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Quantum Brownian motion is the random motion of quantum particles suspended in a field (or an effective
field) resulting from their collision with fast-moving modes in the field. It provides us with a fundamental
model to understand various physical features concerning open systems in chemistry, condensed-matter physics,
biophysics, and optomechanics. In this paper, without either the Born-Markovian or rotating-wave approximation,
we derive a master equation for a charged-Brownian particle in one dimension coupled with a thermal
reservoir in electric fields. The effect of the reservoir and the electric fields is manifested as time-dependent
coefficients and coherent terms, respectively, in the master equation. The two-photon correlation between the
Brownian particle and the reservoir can induce nontrivial squeezing dynamics to the particle. We derive a
current equation including the source from the driving fields, transient current from the system flowing into
the environment, and the two-photon current caused by the non-rotating-wave term. The presented results then
are compared with that given by the rotating-wave approximation in the weak-coupling limit, and these results
are extended to a more general quantum network involving an arbitrary number of coupled-Brownian particles.
The presented formalism might open a way to better understand exactly the non-Markovian quantum network.
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I. INTRODUCTION

Quantum systems are never completely isolated from their
external environments, which leads to decoherence that de-
stroys the quantum coherence of the quantum system. Employ-
ing the effect of decoherence has recently become a key task for
practical implementations of quantum information processing
based on nanoscale solid-state materials [1,2], where the deco-
herence is mainly dominated by non-Markovian dynamics due
to strong backactions from the environment. A fundamental
issue is how to accurately take into account non-Markovian
memory effects, which has attracted considerable attention in
recent years both in theory [3–5] and in experiments [6–8].

Open quantum system dynamics can be described by a
master equation for the reduced density matrix of the system.
The master equation is usually derived based on the Born-
Markovian (BM) approximation [9–12]. General treatments
beyond those approximations did not appear until the studies
of Wigner functions by Haake and Reibold [13], who addressed
the issue in low-temperature and strong damping regimes. An
exact non-Markovian master equation for Brownian motion
was later derived by Hu, Paz, and Zhang [14], who employed
the path-integral approach [15–17] for initially factorizable
states. The exact master equation for a damped harmonic oscil-
lator at finite temperature was reproduced later in Ref. [18] with
non-Markovian quantum trajectories based on the stochastic
Schrödinger equation. With this merit, many master equations
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have been derived with fermion and boson systems as the
environment [19–27].

The rotating-wave approximation (RWA) is widely used
in quantum optics, which neglects the rapidly oscillating
counter-rotating terms and the system Hamiltonian becomes
time independent or depends slightly on time in the rotating
frame. With recent developments in the area of circuit and
cavity QED systems [28], ultra- and deep-strong light-matter
couplings became experimentally achievable. This makes it
necessary to take the counter-rotating terms into account.
In fact, recent studies show that the counter-rotating terms
in system-reservoir coupling play an important role in non-
Markovian effects.

Previous studies of the exact non-Markovian master equa-
tion for quantum Brownian motion were mainly based on two
models and/or methods. One is a system reservoir in a strong-
coupling regime without external driving fields. This method
includes the approach with a characteristic function [29], an
adjoint master equation based on the Heisenberg picture [30],
the Lindblad master equation [31], the momentum coupling
model [32], and the Heisenberg-Langevin equation [33]. The
other is of driven system-reservoir coupling in the rotating-
wave approximation [34]. Although much progress has been
made in this field, the derivation of the exact master equation
for a quantum Brownian particle in the strong-coupling regime
driven by an external field remains untouched so far.

In this paper, considering a charged-Brownian particle in
one dimension in electric fields that couples to a thermal
reservoir, we derive an exact non-Markovian master equation
without the Born-Markovian and rotating-wave approxima-
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tion. We will show that the non-Markovian dynamics is
completely determined by two coupled Green’s functions,
which contain all the environmental backactions on the system.
We derive a non-Markovian master equation for the Brownian
particle, whose dynamics contains not only coherent parts
but also squeezing terms not achieved under the RWA. We
derive a conserved-current equation including a source coming
from the driving fields, transient current from the system flow
into the environment, and a two-photon current attributed to
the non-rotating-wave term. Finally, we generalize the results
to open systems consisting of many-body coupled charged-
Brownian particles in a thermal reservoir.

