finite-size scenarios,

respectively (see Appendix A for details). As shown in Fig. 2,
these renewed QBERs will sightly increase with the channel
excess noise, and the high abundance of Alice’s QBER will
lead to low necessary reconciliation efficiency for the BE QKD
protocol.

FIG. 3. Demonstration of the decoding rules for (a) Alice and
(b) Eve employed in the proposed scheme.

According to Refs. [37,38], a lower bound of the mutual
information IAB is the Gaussian mutual information I

g

AB with
the expression as

I
g

AB = 1 − H
(
P AB

e,f

)
. (5)

The leaked information contains two parts with the form

IBE = μIIR
BE + (1 − μ)IBS,εc=0

BE , (6)

where I IR
BE and I

BS,εc=0
BE denote the leaked information for Eve’s

IR and BS attacks, respectively. Here V ′
A denotes the modu-

lation variance of the reproduced quantum signals after Eve’s
IR attack. The calculations of the secret key rate for GMCS
CVQKD and the proposed scheme are given in Appendix B.

As the known CVQKD protocols, the foundational security
of the basis-encoding (BE) QKD also relies on Heisenberg’s
uncertainty principle, which makes a restriction that the eaves-
dropper cannot obtain the precise values of the conjugate
quadratures X and P of the transmitted quantum states si-
multaneously. In particular, we note here that the estimated
QBER between Alice and Bob is from the deviations between
Bob’s measurement results XB,PB and Alice’s encoding val-
ues XA,PA, whereas Eve’s estimated QBER originates from
the deviations between Bob’s measurement results XB,PB

and Eve’s heterodyne measurement results XE,PE . However,
Eve’s heterodyne detection inevitably introduces extra shot
noise, which deteriorates her decoding error rate. We show
Alice’s and Eve’s decoding principles for the proposed BE
QKD protocol in Fig. 3, which depicts the probability density
functions of Alice’s and Bob’s adjustmental variables. It can
be seen that Alice’s decoding reference points XA,PA,CA

are known constant values, while Eve’s reference points
XE,PE,CE themselves are Gaussian random variables, which
will result in a much higher QBER for Eve even when the
quantum channel is very lossy and noisy.

IV. THE SIMULATION PERFORMANCE

The numerical simulations of the secret key rates for the
proposed scheme are displayed in Fig. 4. We note here the

042311-3



HUANG, HUANG, ZHANG, AND ZENG PHYSICAL REVIEW A 97, 042311 (2018)

0 20 40 60 80 100 120 140 160

Transmission distance (km)

10-6

10-5

10-4

10-3

10-2

10-1

100

S
ec

re
t k

ey
 r

at
e 

(b
its

 p
er

 p
ul

se
)

Solid lines: for BE QKD under non-Gaussian individual attack
Dotted lines: for GMCS CVQKD under non-Gaussian individual attack
Dashed lines: for GMCS CVQKD under general individual attack
Dash-dotted lines: for GMCS CVQKD under collective attack

FIG. 4. Secret key rates via transmission distance for different
channel excess noise εc in the finite-size scenario. From top to bottom,
εc = 0.1,0.16,0.22.

non-Gaussian individual attack involved in this paper is weaker
than the general individual attack. For comparison, we plot
the secret key rate of the GMCS CVQKD scheme under
the same non-Gaussian individual, the general individual,
and collective attacks in Fig. 4. The quantum channel is
characterized by its transmission T = 10−0.02d , where d is the
distance between Alice and Bob. The block length is N =
2 × 1012, the modulation variance is VA = 10, reconciliation
efficiency is β = 0.9, n/N = 0.5, and the quantum efficiency
and electronic noise of Bob’s detection are η = 0.6 and νel =
0.02, respectively. Clearly, the contrastive results show that
the secure transmission distance for the BE QKD protocol has
been dramatically promoted in the cases of relatively high-level
channel excess noise, which benefits the practical large-scale
secure quantum cryptography with continuous variables.

