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Bound state and localization of excitation in many-body open systems
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We study the exact bound state and time evolution for single excitations in one-dimensional XXZ spin chains
within a non-Markovian reservoir. For the bound state, a common feature is the localization of single excitations,
which means the spontaneous emission of excitations into the reservoir is prohibited. Exceptionally, the pseudo-
bound state can be found, for which the single excitation has a finite probability of emission into the reservoir.
In addition, a critical energy scale for bound states is also identified, below which only one bound state exists,
and it is also the pseudo-bound state. The effect of quasirandom disorder in the spin chain is also discussed; such
disorder induces the single excitation to locate at some spin sites. Furthermore, to display the effect of bound state
and disorder on the preservation of quantum information, the time evolution of single excitations in spin chains is
studied exactly. An interesting observation is that the excitation can stay at its initial location with high probability
only when the bound state and disorder coexist. In contrast, when either one of them is absent, the information of
the initial state can be erased completely or becomes mixed. This finding shows that the combination of bound
state and disorder can provide an ideal mechanism for quantum memory.
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I. INTRODUCTION

Bound state in open systems was first defined and studied
in photonic materials, in which the level of the embedded
atom as an impurity is dressed by a radiation field [1].
Physically, the energy of the atom-photon bound state lies in the
photonic band gap, and thus the excited photon is exponentially
localized in the vicinity of the atom. The existence of the
atom-photon bound state is a universal feature of photonic
material, independent of the fine structure of the atom. Recently
this issue has been reconsidered from the general viewpoint of
open systems. In this case, the bound state can still be defined
when the spectral density vanishes [2,3] or a finite band occurs
[4,5]. Similar to the case in photonic materials, the bound state
is responsible for the vanishing of spontaneous emission and
thus can be used to protect the system against decoherence.
Experimentally, the bound state has been verified in photonic
crystals [6], in which both inhibited and enhanced decay rates
can be controlled by the crystal-lattice parameters.

Recently the bound state in two-qubit open quantum sys-
tems has received extensive interest focusing on the preserva-
tion of quantum information [3,5]. It is known now that the
existence of bound states can be used to protect entanglement
against decoherence. Furthermore, in topological two-band
systems, the bound state can also be found when the system is
coupled with the environment, which is responsible for the
robustness of Hall conductance [7]. In addition, the bound
state for cold atoms in optical lattices has been studied [8],
which provides an alternative way to control the atomic state.
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A generalization of bound states into multiple levels is also
discussed in Ref. [9].

However, a general understanding of bound states in open
systems seems absent because the previous works focused
mainly on small systems. Consequently, it is an interesting
issue whether there exists bound states in the many-body case,
and what the difference is. For this purpose the bound state
in one-dimensional XXZ spin chains within a non-Markovian
environment is discussed in this paper. For concreteness, only
the single excitation in spin chains is discussed. As for the
case of two or more excitations, the computational resource
required to find the exact result numerically is much greater
[9], which is beyond our computer performance. Despite the
simplicity, a single-excitations in a spin chain has extensive
applications in quantum information transfer [10]. Moreover,
it is shown that universal quantum computation can be realized
in single-excitation subspace [11]. Recently a mechanism for
quantum spin lenses has been proposed in which the spin
excitation can be focused on a definite site in a one-dimensional
chain for storing quantum information [12]. With respect to
these applications our consideration has extensive interest.

Our study shows that at most N bound states can be
found, in which N is the spin number in a one-dimensional
XXZ spin chain. In general the bound state displays the
localization of a single excitation in a spin chain, which
inhibits the spontaneous emission of the spin excitation into the
environment. However, an exceptional case can be identified
in which the excitation is inevitably absorbed with a finite
probability by the environment. Furthermore we find that that
the probability would tend to be 0.5 when N → ∞, which
corresponds to a balance between localization and spontaneous
emission of spin excitations. Thus we argue that this state is
not a true bound state, so it is named a pseudo-bound state in
this paper.
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With respect to the recent interest in the localization of
many-body systems, the effect of disorder in the XXZ model
is studied. The appearance of disorder enhances greatly the
ability of the bound state to protect excitations against spon-
taneous emission. It is attributed to strong localization in the
bound state, for which the distribution of excitations in spin
chains becomes more pronounced at some spin sites. We argue
that the combination of the bound state and disorder provides
an alternative mechanism for preservation of quantum infor-
mation. This finding is counterintuitive since incorporation of
the environment effectively induces additional long-range hop-
ping, which is believed to destroy localization [13]. Moreover,
it suggests that the bound state in open many-body systems
would be localized, and furthermore that the localization can
be strengthened by disorder in the system. Consequently the
combination of a bound state and disorder provides an ideal
platform for preserving information in quantum systems.

The discussion is divided into five sections. In Sec. II
the model and definition of bound state are introduced. In
Secs. III A and III B, bound states are evaluated explicitly up
to N = 12 without disorder. The effect of disorder is studied
solely in Sec. III C. Although of small N , some general features
of the bound state can be found. To highlight the crucial role
of disorder and of the bound state in preserving quantum
information, the time evolution of a single excitation in a spin
chain is discussed in Sec. IV. Finally, a conclusion and further
discussion are presented in Sec. V.

II. MODEL

Consider the one-dimensional XXZ model coupled to a
zero-temperature reservoir, of which the Hamiltonian is

H = J
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with h̄ ≡ 1 and the spin number N . S+
i (S−

i ) and a
†
k(ak) are

the creation (annihilation) operators, respectively, for spin
1/2 and the kth model with frequency ωk in the reservoir.
J is the tunneling strength between nearest-neighbor sites.
U characterizes the Ising interaction. The on-site field hi can
be homogeneous or randomly distributed, which has distinct
effect on bound states, as shown in the following discussion.
Periodic and open boundary conditions in spin chains are
considered. Note that, because of the existence of the Ising
interaction, the complete spectrum of the one-dimensional
XXZ model cannot be determined analytically, and one has to
rely on numerical methods.

The bound state in open systems is defined as a discrete
eigenstate with energy outside the continuum and thus is
stable against decay because of the existence of an energy
gap [14]. Physically, this feature can be attributed to a shift
of an atomic level by the emitted photon that pushes the level
beyond the cutoff [15]. Hence, in the present case the bound
state can occur only for E < 0 since the continuum spectrum
in the environment ranges from 0 to ∞. Then, by solving the

eigenequation

H |ψE〉 = E|ψE〉, (2)

with E < 0, the bound state can be determined by solving
Eq. (7). As for unbound states occurring when E coincides
with some ωk , spontaneous decaying is inevitable since there
is no energy gap to protect the system against decoherence.
Thus it can only be determined by the following Eq. (4a).

