
PHYSICAL REVIEW A 97, 042303 (2018)

Evaluation of the non-Gaussianity of two-mode entangled states over a bosonic memory channel via
cumulant theory and quadrature detection
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We study the properties of the cumulants of multimode boson operators and introduce the phase-averaged
quadrature cumulants as the measure of the non-Gaussianity of multimode quantum states. Using this measure,
we investigate the non-Gaussianity of two classes of two-mode non-Gaussian states: photon-number entangled
states and entangled coherent states traveling in a bosonic memory quantum channel. We show that such a channel
can skew the distribution of two-mode quadrature variables, giving rise to a strongly non-Gaussian correlation. In
addition, we provide a criterion to determine whether the distributions of these states are super- or sub-Gaussian.
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I. INTRODUCTION

The non-Gaussianity has been shown to play a prominent
role in statistical problems in various fields of astrophysics
and general physics over the last decades. For example,
the non-Gaussianity has become an important probe of the
fundamental origin and the late time evolution of universe
structures in cosmography [1] and a powerful tool for mea-
suring the independence of signals in signal processing [2]
and the correlations among many-body quantum systems [3].
In particular, a quantum version of the non-Gaussianity (QNG)
has already been well explored in the quantum optical context
[4] and quantum information processing such as quantum
teleportation [5,6] and quantum error correction [7].

Recently, the various measures have been suggested for
quantifying or detecting the quantum non-Gaussianity of
quantum states. Genoni et al. [8] first used the Hilbert-Schmidt
distance to quantify the non-Gaussian character of a bosonic
quantum state and evaluated the non-Gaussianity of some rele-
vant states. Subsequently, they developed the entropic measure
of the non-Gaussianity based on the quantum relative entropy
[9], by which they investigated the performance of condi-
tional Gaussification toward twin-beam and de-Gaussification
processes driven by Kerr interaction. On the other hand, the
non-Gaussianity was experimentally measured via relative
entropy for single-photon added coherent states [10] and
phase-averaged coherent states [11], respectively. It should be
noted that these measures are based on the distinguishability
of a given quantum state itself and its reference Gaussian
state with the same first and second moments. However, it has
recently been proven that they could not discriminate between
quantum non-Gaussian states and mixtures of Gaussian states.
Thus, to accomplish this goal, a quantum non-Gaussianity
witness in phase space was proposed, whose main idea is
to seek the violation of a lower bound for the values that
the phase-space quasiprobability distributions can take in a
particular point of phase space [12,13]. It has been shown that
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the Husimi Q-function-based witnesses are more than effective
than other criteria in detecting the quantum non-Gaussianity
of various kinds of non-Gaussian states evolving in lossy
channel [13]. We shall emphasize that the computation of
the above-mentioned measures is intractable for multimode
continuous-variable (CV) quantum states. Thus, a natural
question arises: Are there other simple ways to characterize
the non-Gaussianity for quantum states of CV systems with an
arbitrary number of modes?

The purpose of this research is to address this issue. As is
well known, in quantum optics the quantum state of a bosonic
system can be identified with its density matrix or phase-space
functions such as the Glauber-Sudarshan P function [14], the
Husimi Q function [15], and the Wigner function [16]; the
density matrix could be related to these distribution functions
by a suitable Fourier transform [16,17]. So they contain the
same information. On the other hand, it has been shown in
Ref. [18] that the phase-space distributions can be obtained
from the measured appropriate probability distributions of the
rotated quadrature operator. That is to say, the full information
on the quantum state can be reconstructed from the statistics
of the quadrature components of a given light field, and then
allowing evaluation of the properties of quantum-state-like
nonclassicality [19] and statistic properties [20]. Therefore,
at this point, the knowledge of the quadrature variable is
equivalent to knowledge of quantum states in describing the
quantum non-Gaussianity, and vice versa. Consequently, we
can safely say that the non-Gaussianity of the quadrature
distribution is meant to that of quantum states of the multimode
CV system. Or, more precisely, a quantum state is non-
Gaussian if the quantum phase-space distribution functions of
quadrature operators have a non-Gaussian form. In fact, the
research in this area has been reported in recent years. Olsen
and Corney [21] investigated the non-Gaussian statistic of the
Kerr-squeezed state by calculating higher-order cumulants of
quadrature variables. It was found that the nonlinear interaction
can skew the distribution of the quadrature variables, giving
rise to large third- and fourth-order cumulants for sufficiently
long interaction times. We characterized the non-Gaussianity
of CV quantum states by means of the cumulant theory and
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studied the dynamics of various orderings of the bosonic
operators in two-mode single-photon squeezed Bell states
in two different decoherence modes with the fourth-order
cumulant method [22]. It was shown that in a two-reservoir
model, all the fourth-order cumulants are very fragile, while in
the single-reservoir model, the fourth-order cumulants for the
two-mode squeezed singlet Bell state are insensitive to thermal
noise, showing the time-invariant non-Gaussianity. The main
disadvantage of this method in Ref. [22] lies in the fact that to
exactly detect the non-Gaussianity, it requires one to analyze all
the cumulants of various combinations of the operators acting
on quantum states. As a result, this limits the proposals to
analyze quantum systems with a large number of degrees of
freedom, and thus we aspire to further improve it.

Among quantum channels, a lossy bosonic memory chan-
nel provides an exactly solvable theoretical model and can
be realized experimentally [23]. Recently, a lot of efforts
have been devoted to the study of the capacities of such a
quantum channel. Ruggeri et al. [24] studied the information
transmission through a lossy bosonic channel with memory
effects. It was shown that the entangled inputs can improve
the rate of transmission of such a channel. Pilyavets et al.
[25] demonstrated that entangled inputs can enhance the
classical capacity with respect to the memoryless case. In their
research, the environment modes are assumed to be initially
in a multimode squeezed vacuum in such a way that such a
quantum channel can be viewed as a bosonic Gaussian channel,
which transforms Gaussian random variables (Gaussian states)
into Gaussian random variables (Gaussian states). Unlike the
treatment in pervious works, in this paper we will regard such
a channel as a phase-sensitive reservoir being in a multimode
squeezed number state [26] and investigate how such a chan-
nel affects the non-Gaussianities of two-mode non-Gaussian
entangled states using the phase-averaged cumulant technique
of quadrature operators.

The paper is organized as follows. In Sec. II we briefly
recall the definition of cumulants and propose some lemmas
for the computation of the cumulants of multimode quadrature
operators under the specific conditions. In particular, we put
forward an explicit expression of the fourth-order cumulant
of two noncommutative quantum operators when a quantum
system is entangled. In Sec. III we review the quantum
memory channel and find its solution with respect to quadrature
operators. Without loss of generality, we introduce a measure
of the phase-average cumulant to detect the non-Gaussianity
of N signals and provide a scheme of multimode homodyne
tomography with a single-mode local oscillator. By virtue
of these results we investigate the effects of the quantum
memory channel on the quantum non-Gaussianities of two
classes of two-mode non-Gaussian entangled states: photon
number entangled states and coherent entangled states, in Sec.
IV. Section V summarizes our results.

II. MOMENTS AND CUMULANTS OF OPERATORS

According to the standard interpretation of quantum me-
chanics, the density matrix ρ contains the complete infor-
mation about a given quantum system, whose full statistics
can, however, be obtained from the probability distribution of
observable quantities. Let X̂ be a Hermitian operator with a

one-dimensional continuous spectrum of real eigenvalues x

to right-hand eigenstates |x〉, then its eigenvalue equation is
written as X̂|x〉 = x|x〉 and the corresponding characteristic
function is expressed as

f̃ (ξ ) ≡ 〈eξX̂〉, (1)

where the bracket 〈Ô〉 denotes the expectation of the operator
Ô. Using the Maclaurin series expansion, we can further write
the above equation as

f̃ (ξ ) = 1 +
n∑

j=1

1

n!
μn(X̂)ξn, (2)

where we have referred to μn(X̂) as the nth order moment of
operator X̂, i.e., μn(X̂) = 〈X̂n〉.

