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Metastable decoherence-free subspace and pointer states in mesoscopic quantum systems
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Two initially correlated coherent states, each interacting with its own independent dissipative environment,
exhibit a sudden transition from classical to quantum decoherence. This change in the dynamics is a turning
point in the decoherence in the sense that depending on the average number of photons of each harmonic
oscillator, decoherence can even be suppressed. Indeed, the quantum state is time independent for a time span
in the mesoscopic regime, revealing a decoherence-free subspace. Furthermore, the absence of decoherence is
manifested in the apparition of a metastable pointer-state basis.
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I. INTRODUCTION

The study of quantum correlations in multipartite quantum
systems is a central problem in quantum mechanics. The study
of all correlations existing between two quantum systems,
not only entanglement, has captured the attention of many
researchers in recent years. Quantum and classical correlations
embodied in a bipartite quantum system are contained in the
quantum mutual information [1,2]. From this fundamental
concept, the search of all quantum correlations that can be
found in a bipartite system has motivated the introduction of
quantum discord [2–7]. One main result driving research in
this field is that quantum computation is possible even in the
absence of quantum entanglement [8].

A central issue is the understanding of how a bipartite
system behaves under the interaction with an environment.
Concerning this effect, it is widely known that entanglement
could vanish suddenly, depending on the initial state [9–13].
Given that, it is important to know how quantum correlations,
other than entanglement, are affected by the presence of
environment [14–18]. Both classical and quantum correlations
are affected such that in most cases, they decay asymptotically,
independent of the initial state, and this feature distinguishes
them from quantum entanglement. As the total mutual infor-
mation decays as a function of time, it could be interesting to
see how this decay can be associated to classical or quantum
correlations. An unexpected behavior has been revealed for a
certain class of quantum states evolving under dephasing: Their
classical correlations decay, while the quantum correlations
remain constant. This is followed by an exchange in the
roles, that is, decaying of quantum correlations and freezing
of classical correlations [19,20]. These findings have been
experimentally observed for non-Markovian and Markovian
reservoirs [21,22]. Freezing of classical correlations has been
shown in nondissipative decoherence dynamics [23,24]. More-
over, such behavior reveals the apparition of a pointer basis
[2,3,22,24–26].

On the other hand, coherent states and environment effects
on its quantum coherence have been one of the most import-
ant problems since the beginning of quantum mechanics. A

distinctive feature concerning its dynamical behavior is the ap-
pearance of a decoherence timescale depending on the distance
between coherent states, which is much shorter than the decay
of any other observables [27,28]. Moreover, in recent years,
these states have proven to be useful in practical applications
such as quantum metrology [29–31]. In this paper, we address
the evolution of quantum and classical correlations of an
initially incoherent superposition of entangled coherent states.
We find different timescales that give rise to a wide variety of
behaviors, in particular, we observe sudden transitions in the
decoherence dynamics. Moreover, measuring on one of the
parties (to calculate classical correlations) projects the other
into a basis which is not affected by decoherence. This reveals
the apparition of metastable pointer states and a decoherence-
free subspace whose time span depends on the amplitude of
the initial coherent states.

II. PHYSICAL MODEL

To find such features, let us first consider the problem
of a quantized harmonic oscillator coupled to a dissipative
reservoir. In the interaction picture, the Hamiltonian of this
system is given by

ĤI = h̄
∑

k

gk(â†b̂ke
i(ν−νk )t + âb̂

†
ke

−i(ν−νk )t ). (1)

If the harmonic oscillator is prepared initially in a coherent
state |α〉 while all reservoir modes are in the vacuum state∏

k |0k〉, the evolution of the system will take the form

e−iĤI t/h̄|α〉
∏
k

|0k〉 = |αe−γ t/2〉
∏
k

|αk〉, (2)

with γ the decay rate of the harmonic oscillator. The state |αk〉
denotes a coherent state for the kth mode of the reservoir with
amplitude αk = fkα. In the Markov approximation, the factors
fk satisfy the relation

∑
k f 2

k = 1 − e−γ t [32].
Consider now two noninteracting field modes (a and b),

affected by two independent dissipative reservoirs. Let us
assume both harmonic oscillators are prepared initially in an
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incoherent superposition such as

ρ̂ab(0) = p|ψ+
0 〉〈ψ+

0 | + (1 − p)|φ+
0 〉〈φ+

0 |, (3)

where

|ψ±
0 〉 = 1

�±
(|α〉a|α〉b ± |−α〉a|−α〉b), (4)

|φ±
0 〉 = 1

�±
(|α〉a|−α〉b ± |−α〉a|α〉b), (5)

and the normalization factor is given by �2
± = 2(1 ± e−4n̄).