The tolerable excess noise and necessary reconciliation
efficiency to guarantee a positive secret key rate for the pro-
posed protocol are depicted in Fig. 5, where the reconciliation
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FIG. 5. Tolerable excess noise (TEN) and necessary reconcilia-
tion efficiency (NRE) as a function of transmission distance against
the non-Gaussian individual attack for the proposed scheme and the
GMCS CVQKD scheme.
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FIG. 6. Secret key rate as a function of modulation variance for
the proposed BE QKD and GMCS CVQKD protocols under different
attacks.

efficiency and channel excess noise are specified as β = 0.9
and εc = 0.1, respectively. The contrastive results show that
the proposed protocol exhibits capabilities of much higher
tolerable excess noise and much lower necessary reconciliation
efficiency than the conventional GMCS CVQKD scheme,
which enables the EB QKD protocol to reach a much longer
secure transmission distance even at a lower reconciliation
efficiency. So the proposed protocol may be more applicable
in the scenarios of bad quantum channels and low-efficiency
ECC.

Moreover, the secret key rate as a function of modulation
variance VA is depicted in Fig. 6, where the reconciliation
efficiency, channel excess noise, and transmission distance
are set as β = 0.9, εc = 0.1, and d = 25 km, respectively.
We can find that the optimal modulation variance is larger
than the known GMCS CVQKD scheme, and the relatively
flat distribution allows us to achieve high performance with
a more flexible choice of modulation variance, which quite
eases the demand of the sensitivity of homodyne detection
and is meaningful for practical high-speed implementation of
quantum key distribution.

V. DISCUSSION AND CONCLUSIONS

The main differences between the proposed scheme and the
DVQKD protocols are that Alice usually sends coherent states
with a few photons per pulse (about five) and performs homo-
dyne detection but not photon counting. Also, similar with the
DM CVQKD schemes, the error rate is not upper bounded,
which is in disagreement with the security proofs for DVQKD
protocols which impose a maximum admissible QBER. It
should be mentioned that the decoy states are necessary for
the DM CVQKD protocols to guarantee the unconditional
security [26], which makes the practical implementation of
these protocols complicated. As shown in Fig. 7, the QBER of
the proposed scheme can be a high value and close to 0.5 with
the increase of reconciliation efficiency, which is induced by
both the noise and losses of the quantum channel controlled
by Eve, but the security is still ensured. Moreover, the main
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difference between the proposed scheme and the DM CVQKD
schemes [25] is that the latter ones belong to the type of VE
CVQKD protocols, which are essentially sensitive to excess
noise and reconciliation efficiency. Actually, Eve’s information
under collective attacks for the DM CVQKD schemes can
be also bounded by the Holevo information, which has the
same form as the one obtained for GMCS CVQKD schemes.
However, the one for the proposed BE QKD protocol has not
yet been tightly bounded.

We note that the secret key rate of the proposed protocol will
be not superior to the GMCS CVQKD schemes in the scenarios
of the short-distance quantum channel and high-efficiency
ECC, shown in Fig. 8. This is because the channel capacity for
key distribution between Alice and Bob and simultaneously
the one between Bob and Eve are both initiatively decreased.
With the quantum channel and ECC becoming better, the merits
of the high capacity of Gaussian channels are notable, and,
subsequently, a higher secret key rate can be achieved. We
sacrifice the channel capacity to improve the tolerable excess
noise and lower the necessary reconciliation efficiency. In
addition, since the first three steps of the proposed protocol are
the same as GMCS CVQKD scheme, one may integrate these
two schemes in practice. Especially when the quantum channel
is quite noisy and lossy, and the reconciliation efficiency is
low under the current signal-to-noise ratio, one may choose to
execute the proposed BE QKD scheme.

As summarized above, we present a QKD protocol based
on the BE method, which we prove to be secure against a non-
Gaussian individual attack. The contrastive analysis shows that
the use of the BE method allows us to achieve direct distribution
of discrete secret keys by using Gaussian-modulated coherent
states over very noisy and lossy quantum channels even with
low reconciliation efficiency, which was impossible for the
previous CVQKD protocols. Moreover, the BE method can
be naturally integrated with the previous GMCS CVQKD
schemes to strengthen their performance for practical appli-
cation scenarios. Further work will include analysis of the

FIG. 8. Secret key rate as a function of (a) excess noise and trans-
mission distance and (b) reconciliation efficiency and transmission
distance. The light and dark blue surfaces denote the secret key rates
for the proposed BE QKD scheme and the GMCS CVQKD scheme
under the non-Gaussian individual attack, respectively.