Similar to the probability theory and statistics, we can
define the cumulant-generating function G(ξ ) via the natural
logarithm of the characteristic function of the operator, that is,

G(ξ ) = ln〈eξX̂〉. (3)

It follows that the nth cumulant of operator X̂ can be obtained
by differentiating the above expansion n times and evaluating
the result at zero:

κn(X̂) = ∂n

∂ξn
G(ξ )

∣∣∣∣
ξ=0

. (4)

Thus, with these cumulants κn(X̂), we can write the character-
istic function of operator X̂ in another form:

〈eξX̂〉 = exp

( ∞∑
n=1

ξn

n!
κn(X̂)

)
. (5)

Applying the identity [27],

(a1 + a2 + · · · + am)n =
∑
{lm}

n!

(
m∏

s=1

als
s

ls!

)
, (6)

where
∑

{lm} is the sum of all possible combination of
{l1,l2, . . . ,lm} with l1 + l2 + · · · + lm = n, and comparing
Eqs. (2) and (5), we can obtain the relationship between the
moments and cumulants as

κn(X̂) = μn(X̂) −
n−1∑
m=1

(
n − 1

m − 1

)
μn−m(X̂)κm(X̂), (7)

where ( n

m
) = n!

m!(n−m)! . It can clearly be seen that a cumulant
can be explicitly represented only by the lower moments and
vice versa. For example, the third- and fourth-order cumulants
can be written as

κ3(X̂) = μ3(X̂) − 3μ2(X̂)μ1(X̂) + 2μ3
1(X̂), (8a)

κ4(X̂) = μ4(X̂) − 3μ2
2(X̂) − 4μ1(X̂)μ3(X̂)

+ 12μ2
1(X̂)μ2(X̂) − 6μ4

1(X̂). (8b)

These cumulants have certain geometric meanings and char-
acterize the asymmetry and the sharpness of the characteristic
function of operator X̂, respectively. As is well known, the
third-order cumulant will vanish for symmetric distributions.
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Therefore, the information contained in the nonzero fourth-
order cumulant is enough to determine whether a given
distribution is Gaussian or not. Namely, with the positive
κ4 the distribution of operator X̂ is called super-Gaussian or
platykurtotic, and that with negativeκ4 it is called sub-Gaussian
or leptokurtotic.

With these notations and definitions at hand, a general-
ization to a multimode collective operator is straightforward.
However, in calculating the joint cumulants of such operators,
we should consider two facts. One is the commutation relations
among these operators. Another important fact is that one
should know whether or not a quantum system is entangled.
Thus we introduce the following lemmas in terms of quantum-
mechanical conventional wisdom, respectively.

Lemma 1. (Additivity). Suppose that Â1,Â2, . . . ,ÂN are N

mutually commutative Hermitian operators with Âj acting on
the Hilbert space of the subsystem j and the whole system
is prepared in a produce state, i.e., ρ =⊗N

j=1 ρj , with ρj

being the density matrix of the subsystem j , then the nth-order
cumulant of their sum is equal to the sum of their nth-order
cumulants.

Proof. Let Â =∑N
j=1 Âj be a collective operator. We can

write the joint characteristic function as

f̃ (ξ ) = 〈exp(ξÂ)〉ρ =
˝

exp

⎛
⎝ N∑

j=1

ξÂj

⎞
⎠
˛

ρ

. (9)

Since these operators satisfy the commutation relations
[Âl,Âm] = 0, we have [eÂl ,eÂm ] = 0 and 〈e

∑N
l=1 Âl 〉 =

〈∏N
l=1 eÂl 〉. Considering the case of ρ =⊗N

j=1 ρj , Eq. (9) can
be further expressed as the sum of the corresponding marginal
characteristic functions as

f̃ (ξ ) =
N∏

j=1

〈exp(ξÂj )〉ρj
= f̃1(ξ ) ⊗ f̃2(ξ ) ⊗ · · · ⊗ f̃N (ξ ).

(10)

Furthermore, the cumulant generating function is given by

K(ξ ) =
N∑

j=1

ln f̃j (ξ ) =
N∑

j=1

Kj (ξ ). (11)

According to the definition of the cumulant, we can easily
obtain

κn(Â) =
N∑

j=1

κn(Âj ). (12)

This ends the proof. �
Lemma 2. (Homogeneity). Suppose X̂ is an operator with

an nth-order cumulant, then for any scalar λ ∈ R, the operator
λX̂ has the nth-order cumulant, which is given by λnκn(X̂).

Proof. According to the definition (4), we can write the
characteristic function of operatorλX̂ in terms of the cumulants
as

〈eξλX̂〉 = exp

( ∞∑
n=1

ξn

n!
κn(λX̂)

)
= exp

( ∞∑
n=1

(λξ )n

n!
κn(X̂)

)
.

(13)

Then, we have

κn(λX̂) = λnκn(X̂), (14)

which completes the proof. �
Lemma 3. (Semi-invariance). Suppose X̂ is an operator with

an nth cumulant and let G : X̂ �→ Ŷ = aX̂ + b be a quantum
affine transformation with a and b being any real constants.
Under such a transformation, the cumulants of Ŷ are given by

κn(Ŷ ) =
{

aκn(X̂) + b, if n = 1,

anκn(X̂), if n � 2.
(15)

Proof. The characteristic function of Ŷ with a real parameter
ξ can be written as

f̃ (ξ ) = 〈exp(ξ Ŷ )〉 = 〈exp[ξ (aX̂ + b)]〉
= eξb〈exp(ξaX̂)〉, (16)

so that the cumulant generating function is given by

K(ξ ) = ξb + ln〈exp(ξaX̂)〉. (17)

As is well known, the constant operator has a nonzero first-
order cumulant with other cumulants vanishing. Thus accord-
ing to Lemma 2, we can obtain the higher-order cumulants of
operator Ŷ as

κn(Ŷ ) = anκn(X̂). (18)

That is, the lemma is proven. �
Lemma 4. (Gaussian cumulant). For a set of Gaussian states

in an infinite-dimensional Hilbert space H, then the cumulants
are equal to the corresponding mean values of quadratures and
elements of the covariance matrix, respectively.

Proof. For any N -mode Gaussian state, its characteristic
function is fully determined in H by the first and second
moments of the quadrature operators, namely

χ [ρ̂G](ξ ) = Tr

⎡
⎣ρ̂G

N⊗
j=1

D̂(ξj )

⎤
⎦

= exp[−μT νμ − i〈RT 〉ρ̂G
μ], (19)

where D̂(ξj ) = exp(ξj â
+
j − ξ ∗

j âj ), ν ∈ M2N (R) is the
real, symmetric, and positive 2N × 2N covariance
matrix of the state ρ̂G. R := (R̂1,R̂2, . . . ,R̂2N−1,R̂2N )T =
(x̂1,p̂1, . . . ,x̂N ,p̂N )T is a 1 × 2N row matrix whose
entries are the 2N quadrature operators of the modes,
x̂j = (âj + â+

j )/
√

2,p̂j = (âj − â+
j )/(i

√
2). The vector

μ ∈ R2N is related to the expectation values R̄ :=
√

2

{
Re(ξ1),Im(ξ1), . . . ,Re(ξN ),Im(ξN )

}
of the quadrature

operators in an N -mode coherent state |ξj 〉
⊗

N by the linear
transformation μ = −�N R̄ with �N =⊕N

k=1 iσy being a
2N × 2N orthogonal symplectic matrix.