Actually the bound state characterizes a bipartite entangle-
ment between the system and its environment. Thus, when the
measure of entanglement is vanishing, the system is decoupled
from the environment since the bound state is completely
separable in this case. In the general case that entanglement
of the bound state is finite, the coherence in the system could
be protected partially against decoherence.

As for single-excitation, |ψE〉 can be written generally as

|ψE〉 =
(

N∑
i=1

αi |↑〉i |↓〉⊗(N−1)

)
⊗ |0〉⊗M

+ |↓〉⊗N ⊗
(

M∑
k=1

βk|1〉k|0〉⊗(M−1)

)
, (3)

in which |↑〉i (|↓〉i) is the eigenstate of Sz
i with the eigenvalue

1/2 (−1/2), |0〉k is the vacuum state of ak and |1〉k = a
†
k|0〉k ,

and M the number of modes in the reservoir. Substituting the
expression for |ψE〉 into Eq. (2), one obtains

J

2
(αi+1 + αi−1) + (hi − U )αi +

M∑
k=1

gkβk = Eαi, (4a)

ωkβk + g∗
k

N∑
i=1

αi = Eβk, (4b)

in which the resulting constants have been incorporated into
E. From Eq. (4b), we obtain

βk = g∗
k

E − ωk

N∑
i=1

αi. (5)

Substituting the relation above into Eq. (4a), one obtains

J

2
(αi+1+αi−1) + (hi−U )αi +

(
M∑

k=1

|gk|2
E − ωk

)
N∑

i=1

αi = Eαi.

With respect to the continuum spectrum in reservoir,

M∑
k=1

|gk|2
E − ωk

=
∫ ∞

0

J (ω)

E − ω
dω, (6)

in which the spectral density J (ω) = ∑M
k=1 |gk|2δ(ω − ωk).

Then

J

2
(αi+1 + αi−1) + (hi − U )αi +

N∑
i=1

αi

∫ ∞

0
dω

J (ω)

E − ω
= Eαi.

(7)

It is obvious that the integral (6) is divergent when E > 0.
Thus the bound state can exist only when E < 0 (for complex
E, the imaginary part of E means dissipation and thus the
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bound state cannot exist in this case). For concreteness, the
following spectral function of the environment is considered
in this paper:

J (ω) = ηω

(
ω

ωc

)s−1

e−ω/ωc , (8)

in which η characterizes the coupling strength between the
system and environment. The environment can be classified as
sub-ohmic (s < 1), ohmic (s = 1), and super-ohmic (s > 1),
which characterizes different relaxation [16]. ωc is the cutoff of
the environment spectrum, beyond which the spectral density
starts to fall off. Hence it determines a frequency regime in
the environment, which is dominant for the decoherence of
the system. In general the value of ωc depends on the specific
environment. So in the following discussion, ωc = 3 is chosen.
This choice is arbitrary because our numerical evaluation
shows that ωc has no intrinsic effect on the bound state and
the time evolution of the spin system.

It was known for single spin (N = 1) that the relation ω0
ωc

<

η�(s) has to be satisfied if the bound state occurs by setting
E = 0 in Eq. (7) [5], in which ω0 is the fixed frequency of
spin and �(s) is the Gamma function. However, the situation
is slightly different when N � 2. Obviously, the condition for
the bound state to occur is determined by the linear system
of equations (7). Thus, a general relation is difficult to find.
Actually, one can find N solutions at most by solving Eq. (7)
with properly chosen parameters, as shown in the following.
However, not all solutions correspond to genuine bound states.
We first point out in this article that there always exists a so-
called pseudo-bound-state that satisfies Eq. (7) but whose spin
excitation can be transferred to the environment with a finite
probability.

III. BOUND STATE

The sufficient and necessary condition for a nontrivial
solution to αi in the linear system of equation (7) is that the
determinant of the coefficient the matrix is zero. Thus one can
obtain an equation for variable E with the maximal power of
N . Generally, this equation is difficult to solve (noting that
E is also involved in the integral), and one has to rely on
numerical methods. Moreover, as for large N , we also note
that there exists some point on which the equation of E shows
strong oscillation. Thus, in this case a stable solution cannot be
determined even with the highest computational precision. So
our numerical evaluation has to be restricted to N � 12, except
for some special case. Despite this deficiency, some interesting
results can be found.

The crucial feature of a bound state is the vanishing
spontaneous emission of excitations. To display this point, two
distributions, defined as

ci = |αi |2,

d =
∑

k

|βk|2 =
∣∣∣∣∣

N∑
i=1

αi

∣∣∣∣∣
2 ∫ ∞

0

J (ω)

(E − ω)2 dω, (9)

are calculated exactly, in which ci characterizes the distribution
of excitation in the spin chain, and d is the distribution in the
reservoir. In addition, the normalization d + ∑N

i=1 ci = 1 is

imposed. For brevity, the following discussion focuses only
on the case of an ohmic environment (s = 1). As for sub-
and super-ohmic cases, our calculations show no intrinsic
difference from the ohmic case. Although the distribution of
ci is varied, the basic feature of localized spin excitation is
unchanged.

A. Periodic boundary conditions

With respect to periodic boundary conditions in a spin chain,
Si+N = Si and hi = h0 are imposed. By proper choice of h0 −
U , one can find N solutions of E at most for definite N . In
Fig. 1, ci and d are plotted for different N when s = 1. A
common feature is the periodic variation of ci by spin site when
N � 4, which can be attributed to the spin-site translational
invariance in Eq. (1).

An interesting observation is the double degeneracy in
bound energy levels En (n � 2) when N � 3. Furthermore
an even-odd effect can be found. When N is even, there exists
two nondegenerate levels: the ground stateE0 and some excited
state. And the other levels are doubly degenerate. In contrast,
when N is odd, there is only one nondegenerate level, the others
being doubly degenerate.

Another observation is that there always exist a unique
energy level with nonvanishing d, which means that the spin
excitation would be emitted into the reservoir with a finite
probability. For the other bound states, d = 0 exactly. For
instance, as shown in Fig. 1, the level E2 for N = 3, E3

for N = 4, 6, 8, 10, 12, and E4 for N = 9 have d > 0.1.
Consequently, the occurrence of the state would be unfavorable
for the protection of quantum information. However, since it
also satisfies Eq. (7), we claim that it is not a true bound state
since the excitation cannot be localized exactly in a spin chain,
and in this place it is named a pseudo-bound state.