III. DYNAMICS OF QUANTUM AND CLASSICAL
CORRELATIONS

In what follows, we deal with the calculation of quantum
and classical correlations of the system described as a function
of time. In general, this is a difficult task since no closed
formula exists for arbitrary states. However, for particular
states such as X states [33,34], analytical calculations can
be carried out. After some calculations, it is not difficult
to realize that the temporal evolution for the state (3) can
be written as X states in the effective two-qubit basis:
{|η+〉a|η+〉b,|η+〉a|η−〉b,|η−〉a|η+〉b,|η−〉a|η−〉b}, where states
|η+〉(|η−〉) are commonly known as Schrödinger cat states
[27,28],

|η±〉 = 1


±
(|αt 〉 ± |−αt 〉), (6)

with α2
t = n̄ exp (−γ t). In such basis, we obtain the following

X state:

ρab(t) =

⎛
⎜⎜⎜⎝

r11 0 0 r14

0 r22 r23 0

0 r32 r33 0

r41 0 0 r44

⎞
⎟⎟⎟⎠, (7)

where the matrix elements are

r11 = 1

16

[

+(t)
+(t)

�+
�̄+(t)

]2

,

r22 = 1

16

[

+(t)
−(t)

�+
�̄−(t)

]2

= r33,

r44 = 1

16

[

−(t)
−(t)

�+
�̄+(t)

]2

, (8)

r14 = r41 = 1

16
(2p − 1)

[

+(t)
−(t)

�+
�̄+(t)

]2

,

r23 = r32 = 1

16
(2p − 1)

[

+(t)
−(t)

�+
�̄−(t)

]2

,

with 
2
± = 2[1 ± exp (−2α2

t )], �̄2
±(t) = 2(1 ± e−4ᾱ2

t ), and
ᾱ2

t = n̄(1 − e−γ t ).
A closer look at these analytical expressions can shed

some light on the relevant timescales. As will be shown
below, the dynamics exhibits different behaviors associated
to these relevant times. The evolution of the matrix elements
in Eq. (8) is mainly determined by the terms α2

t and ᾱ2
t in

the exponentials. On one hand, as time goes by, we see that
the value of αt decreases, leading to a slower decay of terms

FIG. 1. Evolution of the density matrix elements r11, r22, r33 and
r44 of Eq. (8) for n̄ = 10. The a-dimensional times γ t1 and γ t2 are
in this case: γ t1 � 0.1 and γ t2 � 2 and are shown as vertical dashed
lines.

involving e−α2
t . On the other hand, the value ᾱ2

t increases,
leading to a faster decay of terms involving e−ᾱ2

t . However, in
the mesoscopic limit n̄ � 1, at short times the term αt is large
enough so that e−α2

t � 0 and then the dynamics is dominated by
the term e−ᾱ2

t . This means that the time dependence in Eq. (8)
is only in the terms �̄±(t), while 
±(t) are constant. On the
other hand, when γ t → ∞, we have the opposite case: the
dynamics is now governed by 
±(t), while �̄±(t) are constant.
For intermediate times, both αt and ᾱt are large enough so that
�̄±(t) and 
±(t) are both constant, so that the matrix elements
given by

r11 = r22 = r33 = r44 = 1
4 , (9)

r14 = r41 = r23 = r32 = 1
4 (2p − 1) (10)

exhibit no evolution and depend only on the initial condition.
We can estimate the value of the times that define this

dynamical regime. For large n̄, the exponentials are relevant
if αt � 1 or ᾱt � 1, respectively. This allows us to define the
times t1 from ᾱt1 = 1 and t2 from αt2 = 1, such that

t1 = 1

γ
ln

n̄

n̄ − 1
,

t2 = 1

γ
ln n̄. (11)

The evolution of the matrix elements in Eq. (8) is shown
in Fig. 1, for n̄ = 10. Interestingly, between t1 and t2 we
observe that the system seems to be unaffected by decoherence,
that is, it settles on a metastable decoherence-free subspace
evidenced by Eqs. (9) and (10). As we will address further in
this manuscript, these results are crucial in the quantum and
classical correlations dynamics.