unconditional security, as well as the implementation of the
present protocol.
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APPENDIX A: EVE’S INDIVIDUAL ATTACK

In the basis-encoding QKD protocol, Alice sends the Gaus-
sian modulated signal through the lossy and noisy quantum
channel to Bob. Here we consider the case that Eve performs
a particular non-Gaussian individual attack which combines
partial intercept-and-resend (IR) and beam-splitting (BS) at-
tacks, and the channel excess noise εc is all introduced in the
IR step. In particular, Eve intercepts and resends a fraction
μ of the pulses, while she performs a standard BS attack on
the remaining fraction 1 − μ of the pulses. For the IR step,
Eve performs a simultaneous measurement of both X and
P quadratures of the coherent states sent by Alice (Fig. 9).
Then she produces a new one displaced according to her
measurement results and resends it to Bob. For the BS step,
Eve will replace the quantum channel with a perfect lossless
and noiseless quantum channel connecting with a beam splitter
with transmission efficiency T , where the extra input of the
beam splitter is a Gaussian vacuum state. Eve’s BS attack can
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FIG. 9. The description of Eve’s intercept-and-resend attack.

be depicted in Fig. 10, where â1 is the quantum signal and âv
1

is the input of vacuum state.
Suppose that the transmission efficiency is T , the channel

excess noise is εc, and Bob uses homodyne detection with an
efficiency η and electronics noise νel , then the quadratures of
received Gaussian-modulated coherent states in Bob’s station
can be expressed as

XB =
√

ηT XA +
√

ηT δXex + δXv + δXel,

PB =
√

ηT PA +
√

ηT δPex + δPv + δPel, (A1)

where δXex (δPex), δXv (δPv), and δXel (δPel) are arising from
channel excess noise, shot noise, and electronic noise of homo-
dyne detection, respectively, and satisfy 〈δX2

ex〉 = 〈δP 2
ex〉 = ε,

〈δX2
v〉 = 〈δP 2

v 〉 = 1, and 〈δX2
el〉 = 〈δP 2

el〉 = νel in shot noise
units, respectively. The variances of Bob’s measurement results
(the values of quadrature X or P obtained by Bob’s homodyne
detection) for the IR or BS case can be expressed in the
shot-noise units as [37]

〈y2〉IR = ηT (VA + 2) + 1 + νel,

〈y2〉BS = ηT VA + 1 + νel . (A2)

The total excess noise introduced by this non-Gaussian indi-
vidual attack should satisfy 2μ = εc.

We first consider the Eve’s IR attack model. Eve intercepts
the quantum signal from Alice and performs perfect hetero-
dyne detection; then she will adjust the measurement results
and obtain

XE = XA + δXv
0 + δXv

1,

PE = PA + δP v
0 − δP v

1 , (A3)

where δXv
0(δP v

0 ), δXv
1(δP v

1 ) are the quadratures of the vacuum
states induced in the encoding step and heterodyne detection,
respectively. Then she will reproduce the quantum signal state

FIG. 10. The description of Eve’s beam-splitting attack by using
heterodyne detection.

and resend to Bob with the quadratures

X′
A = XA + δXv

0 + δXv
1 + δXv

2 ,

P ′
A = PA + δP v

0 − δP v
1 + δP v

2 , (A4)

where δXv
2(δP v

2 ) is the quadrature of the vacuum state induced
by the reproduction of the quantum signal state.

Now we consider the general BS attack model, where the
extra input mode âc

1 of the beam splitter is a thermal state. The
quadratures of the output modes â2 and â4 can be expressed as

X2 =
√

T XA +
√

T δXv
0 + √

1 − T δXv
1 +

√
T δXex,

P2 =
√

T PA +
√

T δP v
0 + √

1 − T δP v
1 +

√
T δPex,

(A5)
X4 = −√

1 − T XA − √
1 − T δXv

0 +
√

T δXv
1

+ T√
1 − T

δXex,

P4 = −√
1 − T PA − √

1 − T δP v
0 +

√
T δP v

1

+ T√
1 − T

δPex,

where δXv
0(δP v

0 ), δXv
1(δP v

1 ) are the quadratures of the vacuum
states induced in the encoding step and lossy channel, re-

spectively, and δXex =
√

1−T
T

δXc
ex (δPex =

√
1−T
T

δP c
ex) is the

quadrature induced by noisy quantum channel referred to the
channel input and δXc

1 = δXv
1 + δXc

ex (δP c
1 = δP v

1 + δP c
ex).