The pseudo-bound state can display three crucial features:
First, our numerical evaluation shows that the pseudo-bound
state is always nondegenerate. Second, we find that all αi share
the same value, proportional to 1/

√
N up to a coefficient deter-

mined by d. Third, up to exact evaluation of the ground bound
state up to N = 22, it is found that there is only one bound
state when (U − h0) + E < −1 or E < −2 correspondingly
as for the chosen parameters in Fig. 1. This bound state is also a
pseudo-bound state, as shown in Table I. These facts imply that
the ground bound state for N → ∞ would be nondegenerate
and a pseudo-bound state.

Furthermore, d for a pseudo-bound state increases with
spin number N , shown in Table I. Thus, it is interesting to
find the nontrivial upper bound for d. With respect that the
αi in the pseudo-bound state are the same, it is found that
d → 0.5 when N → ∞, as shown in Table II. This means that
the relaxation and localization of the spin excitation becomes
balanced in this case. Moreover, our exact calculation shows
that the ground state is the unique pseudo-bound state for larger
N . The appearance of the pseudo-bound state in the excited
level for small N shown in Fig. 1 can be attributed to the
finite-number effect.

Conclusively, two distinct bound states can be found in
this case: the true bound state with d = 0 exactly and the
pseudo-bound state with finite d. A critical case can be iden-
tified as (U − h0) + E = −1, which separates the true bound
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FIG. 1. Plot of bound-state energy level E (top-left panel) and density plots of normalized distribution ci and d of bound states for N = 2 to
N = 12 with periodic boundary conditions. h0 − U = −1, s = 1, η = 0.1, ωc = 3 in units of J have been chosen for this plot. The eigenenergy
En (n = 0,1,2, . . . ) is arranged in increasing order.

state from the pseudo-bound state. When (U − h0) + E < −1,
there is only one bound state, which is also a pseudo-bound
state. For (U − h0) + E > −1, all energy levels are true bound
states with d = 0 exactly under N → ∞. Interestingly, we
find for even N that the state, if it exists at the critical level
(U − h0) + E = −1 or E = −2, is a true and nondegenerate
state and, moreover, the spin state in the first term in Eq. (3)
has the form

1√
N

N∑
i=1

(−1)i | 0 · · · 0︸ ︷︷ ︸
i−1

1 0 · · · 0︸ ︷︷ ︸
N−1

〉. (10)

B. Open boundary conditions

For open boundary conditions, translational invariance in
the spin chain is broken. Figure 2 presents the energy level
En and the density plot for the distribution ci and d with
different N . The obvious feature is the broken degeneracy of

the bound-state level, which means that the double degeneracy
is protected by translational invariance in the spin chain.

In contrast to the periodic boundary, the difference between
the pseudo-bound state and the true bound state becomes
ambiguous because d could be very small but not vanish
exactly. However, the critical energy (U − h0) + En = −1 or
En = −2 can still be identified, below which there is only one
bound state, which is also a pseudo-bound state. In Table III
the ground-state energy level with E < −2 is listed up to
N = 22, in which d increases with spin number N . Moreover,
our calculation shows that the corresponding ci tends to be
homogenous with the increment of N , as shown in Fig. 3.

C. Effect of disorder in X X Z model

An interesting issue is whether disorder in spin systems
would affect the bound state. This consideration comes from
the recent interest in localization of many-body systems [17],
which characterizes a nonergodic behavior in the statistical
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TABLE I. The ground bound-state level E0 for N =
14 to 22 and the distribution d with periodic boundary
conditions. The other parameters are the same as in Fig. 1.

s = 1

N E0 d

14 −2.01932 0.289168
15 −2.12051 0.293435
16 −2.21916 0.297389
17 −2.31547 0.301069
18 −2.40961 0.304187
19 −2.50172 0.30773
20 −2.59159 0.310762
21 −2.68041 0.313621
22 −2.7672 0.316325

mechanics of isolated quantum systems. A general feature
for localization in many-body systems is the disorder-induced
nonequilibrium properties, such as the localization of the elec-
tronic wave function [18] or the deviation of statistical prop-
erties from the expectation of thermodynamical equilibrium
[19]. As shown in the previous discussion, the true bound state
displays an obvious localization of spin excitation with respect
to the probability of vanishing spontaneous emission. From
this point the open spin system can also display nonergodic
features. Hence it is an interesting issue whether the disorder
in the spin chain could enhance the localization of excitations.

With respect to recent experiments on localization of many-
body systems [20–22], a quasirandom disorder is introduced
in the spin chain with open boundary conditions,

hi = 	 cos (2πβi + φ), (11)

in which β = 532
738 ≈ 0.721, φ = 1/0.6188333, and 	 charac-

terizes the strength of disorder. Although hi does not denote a
genuine disorder, the intrinsic effect of disorder can be simu-
lated and demonstrated in this system [21,22]. Consequently,
the distribution ci and d of bound states for N = 12 are plotted
in Fig. 4. It is obvious that some ci become so pronounced with
the increment of disorder strength 	, which means that the
spin excitation cannot be transported freely in spin chains, too.
Furthermore, with respect that the spin chain is embedded in
the environment, it means that localization of the excitation is

TABLE II. The ground bound-state level E0 and
the distribution d for huge N with periodic boundary
conditions. The other parameters are the same to those
in Fig. 1.

s = 1

N E0 d

100 −7.33804 0.391086
200 −11.0897 0.416524
400 −16.4958 0.436926
800 −24.2306 0.45294
1600 −35.2459 0.46527
3200 −50.9722 0.474613

TABLE III. The ground bound-state level E0 and the
distribution d in open boundary conditions. The other
parameters are the same as those in Fig. 2.

s = 1

N E d

13 −2.01274 0.209038
14 −2.09872 0.265101
15 −2.19033 0.277008
16 −2.28187 0.284867
17 −2.37255 0.290923
18 −2.46206 0.295991
19 −2.55026 0.300411
20 −2.63714 0.304362
21 −2.72269 0.30795
22 −2.80692 0.311247

stable against decoherence induced by the environment. This
picture is very different from the knowledge that the reservoir
would always destroy localization, as shown in Refs. [22–24].
We argue that the existence of the bound state is responsible
for the stability of localization.

