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Reconstructing the ideal results of a perturbed analog quantum simulator
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Well-controlled quantum systems can potentially be used as quantum simulators. However, a quantum simulator
is inevitably perturbed by coupling to additional degrees of freedom. This constitutes a major roadblock to useful
quantum simulations. So far there are only limited means to understand the effect of perturbation on the results
of quantum simulation. Here we present a method which, in certain circumstances, allows for the reconstruction
of the ideal result from measurements on a perturbed quantum simulator. We consider extracting the value of
the correlator 〈Ôi(t)Ôj (0)〉 from the simulated system, where Ôi are the operators which couple the system
to its environment. The ideal correlator can be straightforwardly reconstructed by using statistical knowledge
of the environment, if any n-time correlator of operators Ôi of the ideal system can be written as products of
two-time correlators. We give an approach to verify the validity of this assumption experimentally by additional
measurements on the perturbed quantum simulator. The proposed method can allow for reliable quantum
simulations with systems subjected to environmental noise without adding an overhead to the quantum system.
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I. INTRODUCTION AND CENTRAL RESULTS

Today we possess in principle the full knowledge to describe
all processes of interest in a wide range of fields, such as chem-
istry, biology, and solid state physics. In all these fields a truly
microscopic description is possible using quantum mechanics.
However, it is also well understood that in practice full quantum
mechanical simulations of even modestly sized systems are im-
possible [1]. To efficiently study quantum problems, we need to
use other, well-controlled quantum mechanical systems [2–5].
In recent years unprecedented direct control over quantum
systems has been achieved [3,6–9]. Precise experiments in the
quantum regime have been performed using atomic systems
[10–12], superconducting qubits [13–17], photonic circuits
[18–20], and nuclear spins [21,22]. Larger systems have been
demonstrated using trapped ions [23,24] and the equilibra-
tion of interacting bosons has been studied in cold gases
[25,26].

A promising approach to understanding quantum systems
is analog quantum simulation [27], where the goal is to create
an artificial system with a Hamiltonian that is equivalent to the
system we intend to study. Apart from quantum simulations
using cold gases [28,29] and trapped ions [30,31], there
are many proposals for analog quantum simulation with su-
perconducting circuits [32–35], exploiting the controllability
of superconducting systems, which in principle allows the
creation of a large class of Hamiltonians. While most current
superconducting systems are relatively small [36,37], larger
networks of superconducting nonlinear elements are now being
explored [38–40]. Other architectures for analog quantum
simulation have also been investigated [41,42].

In this article we study an analog quantum simulator with
the ideal Hamiltonian HS . To understand the properties of the
simulated system, we would like to use a measurement to

extract a time-ordered correlation function (Green’s function)

iGS0(t) = 〈T Ô(t)Ô(0)〉0 = 〈0|T eiHSt Ôe−iHS t Ô|0〉, (1)

where T is the time-ordering operator. The index S0 indicates
that we are considering the ideal Green’s function of the
unperturbed Hamiltonian HS , without coupling to additional
degrees of freedom, and |0〉 is the ground state of HS (zero-
temperature limit). We start our analysis from this simple
example and later in Sec. IV extend the theory to multiple
operators Ôi and to finite temperatures. We consider time-
ordered Green’s functions, since these are in general connected
to numerous quantities of interest in experiments, such as heat
or electric transport coefficients. There are several proposals
which describe methods to measure the relevant correlators in
the context of analog quantum simulation [43–46]. Thus, we
assume that Green’s functions play a central role in extracting
results from a quantum simulator.

However, if we want to use measurements on a quantum
simulator to study the properties of an ideal Hamiltonian,
the key challenge remains: What is the role of errors and
imperfections of the artificial system in a real measurement
[5,47–49]? Usually we quantify the influence of external
degrees of freedom by comparing measurements to theoretical
predictions. However, by definition, for quantum simulation it
should not be possible to predict the result either analytically or
numerically using classical computers. Some proposals exist to
analyze [50] or mitigate [51,52] errors for small noise in analog
or digital quantum simulators. The approach we introduce in
this paper works potentially also for intermediate levels of
noise strength. It is based on connecting the ideal Green’s
function (1) to the perturbed Green’s function we measure
using a quantum simulator. We consider Green’s functions
where Ô is also the operator by which the quantum simulator
couples to additional degrees of freedom (which cause the
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FIG. 1. The quantum simulator is coupled to a perturbative bath.
The simulator-bath system is coupled weakly to an environment
that establishes thermal equilibrium. For each subcomponent of the
system we define a free correlator: the ideal correlator of the simulator
iGS0(t) = 〈T Ô(t)Ô(0)〉0 as defined in Eq. (1) and the free correlator
of the bath iGB0(t) = 〈T X̂(t)X̂(0)〉0. The full correlator iGSB (t) =
〈T Ô(t)Ô(0)〉 accounts for the coupling in the full Hamiltonian (2).

errors). This restricts the generality of the approach, but in
reality it is actually very likely that the same mechanism which
connects the system to its bath also allows for the readout of
the system. For example, readout via a resonator for modern
superconducting qubits can be done dispersively (via σz) or
resonantly (via σx). In the case of T1 limited qubits with
resonant readout or T2 limited qubits with dispersive readout
[53] our requirement is fulfilled. So it is reasonable to assume
that this is one of the Green’s functions to which we have easy
access in experiments.

We show that under specific conditions it is in fact possible
to extract the ideal correlator of the operator Ô even from
a perturbed system. One ingredient in our approach is good
statistical knowledge of the additional degrees of freedom
which act on HS . This assumption is justified, for example, for
a quantum simulator build from tunable qubits, where qubits
can be decoupled and the properties of the baths of individual
qubits can be probed by established spectroscopical methods.
Apart from this, only one assumption is necessary about the
properties of the ideal correlators. We need that any n-time
correlation function can be expressed as the product of two-
time correlation functions. This condition will be discussed in
more detail in Sec. I A. In the present paper we describe this
method assuming Ô and that the additional degrees of freedom
are bosonic, but the method can also be directly transferred to
fermionic operators Ô and fermionic baths.

A. Principal idea

We start by presenting a simple example of our approach,
where we show how to extract the ideal properties from an
imperfect simulator in equilibrium. In Sec. IV we extend this
result to more general situations.