Thus by the definition of the cumulant,

κm(R) = 1

im

∂m

∂zn
1∂wm

1 · · · ∂z
p

N∂w
q

N

ln {χ [ρ̂G](ξ )}
∣∣∣∣
ξ=0

, (20)
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where m = n + m + · · · + p + q and ξj = wj + izj , one can
easily show that the first-order cumulants are given by

κ1(R̂j ) = 〈R̂T
j

〉
ρ̂G

, (21)

and the second-order cumulants are the vectors of the covari-
ance matrix, i.e.,

κ2(R̂lR̂m) = vec(ν l,m), (l,m = 1,2, . . . ,2N ), (22)

which completes the proof. �
Now we briefly review the cumulants of some Gaussian

states. It follows that an arbitrary Gaussian state ρ̂G can
be generated from a thermal state ρ̂G with a Gaussian
operator ÔG [28], i.e., ρ̂G = ÔGρ̂GÔ+

G . Additionally, since
the first moments of the Gaussian state can always be made
to vanish via local operations, we focus on calculating
the second-order cumulants for some subsets of Gaussian
states. A single-mode Gaussian state is a simple class of
Gaussian states and can be parametrized in an optimal
form as ρsG = D̂(α)Ŝ(r,φ)ρth(n̄)Ŝ+(r,φ)D̂+(α), in which
Ŝ+(r,φ) = exp[− r

2 (eiφâ+2 − e−iφ â2)] is the squeezing
operator with r being the squeezing strength and φ being
the axis, and ρth(n̄) =∑∞

n=0[ n̄n

(1+n̄)1+n ]|n〉〈n| is a thermal
state with n̄ being the mean photon number. We see that
a pure squeezed state is obtained when n̄ = 0 and α = 0.
The state is a thermal squeezed one when α = 0. When
r = 0 there is no squeezing and the corresponding states
are pure coherent ones or thermal coherent ones. The
implicit expressions of the second-order cumulants are
given by κ2(x̂2) = 1

2 (n̄ + 1/2)[cosh(2r) − sinh(2r) cos(φ)],
κ2(p̂2) = 1

2 (n̄ + 1/2)[cosh(2r) + sinh(2r) cos(φ)], and
κ2(x̂p̂) = κ2(p̂x̂) = 1

2 (n̄ + 1/2) sinh(2r) sin(φ), respectively.
Another typical example of Gaussian states is the N -mode
squeezed state, a SU(1,1) coherent state, given by [29]
|�〉NMSS = Ŝ(N,r)|0〉⊗N , where the squeezing operator
Ŝ(N,r) = exp[r(W1 − W2)] with W1 = 2−N

2N

∑N
l=1 â+2

l +
2
N

∑N
l<m=1 â+

l â+
m and W2 = 2−N

2N

∑N
l=1 â2

l + 2
N

∑N
l<m=1 âl âm.

Thus, the state |�〉NMSS becomes the original, normalized
EPR state in the infinite squeezing limit for N = 2. After
some lengthy calculation, we can obtain the second-order
cumulants of quadratures as: κ2(x̂2

j ) = N cosh(2r)+(N−2) sinh(2r)
4N

,

κ2(p̂2
j ) = N cosh(2r)−(N−2) sinh(2r)

4N
, and κ2(x̂l x̂m) = κ2(p̂l p̂m) =

− sinh(2r)
2N

,(l �= m).
Lemma 5. (Normal ordering). Let X̂ and Ŷ be two noncom-

muting quantum mechanical operators in a quantum system,
each having an nth cumulant. If such a quantum system is
prepared in an entangled state, then for any (g,h) ∈ R, the
normally ordered nth-order cumulant of the combined operator
F̂ = gX̂ + hŶ is formally expressed as

κn(F̂ ) =
n∑

j=0

gjhn−j κ(: X̂j Ŷ n−j :), (23)

where the symbol :: denotes the normal ordering (all X̂ stand
on the left of all Ŷ ).

Proof. Since these two operators X̂ and Ŷ have noncom-
mutativity and the system is in a nonseparable state, we have
〈egX̂+hŶ 〉 �= 〈egX̂〉〈ehŶ 〉. Consequently, taking the exponential
polynomial expansion, we can write the characteristic function

f̃F̂ of operator F̂ as

f̃F̂ (ξ ) = 〈exp[ξ (gX̂ + hŶ )]〉

= 1 +
〈 ∞∑

n=1

ξn

n!
(gX̂ + hŶ )n

〉

= 1 +
∞∑

n=1

n∑
j=0

ξn

n!
gjhn−j 〈: X̂j Ŷ n−j :〉, (24)

where we have used the normal order of the quantum operator
in the last line of the above Eq. (24). Furthermore, in light of
the definition of the cumulant, we have

ln f̃F̂ (ξ ) ≡
∞∑

n=1

ξn

n!
κn(F̂ )

=
∞∑

m=1

(−)m+1

m!

⎡
⎣ ∞∑

n=1

n∑
j=0

ξn

n!
gjhn−j 〈: X̂j Ŷ n−j :〉

⎤
⎦

m

.

(25)

Thus, we can obtain the formula (23) by comparing the
coefficient ξ on both sides of Eq. (25) and by a recursion
relation (7). But doing so it is quite cumbersome. To
better understand the formula (23), we shall give a
concrete example for normally ordered operators. For
example, the normally ordered operator X̂Ŷ 3 can be
written as : X̂Ŷ 3 := X̂Ŷ 3 + Ŷ X̂Ŷ 2 + Ŷ 2X̂Ŷ + Ŷ 3X̂. Thus,
its fourth-order cumulant can be defined as κ(: X̂Ŷ 3 :
) ≡ κ(X̂Ŷ 3) + κ(Ŷ X̂Ŷ 2) + κ(Ŷ 2X̂Ŷ ) + κ(Ŷ 3X̂), where
κ(X̂Ŷ ẐŴ ) = 〈X̂Ŷ ẐŴ 〉 − 〈X̂Ŷ 〉〈ẐŴ 〉 − 〈X̂Ẑ〉〈Ŷ Ŵ 〉 −
〈X̂Ŵ 〉〈Ŷ Ẑ〉 if the operators (X̂,Ŷ ,Ẑ,Ŵ ) have zero means.
Additionally, we can write the formula (23) in another two
forms: antinormal ordering and Weyl ordering. The mutual
transformation formulas for these ordering bosonic-operator
functions have been explicitly given in some references
[16,30–33]. For example, the mutual transformations between
the antinormal and normal orderings for the bosonic creation
and annihilation operators are given by [32]

ân(â+)m =
min(m,n)∑

l=0

l!

(
n

l

)(
m

l

)
(â+)m−l ân−l , (26a)

(â+)nâm =
min(m,n)∑

l=0

(−1)l l!

(
n

l

)(
m

l

)
âm−l(â+)n−l . (26b)

For convenience later, we consider a special case in which
two bosonic operators (X̂,Ŷ ) have zero means and obey the
c-number commutation relation, i.e., [X̂,Ŷ ] = c with c being a
constant. According to the formula (23), the normally ordered
fourth-order cumulant of the combined operator F̂ = aX̂ +
bŶ with a and b being two constants is calculated as

κ4(F̂ ) = a4κ(X̂4) + b4κ(Ŷ 4) + 4a3bκ(X̂3Ŷ ) + 4ab3κ(X̂Ŷ 3)

+ 6a2b2κ(X̂2Ŷ 2) − 6a3bcκ(X̂2) − 6ab3cκ(Ŷ 2)

− 12a2b2cκ(X̂Ŷ ) + 3a2b2c2, (27)

where we show again that if and only if the quantum system
is in a separable state and these quantum operators commute
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with each other, the statement of Lemma 5 is consistent with
its classical version, which denotes that the observables are
statistically mutually independent [27]. Namely, the formula
(27) may simplify to κn(F̂ ) =∑n

j=0( n

j
)gjhn−j κ(X̂j Ŷ n−j ).