As for d, the disorder shows limited effect. Generally, our
calculation shows that d is insensitive to the disorder in the spin
chain, as shown in Fig. 4. However, some exceptions can be
found; for instance, the bound-state levels E8 and E10 in Fig. 4
in which d shows a relative variation upon incrementing 	.
But in most cases, d does not change obviously. This feature
implies that disorder in spin systems has small effect on the
spontaneous emission of excitation. Finally, we point out that
our exact examination shows similar behavior for N < 12,
which is not presented here for brevity.

Importantly, one should note that, for the single-excitation
case, Eq. (7) actually characterizes a free-particle system
within the reservoir since the interaction U only contributes
to the diagonal elements. Thus, the Hamiltonian of the spin
chain can be diagonalized in this case by using the Jordan–
Wigner transformation; for example, as done in Ref. [25].
Thus, the disorder-induced localization is actually Anderson
like [18,20].

IV. TIME EVOLUTION

Localization in quantum systems is of interest as a possible
quantum memory since some local details of the system’s
initial state can be preserved. Thus, an interesting issue is the
time evolution of system when both bound state and disorder
occur simultaneously. Thus, by the Schrödinger equation, one
can obtain the equation of time evolution:

i
∂

∂t
αi(t) = J

2
[αi+1(t) + αi−1(t)] + (hi − U )αi(t)

− i

N∑
i=1

∫ t

0
dταi(τ )f (t − τ ), (12)

in which

f (t − τ ) = η

ωs−1
c

�(s + 1)

[i(t − τ ) + 1/ωc]s+1
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FIG. 2. A plot for bound-state energy level E (top-left panel) and density plot of ci and d for s = 1 with open boundary conditions. The
other parameters are the same as those in Fig. 1.

and i is the imaginary unit. The influence of the reservoir
is displayed by the last term, which also characterizes the
non-Markovian memory structure. With respect to the disorder
occurring (	 �= 0) or not (	 = 0), the following discussion is
divided into two sections. As shown below, the dynamics of
the spin system presents two distinct behaviors.

In general, as for the bound state occurring, the time evo-
lution of the state |ψ(t)〉 of the spin chain can be decomposed
into two parts:

|ψ(t)〉 =
∑
Eb

αb|ψb〉e−iEbt +
∫

dEcα(Ec)e−iEct |ψc〉, (13)

in which the first term comes from the contribution of bound
states, denoted by |ψb〉 with bound-state energy Eb, while the
second term is the contribution from the continuum spectrum

Ec. Then the first term depicts a unitary dynamics in system,
while in contrast the second term means dissipation. Conse-
quently, when there is no bound state a complete dissipation of
system is inevitable. In the following discussion one can find
that, for many-body systems, the bound state itself cannot com-
pletely protect the system against decoherence. Instead, the
combination of disorder and bound state provides a promising
possibility of preserving faithfully the quantum information in
system.

Some comments have to be presented in advance. First,
we chose s = 1 in the following discussion. Admittedly, the
dynamics of ci is inevitably dependent on the value s. However,
since the current focus is on the effect of the bound state
and disorder for the preservation of quantum information in
spin systems, our numerical evaluation shows that different
s does not induce intrinsic changing of this feature. Hence
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FIG. 3. The isotropy of ci , measured by
∑N

i=1[
√

ci/(1 − d) −
1/

√
N ]2/N , which ci/(1 − d) corresponds to the reduced distribution

of excitation in the spin system. The parameters are the same as those
in Fig. 1.

the following discussion is focused only on s = 1 for brevity.
Second, to highlight the effect of the bound state, two situations
are considered in the following discussion: all bound states
occurring or no bound states occurring. This choice can more
clearly demonstrate the different dynamics of ci if the bound
state appears or not, and avoids the conclusion being dependent
on some special bound states. Third, to display the preservation
of quantum information, it is necessary to find the fidelity
F = 〈ψ(t)|ψ(0)〉. As for a single excitation located initially
on a special spin site i, F simply reduces to

F =
∣∣∣∣∣∑

i

αi(t)αi(0) +
∑

k

βk(t)βk(0)

∣∣∣∣∣ = |αi(t)| = √
ci .

It thus suffices to study the dynamics of ci .

A. � �= 0

By exact numerical evaluation of Eq. (12), the time evolu-
tion of distribution ci (i = 1,2, . . . ,N) for N = 12 is presented
in Figs. 5 and 6 with 	 = 1, 2, 4, 6 and different initial states.
The two situations (i.e., all bound states appear or none appear
are considered, respectively, and are shown in the left and right
columns in Figs. 5 and 6. In addition we also check ci for two
different initial states by setting that spin excitation initially
at i = 1 (Fig. 5) or i = 11 (Fig. 6). Two distinct behaviors
of ci can be found, which can be understood properly by the
localization in bound states.

First, when the spin excitation is located initially at i = 1, an
oscillation between c1 and c8 is developed with the increment
of 	 when bound states appear. This feature can be understood
by noting that c1 and c8 are always pronounced simultaneously,
as shown in the bound-state levels E10 and E11 in Fig. 4. By
Eq. (13), the two bound states would become dominant for
the time evolution of ci , which is responsible for the coherent
transfer of spin excitation in the initial state between the two
spin sites. In contrast, when there is no bound state, c1 and
c8 become stable simultaneously at a value close to 0.25. In

the absence of the bound state, the feature could be attributed
to the influence of disorder (11). This picture implies that
the disorder in the system cannot alone protect the system
against decoherence induced by the environment. Moreover,
the appearance of the bound state is a key ingredient for the
preservation of quantum information.

Recently, the open quantum dynamics in localized systems
has been studied extensively, for which two nonergodic fea-
tures can be found. In Ref. [24], a localized steady state is
disclosed in open Anderson-localized system, achieved by a
proper dissipation. This finding means that the environment
could play a constructive role in localization. Whereas in
Ref. [23], a stretched exponential decay is discovered in
open many-body systems with a general consideration of
the environment, for which the nonergodic character of the
system persists for a long time. The underlying mechanism
for the exotic dynamics can be attributed to the existence of
integrals of motion in localized systems [26], which prevents
not only complete thermalization of any given subsystem,
but also transport over macroscopic scales. Thus a typical
localization length can be defined, which means that the
system can be considered as localized when the system scale
is much lager than the localization length. Consequently, for
the present discussion, some similar feature can also be found,
as illustrated by Fig. 7. Consider the case when there is no
bound state, shown by the right column in Fig. 7. It is obvious
that c1 tends to be vanishing with time evolution if N � 6.
In contrast, when N � 8, c1 is finally steady at 0.25 and,
moreover, c8 is developed and also steady at 0.25, as shown
by the bottom-right panels in Fig. 5 and 7. This feature means
that the information of the initial state could be partially stored
on the spin system only if N � 8. Thus, it seems that there
would exist a localization length lc. When the length of the spin
chain is smaller than lc, the excitation is inevitably decaying
into the environment. In contrast, when the spin chain is larger
than lc, the excitation can be partially localized in the spin
chain. Moreover, lc can still be in function when bound states
occur, as shown by the left column in Figs. 7 and 5. It is obvious
that a strong oscillation between c1 and c8 is developed when
N � 8.