The full system we consider can be described by the
Hamiltonian

H = HS + HC + HB, HC = ÔX̂. (2)

Here the ideal Hamiltonian of the simulator HS is coupled
via the Hamiltonian HC to the additional degrees of freedom
contained in the bath Hamiltonian HB . The system operator in
HC is Ô, which is the same as what we used to define the ideal
correlator in Eq. (1), and the bath operator is X̂.

The bath can usually be described by a set of bosonic modes
and we assume that the free correlator of the bath GB0(t) is
known, for example, from spectroscopic measurements. For
the definition of all relevant Green’s functions see Fig. 1 and
its caption. In Sec. IV, we give a more precise definition.

The total system described by H is in thermal equilibrium.
It should be emphasized that if coupling to the thermal bath is
not infinitely weak it cannot be assumed that the only result of
this coupling is the creation of equilibrium [54–56]. In the main
part of this paper we focus on the situation at zero temperature
and in Sec. IV D extend our method to finite temperatures.

We want to connect the spectral function of the bath to
the properties of the perturbed quantum simulator. Standard
many-body physics techniques exist which can be used to
expand the full Green’s function GSB (ω) in terms of the ideal
Green’s functions GS0(ω) and GB0(ω) [57]. However, to apply
these techniques there is one key assumption that is absolutely
crucial: Wick’s theorem needs to apply in some form. Using
this theorem, it is possible to connect a single correlator of 2n

operators with n two-time correlators. Wick’s theorem for the
system operator Ô takes the form

〈T Ô(t1)Ô(t2) · · · Ô(tn−1)Ô(tn)〉0

= 〈T Ô(t1)Ô(t2)〉0〈T Ô(t3) · · · Ô(tn−1)Ô(tn)〉0

+〈T Ô(t1)Ô(t3)〉0〈T Ô(t2) · · · Ô(tn−1)Ô(tn)〉0

+ · · · + 〈T Ô(t1)Ô(tn)〉0〈T Ô(t2) · · · Ô(tn−1)〉0. (3)

This relation can be applied repeatedly until only two-time
correlators remain. For the bath operator X̂ it is natural
to assume that Wick’s theorem applies, in accordance with
numerous system-bath descriptions. However, for the system
operator Ô this is not in general true. A well known case where
Eq. (3) holds is if the system HS can be described as a system
of noninteracting quasiparticles and Ô can be written as a
linear combination of the annihilation and creation operators
of these quasiparticles. More generally, Eq. (3) is valid if
the fluctuations of Ô(t) have a Gaussian distribution. The
expansion of n-time correlators in pair and higher correlators
has been studied extensively for spin systems [58–60] and
deviations from Gaussian statistics have been studied in the
field of full-counting statistics [61–64]. From relatively general
considerations, such as the central limit theorem [65], we
expect that fluctuations become more Gaussian as the system
size increases, which is also the most interesting limit for a
quantum simulator. However, in some systems non-Gaussian
fluctuations are known to persist even at large system size
[66,67] or become even size independent [68]. For different
expansions it could also be useful to map qubits coupled to
bosonic baths to an effective electron-phonon model [69].
In Sec. II we discuss how Eq. (3) can be checked, to some
extent, by making appropriate measurements on the perturbed
quantum simulator.

Assuming Eq. (3) holds, we find an exact relation between
the Green’s functions

GSB(ω) = GS0(ω) + GS0(ω)GB0(ω)GSB(ω). (4)

This is the well-known Dyson equation that defines the total
Green’s function as a function of the free system and bath
Green’s functions.
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B. Central result

From Eq. (4) we see that the perturbed quantum simulator
can be used to find the correlator of the unperturbed simulator
GS0(ω) as long as we know the free Green’s function of the
bath GB0(ω), since

GS0(ω)= GSB (ω)

1 + GB0(ω)GSB(ω)
. (5)

This states the central idea of this paper in the simplest form.
To derive Eq. (5) we use an important assumption, that Wick’s
theorem in the form in Eq. (3) applies for the system operator
Ô. This condition will be discussed in more detail in Sec. II,
where we also show how to extract the lowest-order correction
to this result from the perturbed simulator. Apart from this, the
quality of the reconstruction is also restricted by the precision
of the knowledge of the correlators, which is the subject of
Sec. III. In particular, we presume that the properties of the
bath are measured independently of the system, which will be
discussed more detailed in Sec. IV. In Sec. IV we also consider
the case where multiple baths couple to system via operators
Ôi and extend the reconstruction method to finite temperatures.
Finally, we discuss a simple example, which can be solved
analytically, to validate our result.

II. VERIFYING WICK’S THEOREM

The validity of Wick’s theorem for the system operator Ô

is crucial for the derivation of Eq. (5); however, for nontrivial
systems we cannot in general predict if Wick’s theorem holds.
Therefore, we describe a method to verify the validity of
Wick’s theorem using the quantum simulator itself. A detailed
derivation is given in Appendix B.

We introduce the lowest-order correction to Wick’s theorem
G4(t1,t2,t3,t4),

G4(t1,t2,t3,t4)

= 〈T Ô1Ô2Ô3Ô4〉0,F − 〈T Ô1Ô2Ô3Ô4〉0

= 〈T Ô1Ô2Ô3Ô4〉0,F −
∑

3 perm
a,b,c,d

∈ {1,2,3,4}

〈T ÔaÔb〉0〈T ÔcÔd〉0,

(6)

where we make use of the abbreviation Ôi = Ô(ti). The
summation runs over all indistinguishable permutations. With
〈· · ·〉0 and 〈· · ·〉 we refer to correlators for which we assume
Wick’s theorem to be exactly valid. The index 0 indicates that
the system is considered without perturbation by the bath. In
contrast to this, 〈· · ·〉F (〈· · ·〉0,F ) describes the (un)perturbed
correlators including the corrections to Wick’s theorem. In this
paper we consider corrections up to first order in G4.

With measurements on the quantum simulator we have
access to n-time correlators 〈. . .〉F of Ô. Measuring two- and
four-time correlators

〈T Ô1Ô2Ô3Ô4〉F −
∑

3 perm
a,b,c,d

∈ {1,2,3,4}

〈T ÔaÔb〉F 〈T ÔcÔd〉F = ,

(7)

we get access to the quantity

(8)

where the thin cross represents the correction G4 and the
sinuous lines stand for the bath correlation function (see
Table I). The central result here is that the correction to the
perturbed two-time correlator can be expressed as

〈T Ô1Ô2〉F = 〈T Ô1Ô2〉 + . (9)

Equations (7) and (9) show that it is possible to estimate the
deviation from Wick’s theorem by measuring the two- and
four-time correlators and combining the measured result with
our knowledge of the bath correlator. This allows us to check
whether the assumption of Wick’s theorem is justified and the
result of the reconstruction is reliable.