For a standard BS attack, δXex = δPex = 0:

XB = X3 =
√

ηT XA +
√

ηT δXex + δXB + δXel,

PB = P3 =
√

ηT PA +
√

ηT δPex + δPB + δPel,
(A6)

XE = −X5 =
√

1 − T

2
XA + δXE − T√

2(1 − T )
δXex,

PE = P6 =
√

1 − T

2
PA + δPE − T√

2(1 − T )
δPex,

where δXB = δXv = √
ηT δXv

0 + √
η(1 − T )δXv

1 +√
1 − ηδXv

2 , δPB = δPv = √
ηT δP v

0 + √
η(1 − T )δP v

1 +
√

1 − ηδP v
2 , δXE =

√
1−T

2 δXv
0 −

√
T
2 δXv

1 −
√

1
2δXv

3 , and

δPE =
√

1−T
2 δP v

0 −
√

T
2 δP v

1 +
√

1
2δP v

3 . Here Xv
2(P v

2 ) and
Xel(Pel) are the quadratures of the vacuum state induced in the
imperfect homodyne detection and the quadrature induced by
the noisy homodyne detection referred to the channel input,
respectively.

In the following, we will first calculate the QBER of Alice’s
and Eve’s decoding according to Bob’s measurement results
for a BS attack in the asymptotic regime. First, we consider the
QBER between Alice and Bob. Because of the symmetry of
quadratures XA and PA, we just consider the case of XA > PA

for simplicity. According to Eqs. (A1) and (A6), the inequality
βx

AXB < CA and β
p

APB > CA can be expanded to

XA − PA < −2δXex − 2√
ηT

(δXv + δXel),

XA − PA < 2δPex + 2√
ηT

(δPv + δPel). (A7)
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When we set M = XA − PA, Nx
1 = −2δXex − 2√

ηT
(δXv +

δXel), and N
p

1 = 2δPex + 2√
ηT

(δPv + δPel), these variables
follow the normal distributions as

M ∼ N
(
0,σ 2

m

)
, Nx

1 , N
p

1 ∼ N
(
0,σ 2

n1

)
, (A8)

where σ 2
m = 2VA and σ 2

n1
= 4εc + 4

ηT
(1 + νel). The QBER

between Alice and Bob can be calculated as

P AB
e = 1

2

[
P

(
M < Nx

1

∣∣M > 0
) + P

(
M < N

p

1

∣∣M > 0
)]

= 1

2

[
P

(
0 < M < Nx

1

)
/P (M > 0

)
+P

(
0 < M < N

p

1

)
/P (M > 0)

]
= P

(
0 < M < Nx

1

) + P
(
0 < M < N

p

1

)

=
∫∫

0<m<nx
1

e
− m2

2σ2
m

− (nx
1 )2

2σ2
n1

2πσmσn1

dm dnx
1

+
∫∫

0<m<n
p

1

e
− m2

2σ2
m

− (n
p
1 )2

2σ2
n1

2πσmσn1

dm dn
p

1

= 1

2πσn1σm

∫ 0

nx
1

e
− m2

2σ2
m dm

∫ 0

−∞
e
− (nx

1 )2

2σ2
n1 dnx

1

+ 1

2πσn1σm

∫ 0

n
p

1

e
− m2

2σ2
m dm

∫ 0

−∞
e
− (n

p
1 )2

2σ2
n1 dn

p

1

=
∫ +∞

0

1√
2πσn1

erf

[
n√
2σm

]
e
− n2

2σ2
n1 dn

= arctan

(
σn1

σm

)
/π, (A9)

where erf(x) = ∫ x

0 e−t2
dt is the error function.