A different picture can be found for the spin excitation
located initially at i = 11, as shown in Fig. 6. When bound
state and disorder occur together, as shown by the left column
in Fig. 6, c11 settles rapidly on a value close to 0.9 with the
increment of 	. At the same time, the other ci with i �= 11 tend
to vanish instead. This picture can also be understood by noting
that c11 in the bound-state level E6 becomes more pronounced
upon incrementing 	, as shown in Fig. 4. Thus, by Eq. (13)
this bound state becomes dominant in the time evolution. In
contrast, when there is no bound state, c11 tends to vanish
rapidly with rescaled time J t , as shown by the right column in
Fig. 6. Since the contribution of bound states disappears, the
dissipative term becomes dominant. In addition, one can find
that the decaying of c11 becomes slower with the increment of
	, which means that disorder has limited ability to preserve
quantum information. Thus the disorder of the spin chain itself
is not enough for the preservation of quantum information in
open quantum systems.

Conclusively these two distinct pictures disclose that not all
quantum information in the system can be preserved over time.
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FIG. 4. Density plots of distribution ci and d of bound-state level Ei (i = 1,2, . . . ,12) of N = 12 for 	 = 1 to 8. For this plot, s = 1 and
the open boundary conditions of the spin chain are imposed. The other parameters are η = 0.1, ωc = 3 in units of J . For 	 = 1 to 8, U = 1,
1.5, 2.5, 3.2, 4.2, 5.2, 6.2, 7.2, 8.2 are used in order to find all bound states.

As shown in the previous discussion, the quantum information
only for some special initial state can be retained. It can be
understood by the fact that the underlying integrals of motion
just determine a finite-energy manifold in Hilbert space: only
the state in this manifold can show localization [26]. At
another point the long-time behavior of |ψ(t)〉 is obviously
determined by the bound states, which have the similar feature
of localization as that in the initial state. Thus it could imply
that this special energy manifold would have an intrinsic
connection with the space supported by bound states.

B. � = 0

In comparison, the situation that there is no disorder (	 =
0) is discussed in this section. First consider when all bound
states occur, as shown by the left column in Fig. 8. Obviously,

an oscillation happens between c1 and c2 when N = 2, as
shown by the top-left panel in Fig. 8. However, with the
increment of N , the difference between c1 and the other ci

becomes ambiguous with the increment of J t . Similar to
the discussion in the previous section, this picture can be
understood by the structure of the bound state, shown in Fig. 2.
When N = 2, there are only two bound states, E0 and E1, in
which one can find c1 = c2. Thus, by Eq. (13), the oscillation
is attributed to the coherent superposition of two bound states.
With the increment of N , there are more bound states, which
tend to have equal contribution to the evolution of |ψ(t)〉.
Consequently, the information of the initial state is diluted
with time evolution. Second, when there is no bound state,
a slight difference in the evolution of ci can be found. For
N = 2, shown by the top-right panel in Fig. 8, c1 and c2 evolve
simultaneously to a steady value close to 0.25. However, when
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FIG. 5. A plot for ci (i = 1,2, . . . ,12) varying with rescaled time
J t for 	 = 1, 2, 4, 6 when N = 12 and s = 1. This initial state is
chosen as the single excitation located on spin site i = 1. For clarity,
the varying of c1 and c8 are highlighted by a thick blue solid line and
a thick red dashed line to distinguish their features from the others.
The varying of the other ci are also shown by thin solid lines for
convenience of comparison, which are not marked in this plot. When
all bound states occur, shown by the left column, we choose U = 1.5
for 	 = 1, U = 2.5 for 	 = 2, U = 4.2 for 	 = 4, and U = 6.2 for
	 = 6 in order to include all 12 bound states. As for the absence of
the bound state, shown by the right column, U = −7 is chosen for
different 	v. In addition, η = 0.1, ωc = 3 are also chosen for this
plot.

N is large, the evolution of ci does not differ intrinsically from
the previous case, except for a smaller amplitude of oscillation.
In addition, with the increment of N , the difference in evolution
becomes ambiguous; for instance, see the two bottom panels
of Fig. 8 for N = 12.

C. Effect of on-site potential

Some comments are in order about 	 and U . As shown
in the previous discussion, to find all bound states, different
U have to be chosen upon varying 	. For instance, when
N = 12 and 	 = 6, U = 6.2 is chosen. This point inevitably
would induce a very high on-site potential for some spin sites,
as shown by hi − U in Eq. (12). Thus it induces the natural
question of whether the localization of information in the initial

FIG. 6. A plot for varying of ci (i = 1,2, . . . ,12) with rescaled
time J t when N = 12 and s = 1. Except that the excitation is initially
located at i = 11, the parameters are the same as those in Fig. 5. c11

is highlighted by a thick blue solid line in this plot. We also present
the other ci by a thin solid line for convenience of comparison.

states is intrigued by a high on-site potential in comparison
with the small system-environment coupling strength η; for
example, as studied in Ref. [27]. Our answer is that this is not
the case, as can be illustrated by the following two points:

First, phenomenally as shown by the right column in Fig. 6,
the information of the initial state eventually vanishes when
there is no bound state, even if the on-site potential is high;
for example, 	 = 6 and U = −7. This picture shows that the
value of the on-site potential is irrelevant to the preservation of
information in the initial state. SA similar feature can also be
found in Fig. 7. Second, physically different from the case in
Ref. [27], in which the qubit is coupled with the spin environ-
ment by a point contact, all spins are coupled homogeneously
with the environment. Thus, because of the hopping term
J
2

∑
i=1(S+

i S−
i+1 + S−

i S+
i+1) in Eq. (1), the excitation can be

transferred from one site, which would have high on-site poten-
tial, to another one with low on-site potential. In this case, the
excitation may be absorbed by the environment. We thus argue
in this place that the localization of the excitation induced by
the bound state and disorder in the system would be a universal
phenomenon, independent of the details of the system.
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FIG. 7. Plot of ci (i = 1,2, . . . ,N ) with rescaled time J t for
different N when 	 = 6. The spin excitation is initially located at
i = 1 in this plot. In addition, U = 6.2 is chosen when bound states
occur. When there is no bound state, U = −3 for N = 2, U = −6
for N = 3, 4, 6 and U = −7 for N = 8. The other parameters are the
same to those in Fig. 5. For clarity, the varying of c1 or c8 are high-
lighted by a thick blue solid line and a thick red dashed line,
respectively, to distinguish them from the others. The other ci are
presented by thin solid lines for the convenience of comparison.