We can now focus on the study of quantum and classical
correlations. A bipartite quantum system ρ̂ab such as the one
described above can feature both quantum and classical cor-
relations. Total correlations are characterized by the quantum
mutual information I (ρ̂ab) = S(ρ̂a) + S(ρ̂b) − S(ρ̂ab), where
S(ρ̂) = −Tr[ρ̂ log2(ρ̂)] is the von Neumann entropy. Based
on this expression, correlations can be separated according to
their classical and quantum nature, respectively. In this way, the
quantum discord has been introduced as D(ρ̂ab) = I (ρ̂ab) −
C(ρ̂ab), which quantifies genuine quantum correlations; this

042123-2



METASTABLE DECOHERENCE-FREE SUBSPACE AND … PHYSICAL REVIEW A 97, 042123 (2018)

FIG. 2. Evolution of classical correlations (blue solid line), dis-
cord (green dashed line), and quantum mutual information (purple
solid line) as a function of the dimensionless time γ t for the initial
state given by (3) with p = 0.3. (a) n̄ = 1. (b) n̄ = 3. C( ˆρab)|σx

(red
dots) and C( ˆρab)|σz

(light blue triangles) are shown in both plots.

includes correlations that can be distinct from entanglement.
Here, C(ρ̂ab) are the classical correlations defined by [2–7]

C(ρ̂ab) = max
{�̂k}

[S(ρ̂a) − S(ρ̂ab|{�̂k})], (12)

where the optimization is carried out with respect to all possible
complete sets of projector operators {�̂k} for the subsystem b,
and S(ρ̂ab|{�̂k}) = ∑

k pkS(ρ̂k), pk = Tr(ρ̂ab�̂k), and ρ̂k =
Trb(�̂kρ̂ab�̂k)/pk . This can be understood as the amount of
information we can retrieve about one party (here, system
a) by measuring the other one (system b). In general, the
optimization is a difficult problem to address; however, for
states of the form of Eq. (7), classical and quantum correlations
can be solved analytically [33,34]. Specifically, it has been
shown in Ref. [34] that the optimal observables for a real X

state such as Eq. (7) correspond to σz if

(|r23| + |r14|)2 � (r11 − r22)(r44 − r33), (13)

and correspond to σx if

|√r11r44 − √
r22r33| � |r23| + |r14|. (14)

Under these conditions, expressions for discord in [33] are
equivalent. In such case, the expression for the classical
correlations is now given by

C(ρ̂ab) = S(ρ̂a) − min
{σx,σy }

[S(ρ̂ab)|{σx,σy}], (15)

where S(ρ̂ab)|{σx,σy} is the von Neumann entropy of ρ̂ab when
σx or σz has been measured in the subsystem b. When the
minimum occurs for σx , we denote the classical correlations
as C( ˆρab)|σx

, while if the minimum is achieved by measuring
σz, then we denote it as C( ˆρab)|σz

instead.
Let us consider the initial state (3), corresponding to an inco-

herent superposition of entangled coherent states. In Fig. 2, we
show the evolution of correlations in the two-mode subsystem
as a function of γ t for (a) n̄ = 1 and for (b) n̄ = 3. As evidenced
by the quantum mutual information (purple solid line) in
Fig. 2(a), the overall system correlations decays smoothly as
a consequence of decoherence. However, we can observe a
sudden change in the dynamics of classical correlations and
also in quantum discord at t = ts . This tells us that there
is a sudden change in the decoherence dynamics: Before

0.00 0.07 0.14
0.0

0.5

1.0

 t

I II III

1 2 3 4 5 6
0.0

0.5

1.0

 t

III IV

FIG. 3. Evolution of classical correlations (blue solid line), dis-
cord (green dashed line), and concurrence (red dots) as a function
of the dimensionless time γ t . The initial state is given by (3) with
p = 0.3 and n̄ = 10. Left plot is for short times γ t < 1 and the right
plot is for larger times.

ts , decoherence has mostly a classical component (classical
correlations decay faster than discord); after ts , the roles are
inverted and decoherence has mostly a quantum component.
Despite this, decoherence still has mixed classical and quantum
contributions, which is different from what has been found,
for example, in Ref. [20], where the decoherence has either a
quantum character or a classical one, but never both. On the
other hand, Fig. 2(b) shows that by increasing the mean photon
number n̄ of the cavity modes, the classical correlations nearly
freeze between γ ts and γ t ≈ 1.