Additionally, we also see from Lemma 3 that the Gaussian
maps such as the single-mode displacement and squeezing
operations do not change the Gaussian characters of the distri-
bution of a quantum operator, but can alter its non-Gaussianity.
For example, taking into account a single-mode squeezing
operator Ŝ(r,φ) with φ = 0, we have Ŝ−1(ζ )(x̂,p̂)T Ŝ(ζ ) =
diag(e−r ,er )(x̂,p̂)T . According to Lemma 3, the n-order cu-
mulants of quadrature operators x̂ and p̂ after squeezing can be
easily calculated as κn(x̂

′
) = e−nrκn(x̂) and κn(p̂

′
) = enrκn(p̂),

respectively. Thus we see that the Gaussian characters of the
distribution of these quadrature operators can keep unchanged
if and only if they are initially Gaussian, i.e., κn�3(p̂) =
0,κn�3(x̂) = 0. However, when they are initially non-Gaussian,
it is clear to see that the higher-order cumulants for x̂

′
approach

to zero in the case of r being enough larger, implying that
its non-Gaussianity vanishes. Therefore, in what follows we
investigate the quantum non-Gaussianities of two-mode non-
Gaussian entangled states traveling in a bosonic non-Gaussian
memory channel with the help of the proposed lemmas.

III. LOSSY BOSONIC MEMORY CHANNEL

In quantum information science, a quantum channel is
a communication channel which can transmit classical and
quantum information. This information, however, can be easily
destroyed due to the unavoidable interaction with their noisy
environments. According to whether the noise affecting com-
munication is correlated or uncorrelated, quantum channels
can be classified into two categories. One is a memoryless
quantum channel where the noise acts identically and inde-
pendently on each channel use. In other words, the output of a
channel at a given time depends only upon the corresponding

input and not any previous ones. Memoryless processes are of-
ten recognized as Markovian. The other is a quantum memory
channel, which is characterized by a correlated source of noise
where the future states of a channel are directly or indirectly
influenced by its past input states. In this paper we consider
a model of a bosonic memory channel, which is particularly
interesting because the memory effects can be controlled by a
multimode squeezer [25,34,35]. Just as stated in Ref. [25],
such a noise correlation is introduced by contiguous mode
interactions which results in an exponential decay of the cor-
relations over channel uses (modes), thus making the noise in
the channel non-Markovian and the channel not forgetful. This
quantum channel is thus named the non-Markovian memory
quantum channel. We shall stress that there is no inextricable
link between the non-Markovianity and non-Gaussianity of
the quantum channel. It is generally believed that a quantum
channel is Gaussian if and only if it maps Gaussian input states
(variables) into Gaussian output ones (variables). Therefore,
some of the non-Markovian quantum channels are Gaussian
quantum channels [36,37] and others can be non-Gaussian
quantum channels [38].

Figure 1 shows the schematic model of our quantum
memory channel. Unlike the quantum channel models used in
Ref. [24,25,34], we assume that the environment is initially
in a multimode Fock state. We see from Fig. 1 that the
quantum channel only consists of n beam splitters and a
multimode squeezer so that it has two input ports. One is to
input a collection of n bosonic modes with the ladder operators
{âj ,â

+
j }j=1,2,...,n and the other connects all the channel environ-

ment modes with {b̂j ,b̂
+
j }j=1,2,...,n. Thus, the transformation

of such a channel is described as Û (η,s) = Û (η) ⊗ Ŝ(s), in
which the n parallel beam splitters can be characterized by n

local unitary operators: Û (η) =⊗n
j=1 Ûj (η) with

Ûj (η) = exp

[
(â+

j ĉj − âj ĉ
+
j ) arctan

(√
1 − η

η

)]
, (28)

FIG. 1. Scheme of quantum memory channel and multimode quadrature measurement. Each input mode âj interacts with the corresponding
environment mode b̂k through a beam splitter with transmittivity η ∈ [0,1], which is the modeled lossy channel. The memory effect in the quantum
channel relies on the squeezing parameter s of the multimode squeezed operation. Thus, we can use the parameters η and s to characterize the
channel dynamics. After a BS array, a probability distribution of a linear superposition of n single-mode quadratures is measured by means of
standard single-mode homodyne detection. BS, beam splitter; LO, local oscillator; PD, photodetectors.
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where η ∈ [0,1] represents the channel dissipation or losses. It
leads to the following transformation:

Ûj (η)

(
âj

ĉj

)
Û+

j (η) =
( √

η −√
1 − η√

1 − η
√

η

)(
âj

ĉj

)
. (29)

The squeezing operator Ŝ(s) of the n-mode squeezer is
described by [34]

Ŝ(s) = exp

⎡
⎣s

n∑
k,k′=1,k �=k′

(b̂+
k b̂+

k′ − b̂kb̂k′)

⎤
⎦ , (30)

where the parameter s ∈ R is the memory strength. The
quantum channel is a memoryless one if s = 0; otherwise it
represents the memory channel.

By introducing the quadrature operators,

X̂k = b̂k + b̂+
k√

2
, (31a)

P̂k = b̂k − b̂+
k

i
√

2
, (31b)

we can write the multimode squeezing operator Ŝ(s) of Eq. (30)
in the compact form,

Ŝ(s) = exp[iX�(s)PT ], (32)

where X = (X̂1,X̂2, . . . ,X̂n), P = (P̂1,P̂2, . . . ,P̂n), and a n ×
n matrix �(s) is given by

�(s) =

⎛
⎜⎜⎜⎜⎝

0 s s · · · s

s 0 s · · · s

...
...

...
. . .

...

s s s · · · 0

⎞
⎟⎟⎟⎟⎠ . (33)

Moreover we can obtain

e�(s) = 1

n

⎛
⎜⎜⎜⎜⎝

G(s) F (s) F (s) · · · F (s)

F (s) G(s) F (s) · · · F (s)
...

...
...

. . .
...

F (s) F (s) F (s) · · · G(s)

⎞
⎟⎟⎟⎟⎠ , (34)

where G(s) = (n − 1)e−s + e(n−1)s and F (s) = e(n−1)s − e−s .
From the well-known Baker-Hausdorff formula,

eÂB̂e−Â = B̂ + [Â,B̂] + 1

2!
[Â,[Â,B̂]] + · · · , (35)

and by the symmetry of e�(s), the multimode squeezing
operator acts on the annihilation operator of the environmental
modes as

Ŝ(s)b̂kŜ
+(s) =

n∑
j=1

[�+
kj (−s)b̂j + �−

kj (−s)b̂+
j ], (36)

where �±
kj (s) = 1

2

[
(e�(s))kj ± (e−�(s))kj

]
with (e�(s))kj being

the k,j entry of matrix e�(s).

After such a squeezing transformation, the annihilation
operator for the j th environmental mode can be written as

ĉj = 1

n
{(n − 1) cosh(s) + cosh[(n − 1)s]}b̂j

+ 1

n
{(n − 1) sinh(s) − sinh[(n − 1)s]}b̂+

j

+ 1

n
{cosh[(n − 1)s] − cosh(s)}

n∑
k=1

′b̂k

− 1

n
{sinh[(n − 1)s] + sinh(s)}

n∑
k=1

′b̂+
k , (37)

where the summation
∑ ′ is taken over all the indexes ex-

cluding j = k. In this way, for n = 2, we recover the usual
two-mode squeezing case [39].