V. DISCUSSION AND CONCLUSION

In conclusion, the bound state and time evolution for single-
excitation in a one-dimensional XXZ spin chain within the
reservoir are studied exactly in this article. As for the bound
state, four crucial observations are found: First, the true bound
state is actually a excitation-localized state for which the single
excitation is preserved in the spin system and spontaneous
emission into the reservoir is prohibited exactly. Second, we
point out first the existence of the pseudo-bound state, which is
defined as the state satisfying the bound-state equation (7) but
having a finite probability of spontaneous emission for a single

FIG. 8. Plot of ci (i = 1,2, . . . ,N) with rescaled time J t when
	 = 0 and s = 1. The open boundary conditions are impose for the
spin chain. The initial state is chosen as the single excitation placed at
spin site i = 1. When all bound states occur, U = 1 is chosen; when
there is no bound state, we choose u = −1 for N = 2, u = −1.5 for
N = 4, u = −2.5 for N = 6, u = −4 for N = 9, and u = −5.5 for
N = 12. η = 0.1, ωc = 3 are also chosen for this plot. The varyiation
in c1 is highlighted by the thick blue solid line. The other ci are
presented by thin solid lines for convenience of comparison.

excitation. Thus, in this case the excitation on the spin chain
would be relaxed, probably into the reservoir. In addition, when
the periodic boundary conditions are imposed in the spin chain,
the pseudo-bound state shows some special properties. One
is that the αi are proportional to 1/

√
N . But, for open boundary

in the spin chain, this point disappears, which means that it is
protected by the translational invariance of the spin chain. The
other is that, for large N , the pseudo-bound state corresponds
to the minimal energy level and d tends to 0.5, as shown in
Table II. Third, a critical energy (U − h0) + E = −1 can be
identified, below which there is only one bound state. For a
periodic boundary, the bound state is a pseudo-bound state

042129-10



BOUND STATE AND LOCALIZATION OF EXCITATION IN … PHYSICAL REVIEW A 97, 042129 (2018)

exactly. As for an open boundary, we find that the values of all
ci in the bound state tend to be isotropic, as shown in Fig. 3, and
the value of d increases upon incrementing the spin number N ,
as shown in Table III. Fourth, when the quasirandom disorder
(11) occurs, ci in the bound state becomes more pronounced
at some spin sites. This feature implies that single excitations
can be localized in some spin sites despite the existence of the
environment. Thus, the spin chain in this case can be used as
a quantum memory.

To display the potential applications in quantum memory,
time evolution of a single excitation is evaluated exactly by
numerics. A crucial observation is that the information of the
initial state can be faithfully preserved only if the bound state
and disorder occur together. Moreover, the long-time behavior
of the spin chain is determined completely by the structure of
the bound state. When there is no bound state, the information
of the initial state could be erased completely or become mixed,

even if the disorder occurs. Thus, the combination of bound
state and disorder provides a ideal mechanism for quantum
memory.

ACKNOWLEDGMENTS

The author H.T.C. acknowledges the support of the NSF of
China (Grant No. 11005002) and of NCET of the Ministry
of Education of China (Grant No. NCET-11-0937). H.Z.S.
acknowledges the support of the National Natural Science
Foundation of China (NSFC) under Grant No. 11705025,
the China Postdoctoral Science Foundation under Grants No.
2016M600223 and No. 2017T100192, and the Fundamental
Research Funds for the Central Universities under Grant No.
2412017QD005. X.X.Y. acknowledges the support of the
NSFC under Grants No. 11534002, No. 61475033, and No.
11775048.

[1] E. Yablonovitch, Inhibited Spontaneous Emission in Solid-State
Physics and Electronics, Phys. Rev. Lett. 58, 2059 (1987); S.
John and J. Wang, Quantum Electrodynamics near a Photonic
Band Gap: Photon Bound States and Dressed Atoms, ibid. 64,
2418 (1990); Quantum optics of localized light in a photonic
band gap, Phys. Rev. B 43, 12772 (1991); S. John and T. Quant,
Spontaneous emission near the edge of a photonic band gap,
Phys. Rev. A 50, 1764 (1994); Quantum Optical Spin-Glass State
of Impurity Two-Level Atoms in a Photonic Band Gap, Phys.
Rev. Lett. 76, 1320 (1996).

[2] C. Y. Cai, L.-P. Yang, and C. P. Sun, Threshold for nonthermal
stabilization of open quantum systems, Phys. Rev. A 89, 012128
(2014).

[3] Bellomo, R. Lo Franco, S. Maniscalco, and G. Compagno,
Entanglement trapping in structured environments, Phys. Rev.
A 78, 060302 (2008); C. Lazarou, K. Luoma, S. Manis-
calco, J. Piilo, and B. M. Garraway, Entanglement trap-
ping in a nonstationary structured reservoir, ibid. 86, 012331
(2012).

[4] W. M. Zhang, P. Y. Lo, H. N. Xiong, M. Wei-Yuan Tu, and
F. Nori, General Non-Markovian Dynamics of Open Quantum
Systems, Phys. Rev. Lett. 109, 170402 (2012).

[5] Q. J. Tong, J. H. An, H. G. Luo, and C. H. Oh, Mechanism of
entanglement preservation, Phys. Rev. A 81, 052330 (2010);
Y. C. Lin, P. Y. Yang, and W. M. Zhang, Non-equilibrium
quantum phase transition via entanglement decoherence dy-
namics, Sci. Rep. 6, 34804 (2016); H. Z. Shen, X. Q. Shao,
G. C. Wang, X. L. Zhao, and X. X. Yi, Quantum phase
transition in a coupled two-level system embedded in anisotropic
three-dimensional photonic crystals, Phys. Rev. E 93, 012107
(2016).