Now we calculate the QBER between Bob and Eve. After
receiving Bob’s measurement results, Eve will decoding her
data from heterodyne detection. From Eq. (A6), we can see
the quadratures XE and PE are symmetric. Also, we can just
consider the case of XE > PE for simplicity, which can be
expanded to

M > N2, (A10)

where N2 =
√

2
1−T

(δPE − δXE) + T
1−T

(δXex − δPex), which
follows the distribution

N2 ∼ N
(
0,σ 2

n2

)
, (A11)

where σ 2
n2

= 4
1−T

+ 2( T
1−T

)
2
εc.

According to Eq. (A6), the inequality βx
EXB < CE and

β
p

EPB > CE can be expanded to

M < Nx
3 , M < N

p

3 , (A12)

where Nx
3 =

√
2

1−T
(δPE + δXE) − 2√

ηT
(δXB + δXel) −

2−T
1−T

δXex − T
1−T

δPex , and N
p

3 = −
√

2
1−T

(δPE + δXE) +
2√
ηT

(δPB + δPel) + 2−T
1−T

δPex + T
1−T

δXex , which can be

further simplified by replacing the variables δXE , δPE , δXB ,
and δPB . Then we can get their distributions as

Nx
3 ,N

p

3 ∼ N
(
0,σ 2

n3

)
, (A13)

where σ 2
n3

= T 2+(2−T )2

(1−T )2 εc+ 4
ηT

νel+ 4−T
1−T

+(2
√

1−T
T

+
√

T
1−T

)2 +
4(1−η)

ηT
. The QBER between Bob and Eve can be calculated

as

P BE
e = 1

2

[
P

(
M < Nx

3

∣∣M > N2
)

+P
(
M < N

p

3

∣∣M > N2
)]

= 1

2

[
P

(
N2 < M < Nx

3

)
/P (M > N2)

+P
(
N2 < M < N

p

3

)
/P (M > N2)

]
= P

(
N2 < M < Nx

3

) + P
(
N2 < M < N

p

3

)

=
∫∫∫

n2<m<nx
3

e
− m2

2σ2
m

− n2
2

2σ2
n2

− (nx
3 )2

2σ2
n3

2π
√

2πσmσn2σn3

dm dn2 dnx
3

+
∫∫∫

n2<m<n
p

3

e
− m2

2σ2
m

− n2
2

2σ2
n2

− (n
p
3 )2

2σ2
n3

2π
√

2πσmσn2σn3

dm dn2 dn
p

3

= 2
∫ +∞

−∞

e
− m2

2σ2
m

π
√

2πσm

[√
π

2
+

√
π

2
erf

(
m√
2σn2

)]

×
[√

π

2
−

√
π

2
erf

(
m√
2σn3

)]
dm

= 1 −
∫ +∞

−∞

e
− m2

2σ2
m

2
√

2πσm

erfc

(
m√
2σn2

)
erfc

(
m√
2σn3

)
dm

= 1 − Fe, (A14)

where Fe = ∫ +∞
−∞

e
− m2

2σ2
m

2
√

2πσm

erfc( m√
2σn2

)erfc( m√
2σn3

) dm, which is

an integrable function with a numerical solution. The simpli-
fication of Eq. (A14) is obtained by using the following result:

P (M > N2)

=
∫∫

m<n2

e
− m2

2σ2
m

− n2
2

2σ2
n2

2πσmσn2

dm dn2

=
∫ +∞

−∞

e
− m2

2σ2
m√

2πσm

[√
π

2
erfc

(
m√
2σn2

)
+

√
π

2

]
dm

= 1

2
, (A15)
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where we use the equation

∫ m

−∞
e
− n2

2
2σ2

n2 dn2 =
√

2σn2

∫ m√
2σn2

−∞
e−t2

dt

=
√

2σn2

(∫ m√
2σn2

0
e−t2

dt +
∫ 0

−∞
e−t2

dt

)

=
√

π

2
σn2 erf

(
m√
2σn2

)
+

√
π

2
σn2 . (A16)

Now we consider the QBERs in the finite-size scenario.
When considering finite-size effect, the transmission efficiency
T and the channel excess noise εc in Eqs. (A9) and (A14)
should be renewed as [24]

T ′ =
[√

T − zεPE/2

√
1 + T εc

(N − n)VA

]2

ε′
c =

[
T εc + zεPE/2(1 + T εc)

√
2

N − n

]/
T ′, (A17)

where zεPE/2 is such that 1 − erf(zεPE/2/
√

2)/2 = εPE/2, εPE

quantifies the failure probability of the parameter estimation.
Moreover,n is the number of the pulses used for key generation,
and N is the block size of the shared data between Alice and
Bob. We denote the renewed Alice’s and Eve’s QBERs in the
finite-size scenarios as P AB

e,f and P BE
e,f , respectively.