Furthermore, the j th signal mode interferes with the result-
ing environmental mode at the j th beam splitter. We can obtain
the operator of the j th signal mode leaving the beam splitter
as

d̂j = √
ηâj −

√
1 − η

n

{
[(n − 1) cosh(s) + cosh[(n − 1)s]]b̂j

+ [(n − 1) sinh(s) − sinh[(n − 1)s]]b̂+
j

+ [cosh[(n − 1)s] − cosh(s)]
n∑

l=1

′b̂l

− [sinh[(n − 1)s] + sinh(s)]
n∑

l=1

′b̂+
l

}
, (38)

where the summation
∑ ′ is taken over all the indexes exclud-

ing j = l.
As is well known, the homodyne detection is one of the most

important continuous-variable quantum measurement schemes
and corresponds to the following phase-shifted quadrature
amplitude:

X̂(θ ) = X̂ cos θ + P̂ sin θ, (39)

with θ being the phase of the local oscillator associated
with the homodyne detection device such that 0 � θ � 2π .
For a signal field state described by the density operator
ρ, the measured quadrature probability distribution is given
by P (x,θ ) = 〈X̂(θ )|ρ|X̂(θ )〉. Therefore, we can obtain the
geometrical morphology of such a distribution based on the
cumulant theory, especially using the fourth-order cumulant
technique.

At the channel output, we perform the homodyne detection
measurement scheme for the n output signal modes introduced
in Ref. [40], in which the total quadrature operators have the
following form (see Appendix A for more information):

X̂out(θ ) = √
ηX̂in(θ ) +

√
1 − ηX̂env(θ ), (40)

where

X̂in(θ ) =
n∑

j=1

X̂j (θ ) =
n∑

j=1

(X̂j cos θ + P̂j sin θ ), (41a)
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X̂env(θ ) = −
n∑

j=1

[
e−(n−1)sX̂b̂j

cos θ + e(n−1)s P̂b̂j
sin θ

]
.

(41b)

IV. NON-GAUSSIAN STATISTICS OF INPUT SIGNALS
THROUGH LOSSY BOSONIC MEMORY CHANNEL

Generally, the signal modes and their environment are
initially in an uncorrelated state:

ρ = ρs ⊗ ρenv. (42)

According to Lemma 1 and Eq. (40), we can easily obtain
the input-output relationship of the mth-order cumulant of
quadrature operators of the n input signals via the lossy bosonic
memory channel as

κm(X̂out(θ )) = η
m
2 κm(X̂in(θ )) + (1 − η)

m
2 κm(X̂env(θ )), (43)

which shows the additivity properties of the cumulant for quan-
tum random variables under such a memory quantum channel.
In order to obtain complete information on the measured
optical operators, we apply the phase-averaged processing
technique in Ref. [41] and thus the phase-averaged cumulant
can be written as

κm(X̂out) ≡ 1

2π

∫ 2π

0
κm(X̂out(θ ))dθ

= η
m
2 κm(X̂in) + (1 − η)

m
2 κm(X̂env). (44)

Lemma 6. (Multimode non-Gaussian qualifier). Con-
sider an N -mode quantum system; each mode is de-
scribed by a pair of conjugate dimensionless quadratures
X̂k and P̂k , (k = 1,2, . . . ,N). Let X̂(θ ) =∑N

k=1 X̂k(θ ) =∑N
k=1

(
X̂k cos θ + P̂k sin θ

)
be an N -mode rotated quadrature

operator with the tunable phase parameter θ . Then the phase-
averaged cumulants of such a quadrature operator can be
viewed as a good statistics for quantifying the genuine quantum
non-Gaussianity for any quantum state.

Proof. Quantum homodyne tomography is a powerful tool
allowing us to reconstruct the density matrix ρ or equivalently
the Wigner function. One can obtain the full statistics of
the rotated quadrature observable in terms of the quadrature
probability distribution, which contains complete information
on the corresponding quantum state when varying the tunable
phase angle θ at the interval [0,2π ]. Let xj and |xj (θ )〉 be
the eigenvalue and eigenstate of the j th rotated quadrature
operator X̂j (θ ), i.e., X̂j (θ )|xj (θ )〉 = xj |xj (θ )〉. The charac-
teristic function of multimode quadrature distribution is a
Fourier transform of the characteristic function described by
the density operator ρ [18], that is,

P ({xj },θ ) = 1

πN

∫ ∞

−∞
· · ·
∫ ∞

−∞
χ ({ξj = iηj e

iθ })

× e−i
√

2η·xdN {ηj }, (45)

where η = (η1,η2, . . . ,ηN ), x = (x1,x2, . . . ,xN ), the char-
acteristic function of the state ρ is given by χ ({ξj }) =
Tr[ρ�N

j=1 exp(ξj â
+
j − ξ ∗

j âj )], and dN {ηj } = dη1 · · · dηN . So
the quadrature distribution contains complete information on

the statistics of a given quantum state because the Fourier
transform is fully invertible.

By using the cumulant expansion (5), the probability dis-
tribution of the phase-averaged quadrature operator can be
formally expanded as

P̄ ({xj }) = 1

2π

∫ 2π

0
P ({xj },θ )dθ = exp

⎡
⎣ N∑

j=1

ξ j

j !
κ̄j (X̂)

⎤
⎦ ,

(46)

where κ̄j (X̂) are the phase-averaged cumulants, some of which
are given by

κ̄1(X̂) =
*

N∑
j=1

X̂j (θ )

+
pa

, (47a)

κ̄2(X̂) =
˝⎛
⎝ N∑

j=1

X̂j (θ )

⎞
⎠

2̨

pa

− κ̄2
1 (X̂), (47b)

κ̄3(X̂) =
˝⎛
⎝ N∑

j=1

X̂j (θ )

⎞
⎠

3̨

pa

− κ̄3
1 (X̂) − 3κ̄1(X̂)κ̄2(X̂),

(47c)

where the subscript “pa” denotes the phase-average value.
Hence the proposed phase-averaged cumulant of the multi-
mode rotated quadrature observable is a good measure of the
quantum non-Gaussianity of multimode continuous-variable
quantum states. Just as in the above discussion, we can
say safely that a given quantum state is Gaussian if all
the higher-order phase-average cumulants of the multimode
rotated quadrature operator vanish identically; otherwise, it is
non-Gaussian. The cumulants below (beyond) the second are
said to be Gaussian (non-Gaussian) cumulants. �

In our scenario, when leaving out the initial state of the
environment, the quantum channel is equivalent to a canonical
linear transformation and thus can be described by a Gaussian
map: L̂(s,η) = Ŝ(s)Û (η). According to the formula (43), we
see that when the environment is in a Gaussian state, we have
κ>2(X̂env) = 0 for such a Gaussian quantum channel, then the
cumulant of the output signal modes κm(X̂out

j ) = η
m
2 κm(X̂in

j ),
implying that whether a given quantum variable is Gaussian
or not, its cumulant-based quantum non-Gaussianity remains
invariant for the Gaussian quantum channel. But for a case of
the environment to be in a non-Gaussian state, i.e., the non-
Gaussian quantum channel, it drives all the input signals into
non-Gaussian ones. Our result shows that the initial states of
the environment play a key role in characterizing the quantum
memory channel and then affecting the statistical properties
of the output signals. Therefore, in the following we assume
the bosonic memory channel to be initially in a multimode
squeezed Fock state, i.e., Ŝ(s)|p〉⊗n.