[6] P. Lodahl, A. F. van Driel, Ivan S. Nikolaev, A. Irman, K.
Overgaag, D. Vanmaekelbergh, and W. L. Vos, Controlling
the dynamics of spontaneous emission from quantum dots
by photonic crystals, Nature (London) 430, 654 (2004); S.
Noda, M. Fujita, and T. Asano, Spontaneous-emission control
by photonic crystals and nanocavities, Nat. Photon. 1, 449
(2007).

[7] H. Z. Shen, Hong Li, Y. F. Peng, and X. X. Yi, Mechanism
for Hall conductance of two-band systems against decoherence,
Phys. Rev. E 95, 042129 (2017).

[8] I. de Vega, D. Porras, and J. I. Cirac, Matter-Wave Emission in
Optical Lattices: Single Particle and Collective Effects, Phys.
Rev. Lett. 101, 260404 (2008).

[9] T. Shi, Ying-Hai Wu, A. González-Tudela, and J. I. Cirac, Bound
States in Boson Impurity Models, Phys. Rev. X 6, 021027 (2016).

[10] A. Kay, A review of perfect, efficient, state transfer and its
applications as a constructive tool, Int. J. Quantum Inform. 8,
641 (2010).

[11] M. R. Geller, J. M. Martinis, A. T. Sornborger, P. C. Stancil,
E. J. Pritchett, H. You, and A. Galiautdinov, Universal quantum
simulation with prethreshold superconducting qubits: Single-
excitation subspace method, Phys. Rev. A 91, 062309 (2015).

[12] A. W. Glaetzle, K. Ender, D. S. Wild, S. Choi, H. Pichler, M. D.
Lukin, and P. Zoller, Quantum Spin Lenses in Atomic Arrays,
Phys. Rev. X 7, 031049 (2017).

[13] L. S. Levitov, Absence of Localization of Vibrational Modes
Due to Dipole-Dipole Interaction, Europhys. Lett. 9, 83 (1989);
Delocalization of Vibrational Modes Caused by Electric Dipole
Interaction, Phys. Rev. Lett. 64, 547 (1990); F. Evers and A. D.
Mirlin, Anderson transitions, Rev. Mod. Phys. 80, 1355 (2008).

[14] B. Fain, Relaxation via spontaneous emission of bosons: Non-
Markovian approach, Phys. Rev. A 37, 546 (1988).

[15] A. G. Kofman, G. Kurizki, and B. Sherman, Spontaneous and
induced atomic decay in photonic band structures, J. Mod. Opt.
41, 353 (1994).

[16] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[17] R. Nandkishore and D. A. Huse, Many-body localization and
thermalization in quantum statistical mechanics, Annu. Rev.
Condens. Matter Phys. 6, 15 (2015).

[18] P. W. Anderson, Absence of diffusion in certain random lattices,
Phys. Rev. 109, 1492 (1958).

[19] V. Oganesyan and D. A. Huse, Localization of interacting
Fermions at high temperature, Phys. Rev. B 75, 155111 (2007);

042129-11

https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.58.2059
https://doi.org/10.1103/PhysRevLett.64.2418
https://doi.org/10.1103/PhysRevLett.64.2418
https://doi.org/10.1103/PhysRevLett.64.2418
https://doi.org/10.1103/PhysRevLett.64.2418
https://doi.org/10.1103/PhysRevB.43.12772
https://doi.org/10.1103/PhysRevB.43.12772
https://doi.org/10.1103/PhysRevB.43.12772
https://doi.org/10.1103/PhysRevB.43.12772
https://doi.org/10.1103/PhysRevA.50.1764
https://doi.org/10.1103/PhysRevA.50.1764
https://doi.org/10.1103/PhysRevA.50.1764
https://doi.org/10.1103/PhysRevA.50.1764
https://doi.org/10.1103/PhysRevLett.76.1320
https://doi.org/10.1103/PhysRevLett.76.1320
https://doi.org/10.1103/PhysRevLett.76.1320
https://doi.org/10.1103/PhysRevLett.76.1320
https://doi.org/10.1103/PhysRevA.89.012128
https://doi.org/10.1103/PhysRevA.89.012128
https://doi.org/10.1103/PhysRevA.89.012128
https://doi.org/10.1103/PhysRevA.89.012128
https://doi.org/10.1103/PhysRevA.78.060302
https://doi.org/10.1103/PhysRevA.78.060302
https://doi.org/10.1103/PhysRevA.78.060302
https://doi.org/10.1103/PhysRevA.78.060302
https://doi.org/10.1103/PhysRevA.86.012331
https://doi.org/10.1103/PhysRevA.86.012331
https://doi.org/10.1103/PhysRevA.86.012331
https://doi.org/10.1103/PhysRevA.86.012331
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevLett.109.170402
https://doi.org/10.1103/PhysRevA.81.052330
https://doi.org/10.1103/PhysRevA.81.052330
https://doi.org/10.1103/PhysRevA.81.052330
https://doi.org/10.1103/PhysRevA.81.052330
https://doi.org/10.1038/srep34804
https://doi.org/10.1038/srep34804
https://doi.org/10.1038/srep34804
https://doi.org/10.1038/srep34804
https://doi.org/10.1103/PhysRevE.93.012107
https://doi.org/10.1103/PhysRevE.93.012107
https://doi.org/10.1103/PhysRevE.93.012107
https://doi.org/10.1103/PhysRevE.93.012107
https://doi.org/10.1038/nature02772
https://doi.org/10.1038/nature02772
https://doi.org/10.1038/nature02772
https://doi.org/10.1038/nature02772
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1038/nphoton.2007.141
https://doi.org/10.1103/PhysRevE.95.042129
https://doi.org/10.1103/PhysRevE.95.042129
https://doi.org/10.1103/PhysRevE.95.042129
https://doi.org/10.1103/PhysRevE.95.042129
https://doi.org/10.1103/PhysRevLett.101.260404
https://doi.org/10.1103/PhysRevLett.101.260404
https://doi.org/10.1103/PhysRevLett.101.260404
https://doi.org/10.1103/PhysRevLett.101.260404
https://doi.org/10.1103/PhysRevX.6.021027
https://doi.org/10.1103/PhysRevX.6.021027
https://doi.org/10.1103/PhysRevX.6.021027
https://doi.org/10.1103/PhysRevX.6.021027
https://doi.org/10.1142/S0219749910006514
https://doi.org/10.1142/S0219749910006514
https://doi.org/10.1142/S0219749910006514
https://doi.org/10.1142/S0219749910006514
https://doi.org/10.1103/PhysRevA.91.062309
https://doi.org/10.1103/PhysRevA.91.062309
https://doi.org/10.1103/PhysRevA.91.062309
https://doi.org/10.1103/PhysRevA.91.062309
https://doi.org/10.1103/PhysRevX.7.031049
https://doi.org/10.1103/PhysRevX.7.031049
https://doi.org/10.1103/PhysRevX.7.031049
https://doi.org/10.1103/PhysRevX.7.031049
https://doi.org/10.1209/0295-5075/9/1/015
https://doi.org/10.1209/0295-5075/9/1/015
https://doi.org/10.1209/0295-5075/9/1/015
https://doi.org/10.1209/0295-5075/9/1/015
https://doi.org/10.1103/PhysRevLett.64.547
https://doi.org/10.1103/PhysRevLett.64.547
https://doi.org/10.1103/PhysRevLett.64.547
https://doi.org/10.1103/PhysRevLett.64.547
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRevA.37.546
https://doi.org/10.1103/PhysRevA.37.546
https://doi.org/10.1103/PhysRevA.37.546
https://doi.org/10.1103/PhysRevA.37.546
https://doi.org/10.1080/09500349414550381
https://doi.org/10.1080/09500349414550381
https://doi.org/10.1080/09500349414550381
https://doi.org/10.1080/09500349414550381
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1146/annurev-conmatphys-031214-014726
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111