III. IMPERFECT KNOWLEDGE

A fundamental prerequisite for the reconstruction of the
unperturbed correlator is the knowledge of the perturbed
correlator of the system GSB and the correlator of the bath
GB0. In reality, we will not receive these quantities with
full accuracy. In this section we address the question how
imperfect knowledge affects the reconstruction of the ideal
Green’s function.

A. Bath correlator

We consider a variation of the Green’s function of the bath
GB0(ω) + δGB0(ω). With this Green’s function, we recon-
struct the correlator of the simulator using Eq. (5) with

G̃S0(ω) = GSB (ω)

1 + GB0(ω)GSB(ω) + δGB0(ω)GSB (ω)
. (10)

For |δGB0(ω)| � |G−1
SB(ω) + GB0(ω)|, we find

G̃S0(ω) ≈ GS0(ω)[1 − GS0(ω)δGB0(ω)]. (11)

Hence, the impact of δGB0(ω) is large at the peaks of GS0(ω).
The influence of δGB0(ω) is independent of the value of
GB0(ω). This means that the quality of the reconstruction is
defined by the absolute error δGB0(ω) only.

B. Full system correlator

For a deviation of the full system correlator GSB (ω) +
δGSB (ω), we have

G̃S0(ω) = GSB (ω) + δGSB (ω)

1 + GB0(ω)GSB(ω) + GB0(ω)δGSB (ω)
. (12)

For |δGSB(ω)| � |G−1
B0(ω) + GSB(ω)|, we find

G̃S0(ω) ≈ GS0(ω)

(
1 + GS0(ω)

GSB (ω)

δGSB (ω)

GSB (ω)

)
. (13)
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TABLE I. Summary of all relevant correlators and their diagrammatic representation.

Green’s function Matrix form Diagram Definition

G
ij

SB (t) = −i〈T Ôi(t)Ôj (0)〉 [GSB ]ij = G
ij

SB full correlator of the system operators, including the effects of the bath (λB = 1)
G

ij

S0(t) = −i〈T Ôi(t)Ôj (0)〉0 [GS0]ij = G
ij

S0 free correlator of the system operators, without the effects of the bath (λB = 0)
G

ij

B0(t) = −i〈T X̂i(t)X̂j (0)〉0 [GB0]ij = G
ij

B0 free correlator of the bath, without the effects of the system (λB = 0)

The ratio of GS0(ω) and GSB(ω) implies that the variation of
the full system correlator GS0(ω) is large at the peaks of this
function. In contrast to the variation of the bath correlator in
Eq. (11), the relative error δGSB (ω)/GSB(ω) enters here.

In addition, this equation shows the limit of our reconstruc-
tion method. Consider the limit of large coupling of the bath
to the system. Equation (5) is still valid, but a reconstruction
is no longer possible if the bath widens the peaks of GS0(ω)
significantly. In this case GS0(ω)/GSB(ω) � 1 at the peaks.
Therefore, even a small relative error in the measurement
of GSB (ω) makes the reconstruction of GS0(ω) practically
impossible.

IV. FULL MODEL AND DISCUSSION

A. Extended model

In this section we extend the model to a more general
scenario and discuss the derivation of our results in detail. To
make our model more realistic, we consider multiple baths. In
practice, a system consisting of N coupled qubits or resonators
arranged in a certain two-dimensional geometry does not
couple to a single bath. Instead, we consider a system with
multiple independent baths HB = ∑N

i=1 Hi
B with [Hi

B,H
j

B] =
0 and a similarly adjusted coupling term. The full Hamiltonian
can now be written in the form

H = HS + HC +
N∑

i=1

Hi
B. (14)

The coupling HC between the system and the additional
degrees of freedom contained in

∑
i H

i
B is assumed to be of

the form

HC = λB

N∑
i=1

ÔiX̂i . (15)

The system and bath variables satisfy the commutation re-
lation [X̂i,HS] = [Ôi,HB] = [X̂i,X̂j ] = 0. We have now N

system operators Ôi which couple the system to N baths via
the corresponding bath operators X̂i . We have introduced the
dimensionless constant λB ∈ {0,1}, which allows us to define
the free and perturbed correlators in a more rigorous way (see
Table I).

To perform the reconstruction of the unperturbed Green’s
function of the system, we need to characterize the properties
of the baths independently of the system [70]. This assumption
is justified, for example, for a large network of superconducting
flux qubits coupled in a two-dimensional (2D) structure to
simulate a spin system. Such systems have been realized with
up to 1000 qubits [39,40]. The ideal Hamiltonian in this case
would be, e.g., HS = 1

2

∑
i hiσ

i
x + ∑

ij Jij σ
i
zσ

j
z . Here hi and

Jij are adjustable parameters which define the model under
investigation and σ i

k are the Pauli matrices acting on qubit i.

Under the assumption that the effect of the noise on a single
qubit is almost Markovian, it is possible to characterize the
noise spectral density of the decoupled qubits using the method
described in [71]. The qubits are coupled to individual baths,
whose bath correlators 〈X̂i(t)X̂i(0)〉0 are known relatively
well, as estimated in Ref. [72]. From a multitude of similar
experiments we know that the system operator that couples to
the bath corresponds to Ôi = σ i

z . Thus, for such a quantum
simulator the characterization of the bath correlator is possible
independently of the properties of the simulator. Furthermore,
the applicability of Wick’s theorem has been studied broadly
[58–60] in context of spin systems. Devices such as large
networks of superconducting flux qubits coupled in a 2D
structure can also be tuned into alternative regimes, e.g., into a
weakly nonlinear regime where proposals exist on how to use
such devices for the simulation of vibronic transitions [73].
In this limit, the application of Wick’s theorem would also be
more straightforward.