A. Fourth-order cumulant of environmental modes

To begin with, we compute the fourth-order cumulant of
the environmental canonical operators in Eq. (41b). The envi-
ronmental modes are assumed to be uncorrelated to each other
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and each environmental mode to have p photons. According to
Lemmas 1 and 2, the fourth-order cumulant of the combined
operators for the environment is a sum of that of its individual
mode:

κ4(X̂env(θ )) =
n∑

l=1

κ4(X̂l−env(θ )). (48)

On the other hand, the matrix elements of the quadrature
operators in the Fock-state representation {|m〉,|p〉} can be
written as

〈m|X̂q |p〉 =
min(m,p)∑

j=max(0, m′
2 )

q!
√

p!m!√
2qj !(p − j )!(m − j )!v!!

, (49a)

〈m|P̂ q |p〉 =
min(m,p)∑

j=max(0, m′
2 )

im−pq!
√

p!m!√
2qj !(p − j )!(m − j )!v!!

, (49b)

where m′ = m+p−q

2 , v = 2j + q − m − p, and (2p)!! =
2pp!. It is easy to see that 〈m|P̂ q |p〉 = im−p〈m|X̂q |p〉,
so the matrix elements of their combination can be
calculated as 〈m|X̂αP̂ β |p〉 =∑k〈m|X̂α|k〉〈k|P̂ β |p〉 =∑

k i(k−p)〈m|X̂α|k〉〈k|X̂β |p〉. At the same time, we see from
these relations that when q or α + β are odd, all the matrix
elements of the canonical operators and their combinations
vanish.

It follows from the formula (49) and Lemma 5 that the
fourth-order cumulant of the environmental quadrature opera-
tor is given by

κ4(X̂env(θ )) = − 3
2np(p + 1)w4(θ ), (50)

where

w2(θ ) = e−2(n−1)s cos2 θ + e2(n−1)s sin2 θ. (51)

Furthermore, we can obtain the phase-averaged fourth-order
cumulant of the n-mode environmental field as

κ4(X̂env) = − 3
8np(p + 1){3 cosh[4(n − 1)s] + 1}. (52)

It is clear from Eq. (52) that the photon numbers of the environ-
ment and the degree of memory of the quantum squeezer can
contribute to the quantum non-Gaussianity. As they increase,
the non-Gaussian behavior of the quadrature observable is
more pronounced. We show again that a quantum memory
channel proposed here is a Gaussian quantum channel when
its environment is in a vacuum state, i.e., p = 0.

B. Two-mode photon-number entangled states

Multiphoton entangled states are important for developing
studies of photonic quantum networking and quantum com-
putation. Of particular interest are multiphoton Greenberger-
Horne-Zeilinger (GHZ) states since they are basic ingredients
for testing quantum nonlocality against local hidden theories
[42] and for constructing ballistic universal quantum computa-
tion [43] and quantum communication [44]. Various ingenious
schemes for generating such states have been put forward
experimentally in the last years. For example, experimental
generations of three- [45], eight- [46], and 10-photon [47]
GHZ states, respectively, have been already demonstrated by
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FIG. 2. Phase-averaged κ4(X̂in) of two-mode quadrature opera-
tors in NNMM states as a function of � for different values of N . In
each plot the curves from top to bottom are for N = 0,10,20,30,40.
The inset shows κ4(X̂in) for � ranging between zero and two and for
N = 0 in more detail.

using spontaneous down-version (SPDC) processes and linear
optical circuits. Additionally, the stability [48], robustness
[49], and scalability [50] properties of GHZ entanglement
in decoherence have been recently discussed, showing that
the fragility of these entanglement increases with the size of
the system and the effective number of entangled subsystems
decreases with time. Quantum Fisher information of GHZ
states has also been investigated in three decoherence chan-
nels: the amplitude-damping channel (ADC), phase-damping
channel (PDC), and depolarizing channel (DPC) [51]. It has
been shown that the decay and sudden change of the quantum
Fisher information in all three channels are observed. However,
so far, few efforts have been devoted to the study of the
cumulant-based quantum non-Gaussianity of GHZ states in the
presence of quantum memory channel. Therefore, we consider
this point and use a more general two-mode photon-number
entangled state (PNES), originally introduced in Ref. [52],

|�〉in = 1√
2

(|N〉⊗2 + |M〉⊗2), (53)

as the input signal for the quantum channel. Here |M〉⊗n

denotes the exact M photons in each mode. This state is called
the NNMM state for later convenience.

According to the formula (27) and Eq. (49), we can compute
the phase-averaged fourth-order cumulant of the two-mode
quadrature operator X̂in in Eq. (41a) (see Appendix B for more
information) as

κ4(X̂in) = − 3
2 [2N2 + 2N + (1 + 2N )� − �2], (54)

where � = |M − N |. In Fig. 2 we plot the behavior of the
fourth-order cumulant of the two-mode quadrature operators
as a function of � for different values of N . One can observe
that there exists a critical value that determines the behavior of
the quantum non-Gaussianity ofκ4(X̂in). This critical threshold
can be calculated from ∂

∂�
κ4(X̂in) = 0. Thus, for a given N ,

we have � = 1+2N
2 . We can obtain the result that the negative

values of κ4(X̂in) increase with the increasing of � when � �
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FIG. 3. (a) The quantity κ4(X̂out) is plotted versus s with η = 0.4;
(b) the quantity κ4(X̂out) is plotted versus η with s = 0.1. The curves
from bottom to top correspond to � = 0,40,60,80,100, respectively.
The values of other parameters are p = 10 and N = 5.

1+2N
2 ; otherwise its negative values decrease and even the sign

flip of the fourth-order cumulants is possible. In any case, they
indicate a stronger quantum non-Gaussianity.

By substituting Eqs. (52) and (54) into Eq. (44), we can
explore the effect of the parameters (s,η) of the quantum
channel on the behavior of the phase-averaged fourth-order
cumulant of two-mode quadrature operators. In Fig. 3(a) we
show the quantity κ4(X̂out) as a function of the memory
parameter s for various values of � and for η = 0.4,p = 2,
and ntot = 100, while in Fig. 3(b) the κ4(X̂out) are shown
as a function of the transmittivity η of the beam splitter
for various values of � and for s = 0.1,p = 2, and ntot =
100, where the total photon number of signal modes ntot =
Tr[|φin〉〈φin|(â+

1 â1 + â+
2 â2)] = 2N + �. From Fig. 3(a), it can

be seen that the non-Gaussianities of collective quadrature
operators of all the output states show a similar behavior. In the
case of weak memory effects, the κ4(X̂out) change gradually
with the memory degree s. But for the increasing memory, the
negative values of the κ4(X̂out) are dramatically increased and
tend to an infinite value, implying that the N -mode squeezer
can result in a significant departure of the distribution of the
two-mode quadrature operator from the Gaussian one and then
exhibiting a strong non-Gaussian behavior. This phenomenon

can be explained as follows: In the limit of weak memory
effects, we have cosh[4(n − 1)s] ∼ 1 + 8(n + 1)2s2. Thus the
quantum non-Gaussianity of the two-mode output quadrature
variable slowly changes when s � 1. But in the case of
strong memory effects, we have cosh[4(n − 1)s] ∼ e4(n+1)s , an
exponential function of s, so that for higher levels of squeezing,
the κenv of the environment modes are the main component
of the κ4(X̂out) of output modes in Eq. (43) and moreover
dominates the behavior of κ4(X̂out). In addition, one may find
that under the action of the quantum channel, the cumulant-
based quantum non-Gaussianity of NNMM states exhibits a
quite different behavior with the transmissivity of the quantum
channel. If originally, the quantum non-Gaussianity of input
states is much lager than that of the environment modes, then
the κ4(X̂out) exhibit a monotonically increasing behavior with
η, whereas for the case of κ4(X̂in) < κ4(X̂env), it has an opposite
behavior. It is interesting to see that the freezing behavior of
κ4(X̂out) can appear for the case of κ4(X̂in) = κ4(X̂env).