H. T. CUI, H. Z. SHEN, S. C. HOU, AND X. X. YI PHYSICAL REVIEW A 97, 042129 (2018)

D. J. Luitz and Y. B. Lev, The ergodic side of the many-
body localization transition, Ann. Phys. (Berlin) 529, 1600350
(2017).

[20] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Direct observation of Anderson localization of matter waves in a
controlled disorder, Nature (London) 453, 891 (2008); G. Roati,
C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G.
Modugno, M. Modugno, and M. Inguscio, Anderson localization
of a non-interacting Bose-Einstein condensate, ibid. 453, 895
(2008).

[21] M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H.
Fishcher, R. Vosk, E. Altman, U. Schneider, and I. Bloch, Ob-
servation of many-body localization of interacting Fermions in a
quasirandom optical lattice, Science 349, 842 (2015); P. Bordia,
H. Lüschen, U. Schneider, M. Knap, and I. Bloch, Periodically
driving a many-body localized quantum system, Nat. Phys.
13, 460 (2017); P. Roushan, C. Neill, J. Tangpanitanon, V. M.
Bastidas, A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro,
A. Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey, J.
Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A.
Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis,
and J. Martinis, Spectral signatures of many-body localization
with interacting photons, Science 358, 1175 (2017).

[22] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber, I.
Bloch, and U. Schneider, Coupling Identical One-Dimensional
Many-Body Localized Systems, Phys. Rev. Lett. 116, 140401
(2016); H. P. Lüschen, P. Bordia, S. S. Hodgman, M. Schreiber,

S. Sarkar, A. J. Daley, M. H. Fishcer, E. Altman, I. Bloch, and U.
Schneider, Signature of Many-body Localization in a Controlled
Open Quatnum System, Phys. Rev. X 7, 011034 (2017).

[23] E. Levi, M. Heyl, I. Lesanovsky, and J. P. Garrahan, Robustness
of Many-body Localization in the Presence of Dissipation, Phys.
Rev. Lett. 116, 237203 (2016); M. H. Fischer, M. Maksymenko,
and E. Altman, Dynamics of a Many-Body-Localized system
Coupled to a Bath, ibid. 116, 160401 (2016); M. Beau, J. Kiuka,
I. L. Egusquiza, and A. del Campo, Nonexponential Quantum
Decay under Environmental Decoherence, ibid. 119, 130401
(2017).

[24] S. Genway, I. Lesanovsky, and J. P. Garrahan, Localization in
space and time in disordered-lattice open quantum dynamics,
Phys. Rev. E 89, 042129 (2014); I. Yusipov, T. Laptyeva, S.
Denisov, and M. Ivanchenko, Localization in Open Quantum
Systems, Phys. Rev. Lett. 118, 070402 (2017).

[25] E. B. Fel’dman, E. I. Kuznetsova, and A. I. Zenchuk, High-
probability state transfer in spin-1/2 chains: Analytical and
numerical approaches, Phys. Rev. A 82, 022332 (2010).

[26] M. Serbyn, Z. Papić, and D. Abanin, Local Conservation Laws
and the Structure of the Many-Body Localized States, Phys. Rev.
Lett. 111, 127201 (2013); D. A. Huse, R. Nandkishore, and
V. Oganesyan, Phenomenology of fully many-body-localized
systems, Phys. Rev. B 90, 174202 (2014).

[27] T. J. G. Appollaro, A. Cuccoli, C. Di Franco, M. Paternostro,
F. Plastina, and P. Verrucchi, Manipulating and protecting
entanglement by means of spin environments, New J. Phys. 12,
083046 (2010).

042129-12

https://doi.org/10.1002/andp.201600350
https://doi.org/10.1002/andp.201600350
https://doi.org/10.1002/andp.201600350
https://doi.org/10.1002/andp.201600350
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07000
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1038/nature07071
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1126/science.aaa7432
https://doi.org/10.1038/nphys4020
https://doi.org/10.1038/nphys4020
https://doi.org/10.1038/nphys4020
https://doi.org/10.1038/nphys4020
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevX.7.011034
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.237203
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.116.160401
https://doi.org/10.1103/PhysRevLett.119.130401
https://doi.org/10.1103/PhysRevLett.119.130401
https://doi.org/10.1103/PhysRevLett.119.130401
https://doi.org/10.1103/PhysRevLett.119.130401
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevE.89.042129
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevLett.118.070402
https://doi.org/10.1103/PhysRevA.82.022332
https://doi.org/10.1103/PhysRevA.82.022332
https://doi.org/10.1103/PhysRevA.82.022332
https://doi.org/10.1103/PhysRevA.82.022332
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevLett.111.127201
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1103/PhysRevB.90.174202
https://doi.org/10.1088/1367-2630/12/8/083046
https://doi.org/10.1088/1367-2630/12/8/083046
https://doi.org/10.1088/1367-2630/12/8/083046
https://doi.org/10.1088/1367-2630/12/8/083046