B. Full Green’s function

In Eq. (1) we introduced the Green’s function of the system
without coupling to external degrees of freedom. In this section
we consider the Green’s function GSB of the system coupled
to its bath in matrix form with the elements

G
ij

SB(t) = −i〈T Ôi(t)Ôj (0)〉, (16)

where 〈· · ·〉 is an expectation value of the ground state of
the full system. Using the standard technique for Green’s
functions at zero temperature, we expand G

ij

SB(t) in orders
of HC . Therefore, the zeroth-order Hamiltonian is given by
H0 = HS + ∑

i H
i
B . We define the time evolution

SλB
(t) = e−iH t (17)

and transform all operators Â into the appropriate picture using
the definition

Â(t) = S−1
λB

(t)ÂSλB
(t). (18)

For unperturbed correlators 〈· · ·〉0 this transformation with
SλB=0(t) = e−iH0t defines operators in the interaction picture,
while λB = 1 denotes the full time evolution in the Heisenberg
picture for the perturbed correlators 〈· · ·〉. The full Green’s
function can be written in the form

G
ij

SB(t) = −i
〈T S(∞)Ôi(t)Ôj (0)〉0

〈T S(∞)〉0
, (19)

with the time evolution operator

S(∞) = T exp

(
−i

∫ ∞

−∞
dt HC(t)

)
, (20)

where we use the coupling Hamiltonian in the interaction
picture. We introduce the Fourier transform of the Green’s
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TABLE II. Each circle represents a term of the expansion in HC .

Interaction Diagram Definition∑N

i=1 ÔiX̂
i interaction between bath and system

function

G
ij

X(ω) =
∫ ∞

−∞
dt eiωtG

ij

X(t). (21)

C. Diagrammatic expansion

We show now the diagrammatic expansion that leads to
expressions such as Eq. (4) if Wick’s theorem is valid for
the coupling operators. All relevant correlators and their
diagrammatic representations are shown in Table I and the
interaction term is shown in Table II.

Using an expansion of S(∞) in HC , we can directly show
the connection between the Green’s function of the simulator
perturbed by a bath G

ij

SB and the unperturbed ideal Green’s
functions

(22)

Here all disconnected diagrams are canceled by the vacuum
diagrams in 〈T S(∞)〉0 (see Appendix A). Therefore we can
write the Dyson equation in matrix form as

GSB (ω) = GS0(ω) + GS0(ω)GB0(ω)GSB(ω). (23)

If all Green’s functions G
ij

SB(ω) and G
ij

B0(ω) are known, this
equation can be solved for GS0:

GS0(ω) = GSB(ω)[1 + GB0(ω)GSB(ω)]−1. (24)

If we reduce the system to a single-bath situation, this result
transforms to Eq. (5). It connects the ideal correlator in Eq. (1)
to quantities which can be readily measured.

D. Extension to finite temperatures

The diagrammatic expansion in Sec. IV C can also be
applied to the Matsubara Green’s functions GM,X, which
are connected to the retarded Green’s functions for finite
temperatures GR

X . This is a way to extend this method to
systems in thermal equilibrium. The analog of Eq. (5) for finite
temperatures is given by

GR
S0(iωn) = GR

SB (iωn)

1 + GR
B0(iωn)GR

SB (iωn)
. (25)

Below we introduce the Matsubara Green’s functions and
explain the connection to the spectral function.

1. Expansion in imaginary time

As we consider the whole system to be in thermal equilib-
rium, it is reasonable to use the standard Matsubara Green’s
function method. Therefore, we define the imaginary time

τ = it where we require 0 < τ < β. The Matsubara Green’s
function equivalent to Eq. (16) is

Gij

M,SB (τ ) = −〈T Ôi(τ )Ôj (0)〉, (26)

where T is the time-ordering operator for τ . In the case of
finite temperatures, 〈· · ·〉 refers to the equilibrium expectation
value Tr( 1

Z
e−βH · · · ), with Z = Tr(e−βH ). The time evolution

in imaginary time is given by

UλB
(τ ) = e−Hτ . (27)

We transform all operators Â into the appropriate picture in
imaginary time using the definition

Â(τ ) = U−1
λB

(τ )ÂUλB
(τ ). (28)

The full correlator can be written in the form

GM,SB (τ ) = −〈T U (β)Ôi(τ )Ôj (0)〉0

〈T U (β)〉0
, (29)

with evolution operator

U (τ ) = T exp

(
−

∫ τ

0
dτ ′HC,I (τ ′)

)
. (30)

As for zero temperature, all disconnected diagrams are can-
celed by the factor 〈T U (β)〉0, the so-called vacuum diagrams.

The correlator in imaginary time is periodic in τ with period
β. It is convenient to transform it to frequency space using the
discrete Fourier transform

Gij

M,X(τ ) = 1

β

∑
n

Gij

M,X(ωn)e−iωnτ (31)

with the Matsubara frequencies ωn = 2πn/β.

2. Connecting a real-time correlator
to the Matsubara Green’s function

Now we discuss the connection of the Matsubara Green’s
function to measurable quantities such as the spectral function
or correlators. As an example we focus on the Green’s function
of the bath.

We define the correlation function

Ci(t) = [〈X̂i(t)X̂i(0)〉0 − 〈X̂i(0)X̂i(t)〉0]θ (t). (32)

The eigenstates of the bath are given by |n〉, with HB |n〉 =
En|n〉. This allows us to rewrite the correlator

Ci(t) = θ (t)

ZB

∑
nm

|〈n|X̂i |m〉|2ei(En−Em)t (e−βEn − e−βEm ),

(33)

with the partition function ZB = Tr(e−βHB ). The real part of
the Fourier transform of the correlator gives us the spectral
function

Ai(ω) = 1

π
Re

(∫ ∞

−∞
dt eiωtCi(t)

)
= 1

ZB

∑
nm

|〈n|X̂i |m〉|2

× (e−βEm − e−βEn )δ(ω − (En − Em)). (34)

Apart from a factor −1, the imaginary part of the retarded
Green’s functionGR

B0(t) is equivalent to the correlation function
Ci(t), since

GR,ii
B0 (t) = −i〈[X̂i(t),X̂i(0)]〉0θ (t). (35)
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Assuming that Ai(ω) has been measured, the retarded Green’s
function GR

B0(ω) of the bath can be calculated using

GR,ii
B0 (ω) =

∫ ∞

−∞
dω1

Ai(ω1)

ω − ω1 + i0
. (36)

Describing the Matsubara Green’s function in terms of the
spectral function shows a connection to the retarded Green’s
function for finite temperatures GR

P ,

Gij

M,P (ωn) = GR,ij

P (iωn), ωn > 0, (37)

with P ∈ {B0,S0,SB}. This requires an analytic continuation
of GR

P in the complex plane. Via the spectral function we can
derive the Kramers-Kronig relation

Gij

P (ω) = ReGR,ij

P (ω) + i[1 + 2n̄(ω)]ImGR,ij

P (ω), (38)

with n̄(ω) = (eβω − 1)−1. Starting from the Matsubara Green’s
function, we obtain information about the retarded Green’s
function at the points iωn. We would like to have the ideal
Green’s function GR

S0, i.e., the spectral function, for the com-
plete real axis. This can be achieved by using numerical meth-
ods like the Padé approximation approach [74,75]. However,
it should be emphasized that the numerical transformation of a
Green’s function at the Matsubara frequencies to the real axis
is still a nontrivial problem and an active research field [76].