C. Two-mode entangled coherent states

As a second non-Gaussian example we consider two-mode
entangled coherent state (ECS),

|�〉in = 1

N±
(|α〉⊗2 ± |−α〉⊗2), (55)

as the input signal, where |α〉 is the coherent state with α

being real for simplicity and the normalization factor N 2
± =

2(1 ± p2) with p = e−2|α|2 . The sign (±) of the superposition
refers to the two-mode even entangled coherent states and
odd entangled coherent state, respectively. Their nonclassical
properties such as entanglement [53], nonclassical photon
statistics, and squeezing [54] were discussed in the past
decades. Of course, such states have played a key role in some
potential applications such as quantum teleportation [55] and
quantum cryptography [56]. It has also been found that the
entanglement of such states are insensitive to decoherence due
to photon absorption [6].

We can readily obtain the reduced density matrix of the
singled-out j th field mode by tracing out the degrees of
freedom of another mode:

ρj± = 1

N 2±
[|α〉jj 〈α| + | − α〉jj 〈−α|

± e−2α2
(|α〉jj 〈−α| + |−α〉jj 〈α|)],j = 1,2. (56)

Taken together with the expressions of quadrature operators
in the coherent-state representation,

〈α|X̂l|β〉 =
[ l

2 ]∑
j=0

l!(2j − 1)!!

2l(2j )!(l − 2j )!

(
α∗ + β√

2

)l−2j

× exp

(
− 1

2
|α|2 − 1

2
|β|2 + α∗β

)
, (57a)

〈α|P̂ l|β〉 =
[ l

2 ]∑
j=0

il−2j l!(2j − 1)!!

2l(2j )!(l − 2j )!

(
α∗ − β√

2

)l−2j

× exp

(
− 1

2
|α|2 − 1

2
|β|2 + α∗β

)
, (57b)
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FIG. 4. The quantity κ4(X̂in) is plotted versus α2. The dashed line
stands for odd ECS and the solid line for even ECS.

and by analogy with the derivation of PNES case, we have the
phase-averaged fourth-order cumulant of the two-mode input
signals in the form,

κ4±(X̂in)

= 3

8N 2±

[
(7α4 − 12α2 + 2)e2α2 + (α4 − 4α2 + 2)eα2

± (7α4 + 12α2 + 2)e−2α2 ± (α4 + 4α2 + 2)e−3α2]
− 3

2N 4±

{
2α2(3α2 − 2)e3α2 + (3α4 − 4α2 + 2)e2α2

± α2e−α2 ± 2(2 − α4)e−2α2 + 2α4[3 cosh(4α2)

∓ 1] − α2e−5α2 + (3α4 + 4α2 + 2)e−6α2}
. (58)

In deriving the above formula we have used the properties
of the Hermite polynomials and presented in Appendix C the
explicit expression of each term appearing in Eqs. (B2)–(B5)
for the case of two-mode entangled coherent states (51).
Figure 4 shows the phase-average fourth-order cumulants of
the two-mode quadrature operator for even ECS and odd ECS
as a function of α2, respectively. It can be seen that their
phase-average fourth-order cumulants have a slight difference
for smaller values of α2. In particular, in the limit of α → 0
such a difference is more clear. That is due to the fact that
a two-mode odd ECS |α,α〉 − | − α, − α〉 becomes a single-
photon entangled state |0,1〉 + |1,0〉, showing the stronger
quantum non-Gaussianity, while the even ECS |α,α〉 + | −
α, − α〉 becomes a vacuum product state |0,0〉 without the
quantum non-Gaussian character. Additionally, it is interesting
to note that for the large coherent amplitudes, the phase-
average fourth-order cumulants of two-mode even entangled
coherent states are in agreement with those of odd entangled
coherent states. According to experimental reports in Ref.
[57], the single-mode coherent state superposition of light
with large amplitudes and high-fidelities, e.g., α = 1.76 and
F = 0.59, have been achieved with current technology, with
which entangled coherent states can be realized using linear
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FIG. 5. (a) The quantity κ4(X̂out) is plotted versus s with η =
0.4; (b) the quantity κ4(X̂out) is plotted versus η with s = 0.8. In all
subfigures, the quantum system is initially in the even ECS. The curves
from top to bottom correspond to α2 = (1,2,2.4,2.6). The values of
other parameters are p = 10.

optical elements. Therefore, we restrict our attention to input
even ECS with large amplitudes below.

Figure 5 shows the dependence of the κ4+(X̂out) corre-
sponding to two-mode even entangled coherent states on the
parameters (s,η) of the quantum memory channel for different
values of α2 at the photon numbers of the environment p = 10.
As is seen from Fig. 5(a), in the regime of small initial
squeezing s, the κ4+(X̂out) remain unchanged. As soon as
the degree of memory increases, the negative values of the
κ4+(X̂out) increase for all these states and exhibit the same
behavior for strong memory effects. Increasing the coherent
amplitudes gives rise to increasing negative value in κ4+(X̂out).
On the other hand, we observe in Fig. 5(b) that different
even entangled coherent states have different behaviors of
κ4+(X̂out) when varying the loss η of the quantum channel.
For even ECS with small amplitude, the negative values of
κ4+(X̂out) decrease and tend to zero, implying that a vanishing
quantum non-Gaussianity, while its negative values increase
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for the case of the large amplitudes. This behavior can be
well understood from Eq. (44). In our channel protocol, the
input signals are mixed with the environmental noises via beam
splitters. Obviously, one sees that the input signals are gradu-
ally decoupled from their environments when increasing η. In
the limit η → 1, this interaction almost completely vanishes
and then we have κ4+(X̂out) = κ4+(X̂in), as expected. While
in the limit η → 0, we only perform a measurement on the
environment and as a result, we have κ4+(X̂out) = κ4(X̂env). In
other cases, the amount of the environmental non-Gaussianity
can be partially transferred into that of input signals via the
beam splitters, that is, κ4(X̂env) → κ4+(X̂in). At the same
time, it is not difficult to see that a condition that reveals the
relationship between the quantum non-Gaussianity behavior
and channel dissipation is exactly the same as that of the PNES
case.

We end this section with four remarks. First, the memory
effects in our channel come from the long-range correlations
(non-Markovian) among environments acting on different
channel uses and lead to monotonically increasing the neg-
ativity of the phase-average fourth cumulant of the input
signal modes over the quantum channel, without the oscillation
phenomenon in other non-Markovian quantum channels [36].
Meanwhile, the proposed method is very general and can be
applied to other contexts, e.g., Bose-Einstein condensate [58]
and optomechanical systems [59]. Second, just as stated in
Ref. [21], the fourth-order cumulant can be regarded as an
indicator of testing non-Gaussian behavior for the probability
distribution of the quadrature amplitudes. The larger the
absolute values of the cumulants, the more significant the distri-
bution departs from Gaussianity, meaning that it is much more
useful for quantum information processing and quantum com-
putation. Thus our analysis is important for correctly inferring
on the non-Gaussian natures of some non-Gaussian states in
propagating light fields by using the phase-averaged cumulant
method. Third, the quantum homodyne tomographies are an
important topic in the field of quantum optics and quantum
information science, by which we can reconstruct the quantum
state from the statistics of the quadrature components of the
signal mode. Among these tomographies, single-mode optical
homodyne tomography is now a well-established quantitative
method and involves a balanced lossless beam splitter, two
photodetectors, and a strong coherent local oscillator (LO).
However, for a multimode homodyne tomography, such a
detection technique, i.e., the requirement of the detection for
each mode, complicates the experiment. So the multimode
homodyne tomography with a single-mode LO [40,60] is
highly desirable in the experiment. Finally, the theoretical
description of the multimode squeezer has been proposed
via nonlinear optical processes and four-wave mixing [61]
and the higher-level multimode squeezing, e.g., −4.9 dB, has
been experimentally achieved by using one type-II optical
parametric amplifier [62]. Remarkably, recently the fourth-
order cumulant of electrical noise has been experimentally
implemented via measuring the current noise generated in
a mesoscopic conductor by macroscopic quantum tunneling
(MQT) in a current biased Josephson junction placed parallel
to the conductor [63]. Therefore, we are looking forward so that
our cumulant-based non-Gaussianity can be evaluated within
current experimental technology.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented a measure of the non-
Gaussianity of multimode quadrature operators based on the
cumulant theory and exploited the proposed measure to in-
vestigate the behavior of the non-Gaussianity of two families
of two-mode non-Gaussian entangled states traveling through
a bosonic memory channel, which is initially in multimode
squeezed number states. It has been shown that the presence
of memory effects always increases the phase-averaged fourth-
order cumulant of the two-mode quadrature operator, and thus
gives rise to enhancing the cumulant-based non-Gaussianity.
Additionally, we have shown that such a non-Gaussianity is
very sensitive to the noise parameter of the quantum channel.
We emphasize that our cumulant-based non-Gaussianity can
be directly calculated from the sampling function of multi-
mode quadrature homodyne tomography with one homodyne
detector and thus more easily be measured in a different
experimental setup using the current technology.