As we previously mentioned, when exploring the meso-
scopic limit of a large number of photons in the cavity,
interesting features in the dynamics are revealed. Such be-
havior is extended into quantum and classical correlations:
This is clear in Fig. 3 where the dynamics of correlations
is shown for n̄ = 10. In such figure, four dynamical regimes
can be identified: Regime I is where classical correlations
decay as a result of the decoherence process while discord is
constant. Regime II is determined by a decaying discord and
frozen classical correlations. In regime III, both discord and
classical correlations attain a constant value, in particular
discord vanishes. Finally, in regime IV, classical correlations
start to decay again while discord shows a revival and then
decays asymptotically to zero as all the energy in the cavities
is transferred to the reservoirs.

The first regime (I) of the dynamics can be interpreted as
follows: the decoherence only has a classical contribution since
quantum correlations are frozen. Now, at the second regime
(II), we found that the decoherence process now only has a
quantum contribution. That is, regimes I and II are separated
by a sudden transition from classical to quantum decoherence.
So far, the dynamics of correlations resembles the results found
in [20,25] for the case of qubits under the onset of dephasing.

Also, Fig. 3 shows that the time ts , when the sudden transi-
tion from classical to quantum decoherence occurs, decreases
with n̄. This transition time, besides depending on n̄, also
depends on the parameter p of the initial mixed state given
by Eq. (3). Using Eqs. (13) and (14), we find that this time ts
is given by

ts = − 1

γ
ln

(
1 + 1

4n̄
ln |2p − 1|

)
. (16)
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FIG. 4. Behavior of ts as a function of the mean photon number
n̄ for p = 0.3 and as a function of p (inset) for n̄ = 10

Figure 4 shows the dependence of ts on n̄ and the initial-state
parameter p. We can observe from the figure that the time ts of
the sudden transition from classical to quantum decoherence
decays with n̄ and also decays when the initial incoherent state
(3) is more unbalanced, i.e., has more purity.

On the other hand, by analyzing the correlations dynamics
in the strong-field case (Fig. 3), we find that in regime
III of such case, both correlations are constant, i.e., neither
discord nor classical correlations are affected by decoherence.
Interestingly, this is true only in a finite-time span. This
suggests that there is a time interval where the system settles
in a time-dependent decoherence-free subspace. This time
can be estimated from Eqs. (11), leading to 
t = t2 − t1 =
(1/γ ) ln (n̄ − 1). In this time interval, populations are con-
stants. Moreover, coherences are also equals and constants;
that is, in this stage, no decoherence is exhibited by the density
matrix (7). After this finite-time interval, populations r22, r33,
r44 and coherences r14 and r23 decay asymptotically to zero,
while r11 goes to 1 since at γ t → ∞ this density matrix
element corresponds to the vacuum state population.

Furthermore, when classical correlations attained a constant
value as in regimes II and III of the dynamics, it can be
argued from its definition that measurements on the second
qubit (cavity mode) project the system into a basis which is

not affected by decoherence, that is, a pointer-state basis [22].
However, this pointer-state basis is not stable, as shown in
regime IV in Fig. 3, where classical correlations return to decay,
i.e., the system settles along regimes II and III in a metastable
pointer state [24,25]. Notice that this occurs under a dissipative
dynamics, which differs from the results shown in Ref. [22]
where, in the amplitude damping case, no pointer states are
found, but only in the dephasing case. Finally, in Fig. 3, we have
plotted entanglement using concurrence [35] where we observe
that entanglement suffers a sudden death [12,36] previous to ts
in regime I. Therefore, along the decoherence-free time span,
no entanglement is present, which is consistent with previous
results [24].

IV. SUMMARY

In summary, the dynamics of two initially correlated
coherent states, each interacting with its own independent
dissipative environment, has been analyzed. We found a sudden
transition from classical to quantum decoherence since first
the decoherence has only a classical component, given that
discord is constant. Then only discord decays, meaning that
decoherence is merely quantum. This sudden transition leads
in the mesoscopic regime to the apparition of a metastable
decoherence-free subspace. This is evidenced in the density
matrix element, which does not evolve during a time span.
The time when this sudden transition occurs is showed to be
dependent on the average number of photons in each cavity
and also on the purity of the initial state. The metastable
decoherence-free subspace is linked to the metastability of
a pointer basis where classical correlations between cavities
are frozen. On the other hand, the size of the time interval
depends mainly on the average number of photons in the
cavities. This can also be understood in the context of pointer
states: measurements on the second qubit (cavity mode) to
calculate correlations projects the system into a basis which is
not affected by decoherence.
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