E. Model system: Chain of resonators with individual baths

In this section we give an explicit example of our method
and particularly of the validity of Eq. (24). We consider a
system of coupled harmonic oscillators

HS =
N∑

j=1

(
1

2
mω2

r q
2
j + 1

2m
p2

j + m
2

2
(qj+1 − qj )2

)
, (39)

where N is the number of resonators, m refers to the mass,
ωr is the eigenfrequency of an uncoupled resonator, and 


describes the coupling between neighboring oscillators. We
assume periodic boundary conditions. For a system of coupled
resonators, Wick’s theorem stated in Eq. (3) is clearly valid.
Here we show the validity of our previously derived results. We
validate our results for the connection between the ideal and
perturbed correlators by using the quantum regression theorem
(QRT) [77]. While the system of bare coupled resonators would
not make for a good quantum simulator, proposals exist for
modeling the Bose-Hubbard model using coupled nonlinear
resonators [78]. Similarly, limiting cases from noninteracting
bosons to hard-core bosons have been studied in the context of
analog quantum simulation [79].

We assume that each of the resonators is coupled to an
individual bosonic bath

HC =
∑

j

Ôj X̂j , HB =
∑
j,m

ω̄(j )
m b(j )†

m b(j )
m , (40)

with Ôj = qj and X̂j = ∑
m t

(j )
m (b(j )†

m + b
(j )
m ). We assume the

baths to be identical, i.e.,

ω̄(j )
m = ω̄m, t (j )

m = tm, (41)

but independent

〈X̂j1 (t1)X̂j2 (t2)〉0 = 0 for j1 
= j2. (42)

Diagonalizing the system Hamiltonian results in

HS =
∑

k


ka
†
kak with 
k =

√[
2
 sin

(
k
ϕ0

2

)]2
+ ω2

r ,

(43)

where ϕ0 = 2π
N

. The connection of annihilation and creation

operators of system eigenstates, ak and a
†
k , to the original

operators has the form

qj =
√

1

2mωr

(d†
j + dj ), (44)

dj = 1

2
√

N

N∑
k=1

[
e−ikjϕ0

(√
ωr


K

−
√


K

ωr

)
a
†
k

+ eijkϕ0

(√
ωr


K

+
√


K

ωr

)
ak

]
. (45)

We consider finite temperatures. Therefore, the spectral density
of the bath is given by

Ai(ω) ≈ 1

2π
sgn(ω)J i(|ω|), (46)

with J i(ω) = J (ω) = 2π
∑

m t2
mδ(ω − ω̄m).

To compare Eq. (24) to correlators calculated using a
master-equation approach, we calculate the full Green’s func-
tion Gj1j2

M,SB using the QRT. To this end we assume the dynamics
of the full system to be approximately described by the
Lindblad equation

ρ̇(t) = Lρ(t), (47)

with the Lindblad terms

Lρ = − i[HS,ρ]

+
N∑

k=1

k

2
(n̄k + 1)(2akρa

†
k − a

†
kakρ − ρa

†
kak)

+
N∑

k=1

k

2
n̄k(2a

†
kρak − aka

†
kρ − ρaka

†
k), (48)

where n̄k = (eβ
k − 1)−1. Assuming the spectral density of the
bath to be smooth, we find the effective rates

k = 1

2m
k

J (
k), (49)

where the prefactor (2mωr )−1 arises from Ôi =√
2mωr

−1
(d†

j + dj ) and ωr


k
is a result of the transition

from d
†
j + dj to a

†
k + ak . In accordance with the assumptions

used for the Lindblad equation, Eq. (36) reduces to

iGR,ij

B0 (ω) ≈ δij
1
2 sgn(ω)J i(|ω|). (50)

For the Lindblad equation to be valid, some assumptions have
to be made about the spectral density of the bath.

With the QRT, the Lindblad terms fulfill the following
equation for an arbitrary operator Â and all k [77]:

Tr[akLÂ] = −
(

i
k + k

2

)
Tr[akÂ]. (51)
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For t > 0 we get

〈Â(t0)ak(t + t0)〉 = e−i
kt e−(k/2)t 〈Â(t0)ak(t0)〉, (52)

〈ak(t + t0)Â(t0)〉 = e−i
kt e−(k/2)t 〈ak(t0)Â(t0)〉, (53)

〈Â(t0)a†
k(t + t0)〉 = e+i
kt e−(k/2)t 〈Â(t0)a†

k(t0)〉, (54)

〈a†
k(t + t0)Â(t0)〉 = e+i
kt e−(k/2)t 〈a†

k(t0)Â(t0)〉. (55)

The stationary solution of the Lindblad equation is proportional
to exp(−β

∑
k 
ka

†
kak). Using this, we calculate the initial

values for 〈a(†)
k (t0)a(†)

k (t0)〉 and find

〈ak(t1)ak′(t2)〉 = 0, (56)

〈a†
k(t1)ak′(t2)〉 = δk,k′ n̄ke

i
k (t1−t2)e−(k/2)|t1−t2|, (57)

〈ak(t1)a†
k′(t2)〉 = δk,k′(n̄k + 1)ei
k (t1−t2)e−(k/2)|t1−t2|, (58)

〈a†
k(t1)a†

k′(t2)〉 = 0. (59)

A direct calculation of the free correlators results in

〈ak(t1)ak′(t2)〉0 = 0, (60)

〈a†
k(t1)ak′(t2)〉0 = δk,k′ n̄ke

i
k (t1−t2), (61)