Finally, we should point out that by using the non-
Gaussianity measure proposed in Ref. [22], one needs to
calculate the whole higher-order joint cumulants of quadra-
ture operators and their combinations in continuous variable
quantum states. This is a tedious and time-consuming task.
For instance, it contains 16N4 fourth-order cumulants for an
N -mode quantum state. Nevertheless, in our approach one only
deals with a single quadrature of quantum system, which is a
linear superposition of single-mode quadrature operators of
all involved modes. This mitigates the complexity involved in
calculating non-Gaussianity and provides a potentially useful
tool for studying non-Gaussianity of quantum states in other
decoherence models.
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APPENDIX A: DERIVATION OF EQ. (40)

Using Eq. (39) we can write the quadrature formulas of the
j th outgoing signal mode at the output port of the j th beam
splitter as

X̂out
j (θ ) = √

ηX̂in
j +

√
1 − ηX̂env, (A1)

where

X̂in
j = X̂in

j cos θ + P̂ in
j sin θ, (A2)

X̂env = − 1

n

{
[(n − 1)es + e−(n−1)s]X̂b̂j

cos θ

+ [(n − 1)e−s + e(n−1)s]P̂b̂j
sin θ

+
n∑

l=1

′[(e−(n−1)s − es)X̂b̂l
cos θ

− (e(n−1)s − e−s)P̂b̂l
sin θ

]}
. (A3)

042303-11



SHAO-HUA XIANG, WEI WEN, YU-JING ZHAO, AND KE-HUI SONG PHYSICAL REVIEW A 97, 042303 (2018)

Then, using multimode optical homodyne tomography with
a single local oscillator [40], one measures a probability
distribution of the quadrature X̂out of N signal modes, in which
the collective quadrature X̂out is given by

X̂out(θ ) =
N∑

j=1

X̂out
j (θ ) = 1√

2

N∑
j=1

[d̂j (θ ) + d̂+
j (θ )], (A4)

where d̂j (θ ) = d̂j e
−iθ . Moreover, substituting Eq. (A1) into

(A4) yields the result in Eq. (40).

APPENDIX B: EXPLICIT EXPRESSIONS OF
FOURTH-ORDER CUMULANT FOR NNMM STATES

Let Ĝ1 = X̂1 cos θ + P̂1 sin θ and Ĝ2 = X̂2 cos θ +
P̂2 sin θ . Then, they are two commutative operators with
zero means. Assume that the whole signal modes are in a
nonseparable state (53). In this case, the fourth-order cumulant
of sum operator Ĝ = Ĝ1 + Ĝ2 is thus given, according to
Lemma 5, by

κ4(Ĝ) = κ4(Ĝ1) + κ4(Ĝ2) + 4κ
(
Ĝ3

1Ĝ2
)

+ 4κ
(
Ĝ1Ĝ

3
2

)+ 6κ
(
Ĝ2

1Ĝ
2
2

)
, (B1)

where

κ4(Ĝj ) = 〈Ĝ4
j

〉− 3
〈
Ĝ2

j

〉2
, j = 1,2, (B2)

κ
(
Ĝ3

1G2
) = 〈Ĝ3

1Ĝ2
〉− 3

〈
Ĝ2

1

〉〈Ĝ1Ĝ2〉, (B3)

κ
(
Ĝ1Ĝ

3
2

) = 〈Ĝ1Ĝ
3
2

〉− 3〈Ĝ1Ĝ2〉
〈
Ĝ2

2

〉
, (B4)

κ
(
Ĝ2

1Ĝ
2
2

) = 〈Ĝ2
1Ĝ

2
2

〉− 〈Ĝ2
1

〉〈
Ĝ2

2

〉− 2〈Ĝ1Ĝ2〉2. (B5)

The reduced density matrix of each input signal is given by

ρj = 1
2 (|N〉〈N | + |M〉〈M|),j = 1,2. (B6)

By means of the formula (49), we can obtain the phase-average
cumulant κ4(Ĝj ) as

κ4(Ĝj ) = − 3
4 (N + M + 2NM),j = 1,2. (B7)

Similarity, we can arrive at the phase-average fourth-order
joint cumulants,

κ
(
Ĝ2

1Ĝ
2
2

) = 1

4
(N − M)2, (B8)

κ
(
Ĝ3

1Ĝ2
) = κ

(
Ĝ1Ĝ

3
2

) = 0, (B9)

where we have used the following relation:∫ 2π

0
ei(n−m)θdθ =

{
2π if n = m,

0 otherwise.
(B10)

Combining Eqs. (B7)–(B9) we can obtain the average fourth-
order cumulant of the two-mode input signals.

APPENDIX C: MATRIX ELEMENTS OF QUADRATURE
OPERATORS FOR ENTANGLED

COHERENT STATES

In this Appendix, we give the phase-average expectation
values of quadrature operators in evaluating the fourth-order
cumulant of the input signals, which are initially in an entan-
gled coherent state (55). By using Eq. (57) and after some
algebra, we have

〈
Ĝ4

j

〉
pa

= 3

16N 2±

[
eα2

f−(α) ± e−3α2
f+(α)

]
, (C1)

〈Ĝ1Ĝ2〉2
pa = α4

4N 4±
[3 cosh[4α2] ∓ 1], (C2)

〈
Ĝ3

1Ĝ2
〉
pa

= 3α2

16N 2±

[
e2α2

(α2 − 2) ± e−2α2
(α2 + 2)

]
, (C3)

〈
Ĝ2

1Ĝ
2
2

〉2
pa

= 1

16N 2±

[
e2α2

f−(α) ± e−2α2
f+(α)

]
, (C4)

〈
Ĝ2

j

〉2
pa

= 1

8N 4±

[
e2α2

f−(α) ± 2e−2α2
(2 − α4)

+ e−6α2
f+(α)

]
, (C5)

(〈
Ĝ2

1

〉〈Ĝ1Ĝ2〉
)
pa

= α2

8N 4±

[
e3α2

(3α2 − 2)

± e−α2 − e−5α2
(3α2 + 2)

]
, (C6)

where f±(α) = α4 ± 4α2 + 2, Ĝj (j = 1,2) have the same
meaning as Appendix B, and the subscript “pa” denotes the
phase-average value in the interval [0,2π ].
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