APPENDIX B: CALCULATION OF SECRET KEY RATE
FOR DIFFERENT CVQKD PROTOCOLS

The secret key rate in finite-size scenario can be obtained
as

R = n

N
[βIAB − IE − �(n)], (B1)

where �(n) = 7
√

log2(2/εs )
n

is related to the security of the
privacy amplification, and εs is the smooth parameter. The
particular non-Gaussian individual attack includes intercept-
resend and BS parts, and the actual secret key rate of the
proposed QKD scheme under this attack can be calculated in
two parts. However, the achievable secret key rate can be lower
bounded by the information rate for an equivalent Gaussian
attack characterized by the same evaluated parameters [37,38].
Here the mutual information between Alice and Bob IAB is
bounded by the Gaussian mutual information I

g

AB with the
expression as

I
g

AB = 1 − H
(
P AB

e,f

)
, (B2)

which is lower than the actual mutual information I
ng

AB with the
expression as

I
ng

AB = μI
BS,εc=0
AB + (1 − μ)IBS,εc=2

AB , (B3)

where μ = ε′
c/2, I

BS,εc=0
AB = 1 − H [P AB

e (εc = 0)], and
I

BS,εc=2
AB = 1 − H [P AB

e (εc = 2)]. We use IAB = I
g

AB to
calculate the secret key rate in this paper. The leaked
information can be calculated as IE = IBE for reverse
reconciliation, which can be expressed as

IBE = μIIR
BE + (1 − μ)IBS,εc=0

BE , (B4)

where I IR
BE = 1 − H [P AB

e,f (εc = 0,V ′
A = VA + 2)] and

I
BS,εc=0
BE = 1 − H [P BE

e,f (εc = 0)]. Here V ′
A denotes the

modulation variance of the reproduced quantum signal states
after Eve’s IR attack.

For the GMCS CVQKD protocol, the secret key rate for
the reverse reconciliation scheme under the general individual
attack in a finite-size scenario also can be calculated with
Eq. (B1), where IAB and IE can be calculated as [35,37]

IAB = 1

2
log2

ηT ′VA + 1 + ηT ′ε′
c + νel

1 + ηε′
c + νel

,

IE = 1

2
log2

ηT ′VA + 1 + ηT ′ε′
c + νel

η/
[
1 − T ′ + T ′ε′

c + T ′
VA+1

] + 1 − η + νel

.

(B5)

For the particular non-Gaussian individual attack, the leaked
information to Eve can be evaluated by form of Eq. (B4), where
I IR
BE and I

BS,εc=0
BE should be renewed according to Eq. (B5) as

I IR
BE = IAB(εc = 0,V ′

A = VA + 2) and I
BS,εc=0
BE = IE(εc = 0).

Also, the secret key rate under collective attack in the finite-
size scenario can be calculated as Eq. (B1), where IAB has
the same expression as the one in Eq. (B5) and IE should be
renewed as χBE with the expression [24,35]

χBE =
2∑

i=1

G

(
λi − 1

2

)
−

5∑
i=3

G

(
λi − 1

2

)
, (B6)

where G(x) = (x + 1) log2(x + 1) − x log2 x. The symplectic
eigenvalues λi are given by

λ2
1,2 = 1

2
(A ±

√
A2 − 4B),

λ2
3,4 = 1

2
(C ±

√
C2 − 4D), (B7)

λ5 = 1,

where A = V 2(1 − 2T ′) + 2T ′ + T ′2(V + χ ′
line)2,

B = T ′2(V χ ′
line + 1)2, C = V

√
B+T ′(V +χ ′

line)+Aχhom

T ′(V +χ ′
tot )

, and

D = √
B

V +√
Bχhom

T ′(V +χ ′
tot )

with V = VA + 1, χ ′
line = 1/T ′ − 1 + ε′

c,
χhom = (1 + νel)/η − 1, and χ ′

tot = χ ′
line + χhom/T ′.
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