〈ak(t1)a†
k′(t2)〉0 = δk,k′(n̄k + 1)ei
k (t1−t2), (62)

〈a†
k(t1)a†

k′(t2)〉0 = 0. (63)

From this result we calculate the retarded Green’s functions
GR,j1j2

S0 (t), GR,j1j2
SB (t) and perform the Fourier transform. With

an analytic continuation and Eq. (37) we finally arrive at the
Matsubara Green’s functions for ωn > 0:

Gj1j2
M,SO (ωn) = 1

N

N∑
k=1

1

2m
k

× [e−ik(j1−j2)ϕ0 n̄k − eik(j1−j2)ϕ0 (n̄k + 1)]

×
(

1

iωn + 
k + i0
− 1

iωn − 
k + i0

)
,

(64)

Gj1j2
M,SB (ωn) = 1

N

N∑
k=1

1

2m
k

× [e−ik(j1−j2)ϕ0 n̄k − eik(j1−j2)ϕ0 (n̄k + 1)]

×
(

1

iωn + 
k + i k

2

− 1

iωn − 
k + i k

2

)
.

(65)

To calculate the bath Green’s function using Eq. (24) we
introduce the transformation

Gk
M,S0(ωn) =

∑
j1,j2

Gj1j2
M,SOeik(j1−j2)kϕ0

= N

2m
k

(
1

iωn − 
k + i0
− 1

iωn + 
k + i0

)
,

(66)

Gk
M,SB (ωn) =

∑
j1,j2

Gj1j2
M,SBeik(j1−j2)kϕ0

= N

2m
k

(
1

iωn − 
k + i k

2

− 1

iωn + 
k + i k

2

)
.

(67)

With this Eq. (24) results in

Gk
M,SB (ωn) = Gk

M,S0(ωn) + Gk
M,S0(ωn)Gk

M,SB (ωn)

×
∑

j

Gjj

M,BO (ωn)
1

N2
. (68)

In the Lindblad equation we take into account the spectral
density of the bath at 
k . Since the bath Green’s function
depends on the spectral density of the bath, the relation is
true for ωn ≈ 
k . Using the assumption of identical and
independent baths we arrive at

Gj1j2
M,BO (ωn ≈ 
k) ≈ δj1,j2mk

(

k + k

4

)
. (69)

In the limit of small coupling to the bath k � 
k , we are left
with

Gj1j2
M,BO (ωn ≈ 
k) ≈ δj1,j2

1
2J (
k). (70)

From a comparison to Eq. (50), we conclude that Eq. (24)
holds for this example. For an Ohmic spectral density and with

k → iω the Matsubara Green’s function of the bath coincides
with Eq. (50).

V. CONCLUSION

The main result we presented in this paper is twofold. On
the one hand, we introduced a method that can be used to
reconstruct certain unperturbed (ideal) Green’s functions from
the perturbed ones, measured by a quantum simulator coupled
to additional degrees of freedom. To achieve this, we assumed
that any n-time correlator of the coupling operator of the ideal
system can be written as a product of two-time correlators. This
is known as Wick’s theorem. On the other hand, we explained
how to verify this assumption by a measurement. Furthermore,
we assumed good knowledge of the bath correlators to perform
the reconstruction. In particular, we presumed that these cor-
relators are measured independently when not coupled to the
ideal system. We also clarified how imperfect measurements of
the bath and of the full correlator affect the reconstruction. For
example, in the case of strong coupling to the bath our result
is still valid, but the reconstruction fails even in the presence
of small noise during the measurement.

Presently, the applicability of analog quantum simulation
is severely restricted, since the influence of sources of errors
is not well understood. The approach presented in this paper
leads the way to quantify and even correct errors in quantum
simulation. Since the reconstruction method is based on clas-
sical postprocessing, this method helps to make the results
of quantum simulation reliable without adding an overhead
to the quantum system. Therefore, the promising potential
of quantum simulation to yield interesting results even using
small quantum systems remains.
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APPENDIX A: DISCONNECTED DIAGRAMS

In this Appendix we explain how the so-called vacuum diagrams 〈T S(∞)〉0 cancel the disconnected diagrams in the free
two-time correlator 〈T S(∞)ÔI (t)ÔI (0)〉0. To shorten the equations we use Âi as an abbreviation for Â(ti). For simplicity we
base our discussion on a coupling Hamiltonian of the form HC = ÔX̂. It is straightforward to extend this calculations on the full
model described in Sec. IV. The vacuum diagrams are given by

〈T S(∞)〉0 =
∑

n

1

n!
(−i)n

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn〈T Ô1 · · · Ôn〉0〈T X̂1 · · · X̂n〉0 =

∑
n

Vn, (A1)

where we assume

〈ÔI (t)〉0 = 0, 〈X̂I (t)〉0 = 0 (A2)

so that terms with n being an odd number are zero. We have introduced Vn, the vacuum diagrams of order n. Now we elaborate
the connection between the free correlator and the vacuum diagrams. The free two-time correlator is given by

〈T S(∞)ÔaÔb〉0 =
∑

n

1

n!
(−i)n

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn〈T ÔaÔbÔ1 · · · Ôn〉0〈T X̂1 · · · X̂n〉0. (A3)

From this we apply Wick’s theorem and take out the two-time correlators which form a connected diagram and recombine the
surplus correlators in a higher-order correlator. There are n!

(n−m)! possibilities to choose m vertices out of n. Therefore, a connected

diagram with m vertices occurs n!
(n−m)! times

〈T S(∞)ÔaÔb〉0 =
∑

n

1

n!
(−i)n

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

n∑
m

〈T ÔaÔ1〉0〈T X̂1X̂2〉0〈T Ô2Ô3〉0 · · · 〈T X̂m−1X̂m〉0〈T ÔmÔb〉0

× n!

(n − m)!
〈T Ôm+1 · · · Ôn〉0〈T X̂m+1 · · · X̂n〉0. (A4)

By resorting the factors we can identify the vacuum diagrams of order n − m,

〈T S(∞)ÔaÔb〉0 =
∑

n

n∑
m

(−i)m
∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtm〈T ÔaÔ1〉0〈T X̂1X̂2〉0〈T Ô2Ô3〉0 · · · 〈T X̂m−1X̂m〉0〈T ÔmÔb〉0︸ ︷︷ ︸

=C
a,b
m

×

=Vn−m︷ ︸︸ ︷
1

(n − m)!
(−i)n−m

∫ ∞

−∞
dtm+1 · · ·

∫ ∞

−∞
dtn〈T Ôm+1 · · · Ôn〉0〈T X̂m+1 · · · X̂n〉0 , (A5)

and find the connected diagrams of order m, which we will call Ca,b
m , with C

a,b
0 = 〈T ÔaÔb〉0. One can factor out 〈T S(∞)〉0 by

using the Cauchy product formula

〈T S(∞)ÔaÔb〉0 =
∞∑
n

n∑
m

Ca,b
m Vn−m =

∞∑
m

Ca,b
m

∞∑
n

Vn = 〈T S(∞)〉0

∞∑
m

Ca,b
m . (A6)

This means that the vacuum diagrams cancel all disconnected diagrams, i.e.,

. (A7)

APPENDIX B: FOUR-TIME CORRELATOR

In this Appendix we consider a system where Wick’s theorem is not exactly valid. The goal is to derive Eqs. (7) and
(9) in order to quantify the deviation from Wick’s theorem. We define the lowest-order correction to Wick’s theorem as
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G4(t1,t2,t3,t4),

G4(t1,t2,t3,t4) = 〈T Ô1Ô2Ô3Ô4〉0,F − 〈T Ô1Ô2Ô3Ô4〉0 = 〈T Ô1Ô2Ô3Ô4〉0,F −
∑

3 perm
a,b,c,d

〈T ÔaÔb〉0〈T ÔcÔd〉0, (B1)

where the summation runs over all three indistinguishable permutations. With 〈· · ·〉 (〈· · ·〉0) we refer to (un)perturbed correlators
for which we assume Wick’s theorem to be exactly valid. In contrast to this, 〈· · ·〉F (〈· · ·〉0,F ) describe the (un)perturbed correlators
including the corrections to Wick’s theorem. In this paper we only consider the lowest-order correction to Wick’s theorem (G4).
All higher-order corrections are neglected. To shorten the equations we use the abbreviation G4(1,2,3,4) = G4(t1,t2,t3,t4). An
n-time correlator is then given by

〈T Ô1 · · · Ôn〉0,F = 〈T Ô1 · · · Ôn〉0 +
∑
perm.

α,β,γ,δ

G(α,β,γ,δ)

〈
T

∏
k ∈ {1, . . . ,n}\{α,β,γ,δ}

Ôk

〉
0

. (B2)

At first we show for the four-time correlator that if Wick’s theorem is valid for the unperturbed correlator, it is also valid for
the perturbed one. We start with

〈T ÔIÔIIÔIIIÔIV〉 = 〈T S(∞)ÔIÔIIÔIIIÔIV〉0

〈T S(∞)〉0
(B3)

=
∑

n

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

1

〈T S(∞)〉0
〈T ÔIÔIIÔIIIÔIVÔ1 · · · Ôn〉0〈T X̂1 · · · X̂n〉0. (B4)

We focus on a coupling Hamiltonian of the form HC = ÔX̂. We proceed as in Appendix A and identify connected diagrams
Ca,b

m with m vertices. Such diagrams occur n!
(n−m)! times. There are six indistinguishable possibilities to choose a and b. Out of

the remaining n − m operators we choose a connected diagram C
c,d
k with k vertices. This occurs (n−m)!

(n−m−k)! times. As, for example,

CI,II
m and C

I,II
k for m = k are indistinguishable, we have in fact three indistinguishable permutations to take into account:

〈T ÔIÔIIÔIIIÔIV〉 =
∑

n

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

1

〈T S(∞)〉0

∑
3 perm

a,b

n∑
m

n!

(n − m)!
〈T ÔaÔ1〉0〈T X̂1X̂2〉0〈T Ô2Ô3〉0 · · · 〈T ÔmÔb〉0

×
n−m∑

k

(n − m)!

(n − m − k)!
〈T ÔcÔm+1〉0〈T X̂m+1X̂m+2〉0〈T Ôm+2Ôm+3〉0 · · · 〈T Ôm+kÔd〉0

×〈T Ôm+k+1 · · · Ôn〉0〈T X̂m+k+1 · · · X̂n〉0 (B5)

=
∑

3 perm
a,b

1

〈T S(∞)〉0

∞∑
n

n∑
m

Ca,b
m

n−m∑
k

C
c,d
k Vn−m−k =

∑
3 perm

a,b

1

〈T S(∞)〉0

∞∑
n

Vn

∞∑
m

Ca,b
m

∞∑
k

C
c,d
k (B6)

=
∑

3 perm
a,b

〈T ÔaÔb〉〈T ÔcÔd〉. (B7)

The resummation in Eq. (B6) represents the Cauchy product formula for three series followed by an index shift. Hence, we
expressed the full four-time correlator in terms of full two-time correlators.

Now we include the corrections to Wick’s theorem and only consider the lowest-order correction G4. We introduce the
correction to the normalization 〈T S(∞)〉0,corr,

1

〈T S(∞)〉0,F

= 1

〈T S(∞)〉0 + 〈T S(∞)〉0,corr
≈ 1

〈T S(∞)〉0

(
1 − 〈T S(∞)〉0,corr

〈T S(∞)〉0

)
. (B8)

With this and Eq. (B2) we can identify the corrections to the full four-time correlator. For that we use the following abbreviation
to describe on which set of operators we apply Wick’s theorem:

Wick(A,πn\B,C) =
〈
T

∏
k ∈ A ∪ πn\B

Ôk

〉
0

〈
T

∏
l∈πn∪C

X̂l

〉
0

, (B9)
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where πn = {1, . . . ,n} describes the initial set of operators Ôi and X̂i . With this notation we keep in mind which additional
operators Ôi we have and which operators Ôi are missing. The full four-time correlator with corrections reads

〈T ÔIÔIIÔIIIÔIV〉F =
∑

3 perm
a,b,c,d

〈T ÔaÔb〉〈T ÔcÔd〉 −
∑

3 perm
a,b,c,d

〈T ÔaÔb〉〈T ÔcÔd〉
〈T S(∞)〉0,corr

〈T S(∞)〉0
+ G4(I,II,III,IV)

+
∑

n

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

1

〈T S(∞)〉0

⎛
⎜⎜⎜⎝

∑
4 perm
a − d

∑
perm

δ

G4(a,b,c,δ)Wick({d},πn\{δ})

+
∑

6 perm
a − d

∑
perm
γ,δ

G4(a,b,γ,δ)Wick({c,d},πn\{γ,δ}) +
∑
perm
α − δ

G4(α,β,γ,δ)Wick({a − d},πn\{α − δ})

+
∑

4 perm
a − d

∑
perm
β,γ,δ

G4(a,β,γ,δ)Wick({b,c,d},πn\{β,γ,δ})

⎞
⎟⎟⎟⎠. (B10)

The summations go over all distinguishable permutations. In addition, the correction to the vacuum diagrams reads

〈T S(∞)〉0,corr

〈T S(∞)〉0
=

∑
n

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

1

〈T S(∞)〉0

∑
perm
α − δ

G4(α,β,γ,δ)Wick(πn\{α − δ}). (B11)

We can do the same for a two-time correlator

〈T ÔaÔb〉F = 〈T ÔaÔb〉 − 〈T ÔaÔb〉
〈T S(∞)〉0,corr

〈T S(∞)〉0
+

∑
n

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

1

〈T S(∞)〉0

×

⎛
⎜⎜⎜⎝

∑
perm
γ,δ

G4(a,b,γ,δ)Wick(πn\{γ,δ}) +
∑

2 perm
k,l

∑
perm
β,γ,δ

G4(k,β,γ,δ)Wick(l,πn\{β,γ,δ})

+
∑
perm.
α − δ

G4(α,β,γ,δ)Wick(a,b,πn\{α − δ}

⎞
⎟⎟⎟⎠. (B12)

With these relations we calculate

〈T ÔIÔIIÔIIIÔIV〉F −
∑

3 perm
a,b

〈T ÔaÔb〉F 〈T ÔcÔd〉F . (B13)

We have to compare terms with the same type of G4, because only these terms can cancel each other. As an example we explain
the procedure for G4(a,b,γ,δ). Focusing on G4(a,b,γ,δ) we obtain

∑
n

(−i)n

n!

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtn

1

〈T S(∞)〉0

×

⎛
⎜⎜⎜⎝

∑
6 perm
a − d

∑
perm
γ,δ

G4(a,b,γ,δ)Wick({c,d},πn\{γ,δ}) −
∑

6 perm
a − d

∑
perm
γ,δ

G4(a,b,γ,δ)Wick(πn\{γ,δ})〈T ÔcÔd〉

⎞
⎟⎟⎟⎠. (B14)

In the last term we have to take into account six permutations, since the G4(a,b,γ,δ) occurs in both two-time correlators. The
summation over the permutations for γ,δ yields a factor n!

(n−2)! . Since the first contribution arises for n = 2 we define ñ = n − 2,
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which yields

∑
6 perm
a − d

(−i)2
∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2G4(a,b,x1,x2)

1

〈T S(∞)〉0

∑
ñ

(−i)ñ

ñ!

×
∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtñ[Wick({c,d},πñ,{x1,x2}) − Wick(πñ,{x1,x2})〈T ÔcÔd〉]. (B15)

The possible types of diagrams in these constellations are

(B16)

multiplied by an appropriate vacuum diagram. The cross represents G4. Both kinds appear in the first term. However, all
contributions in the second term are of the form II. We define the following abbreviations that describe the leg- and ring-type
structures in the above diagrams:

Lx1,a
m = (−i)m

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtm

〈
T X̂x1X̂1

〉
0〈T Ô1Ô2〉0〈T X̂2X̂3〉0 · · · 〈T ÔmÔa〉0, L

x1,a
0 = 0 (B17)

Rx1,x2
m = (−i)m

∫ ∞

−∞
dt1 · · ·

∫ ∞

−∞
dtm

〈
T X̂x1X̂1

〉
0〈T Ô1Ô2〉0〈T X̂2X̂3〉0 · · · 〈T X̂mX̂x2

〉
0. (B18)

Now we proceed analogously with Eq. (B15) and identify similar structures, get combinational factors, and do the resummation
using the Cauchy product formula. It turns out that the terms of type II fully cancel out. So we are left with

∑
6 perm
a − d

(−i)2
∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2G4(a,b,x1,x2)

∞∑
l

∞∑
k

L
x1,c
l L

x2,d
k . (B19)

Repeating this procedure for all kinds of G4 terms, we find

〈T ÔIÔIIÔIIIÔIV〉F =
∑

3 perm
a,b

〈T ÔaÔb〉F 〈T ÔcÔd〉F + G4(I,II,III,IV) − i
∑

4 perm
a − d

∫ ∞

−∞
dtx1G4(a,b,c,x1)

∞∑
k

L
x1,d
k

−
∑

6 perm
a − d

∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2G4(a,b,x1,x2)

∞∑
l

∞∑
k

L
x1,c
l L

x2,d
k

+ i
∑

4 perm
a − d

∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2

∫ ∞

−∞
dtx3G4(a,x1,x2,x3)

∞∑
l

∞∑
k

∞∑
m

L
x1,b
l L

x2,c
k Lx3,d

m

+
∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2

∫ ∞

−∞
dtx3

∫ ∞

−∞
dtx4G4(x1,x2,x3,x4)

∞∑
l

∞∑
k

∞∑
m

∞∑
n

L
x1,a
l L

x2,b
k Lx3,c

m Lx4,d
m . (B20)

We define a diagrammatic representation for these corrections,

(B21)

and are left with

〈T ÔIÔIIÔIIIÔIV〉F =
∑

3 perm
a,b,c,d

〈T ÔaÔb〉F 〈T ÔcÔd〉F + . (B22)
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With the above it is easy to derive the equation

〈T ÔIÔII〉F = 〈T ÔIÔII〉 −
∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2G4(I,II,x1,x2)

∞∑
k

R
x1,x2
k + i

∑
2 perm

a,b

∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2

∫ ∞

−∞
dtx3G4(a,x1,x2,x3)

×
∞∑
l

∞∑
k

R
x1,x2
k L

x3,b
l +

∫ ∞

−∞
dtx1

∫ ∞

−∞
dtx2

∫ ∞

−∞
dtx3

∫ ∞

−∞
dtx4G4(x1,x2,x3,x4)

∞∑
l

∞∑
k

∞∑
m

R
x1,x2
k L

x3,I
l Lx4,II

m

(B23)

= 〈T ÔIÔII〉 + . (B24)
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