The remainder of this paper is structured as follows. In
Sec. II, we present a model to describe the system under
study, and give the evolution equation for operators of the
system. In Sec. III, we derive a non-Markovian master equation
for the Brownian particle. In Sec. IV, we discuss the effect
of an initially correlated thermal equilibrium state on the
dynamics. In Sec. V, we derive a current equation and discuss
its properties. In Sec. VI, the time evolution of the position
and momentum is discussed. In Sec. VII, we make comparisons
between our method and the approximate method. In Sec. VIII,
we generalize these results to a more general quantum network.
Discussions and conclusions are given in Sec. IX.

II. NON-MARKOVIAN DYNAMICS
IN THE HEISENBERG PICTURE

A. Model

We begin by considering a heavy, spinless particle of mass
M0 with charge +q coupled to spinless and chargeless particles
of mass mk (mk � M0). Let X̂ be the coordinate of the
Brownian particle, and x̂k the coordinate of the kth particle.
The whole system is put in a box (see Fig. 1). In the absence
of any external field, such a system can be described by the
Hamiltonian

Ĥ = ĤS + ĤR + ĤSR, (1)

with

ĤS = P̂ 2

2M0
+ 1

2
M0ωcX̂

2,

�+

�

�

�

FIG. 1. Model for a charged-Brownian oscillator (charge is +q)
linearly coupled to many harmonic oscillators in an electric field
E(t). The blue circle with +q represents the charged-Brownian
oscillator, which is coupled to a large number of oscillators [called
the environment (small black circle) in later discussions].

ĤR =
∑

k

p̂2
k

2m
+ 1

2
mkωkx̂

2
k ,

ĤSR =
∑

k

Gkx̂kX̂, (2)

where the first equation is the free Hamiltonian of the Brow-
nian oscillator (particle) with frequency ωc. The second term
describes a general non-Markovian reservoir which is modeled
as a collection of infinite oscillators (photonic modes), where
b̂
†
k and b̂k are the corresponding creation and annihilation

operators of the kth photonic mode with frequency ωk and mass
mk , respectively, of the kth reservoir mode. X̂ and P̂ (q̂k and
p̂k) are the Brownian oscillator (kth reservoir mode) position
and momentum operators, and Gk are the reservoir-particle
coupling constants.

In the presence of an external electric field E(t), the total
Hamiltonian becomes ĤT = Ĥ + qE′(t)X̂, where the electric
field E(t) can be taken as a plane wave E′(t) = E cos(ωet).
In this paper, we expand qE′(t)X̂ to a more general form
h̄E(t)â† + h̄E∗(t)â, which includes both RWA [E(t) is a real
function] and non-RWA [E(t) is an imaginary function] terms.
With this setting, the total Hamiltonian can be written as

ĤT (t) = Ĥ + h̄E(t)â† + h̄E∗(t)â, (3)

with â = X̂/
√

2h̄/M0ωc − iP̂ /
√

2h̄M0ωc.

B. Non-Markovian dynamics in the Heisenberg picture

We shall use the equation of motion in the Heisenberg
picture to solve the dynamics of the Brownian particle under
the effect of the reservoir. The time evolution of the Brownian
particle annihilation operator â(t) = U †(t)â(0)U (t), b̂k(t) =
U †(t)b̂k(0)U (t), with b̂k = x̂k/

√
2h̄/mkωk − ip̂k/

√
2h̄mkωk ,

where U (t) = T e− i
h̄

∫ t

0 ĤT (τ )dτ with the operator T describes
the chronological time ordering. It orders any product of
operators such that the time argument increases from right to
left. With the above transformation, Eq. (1) can be rewritten
as

Ĥ = h̄ωcâ
†â +

∑
k

h̄ωkb̂
†
kb̂k +

∑
k

h̄G̃k(â + â†)(b̂k + b̂
†
k),

(4)

where the effective coupling strength G̃k =
Gk/

√
4mkM0ωcωk . In the Heisenberg picture, the system

operator and environment operator obey

d

dt
â(t) = − i

h̄
[â(t),ĤH (t)]

= −iωcâ(t) − i
∑

k

G̃k[b̂k(t) + b̂
†
k(t)] − iE(t), (5)

d

dt
b̂k(t) = −iωkb̂k(t) − iG̃k[â(t) + â†(t)], (6)

where ĤH (t) = U †(t)ĤT (t)U (t). Solving Eq. (6) for b̂k(t), we
obtain

b̂k(t) = b̂k(0)e−iωkt − i

∫ t

0
G̃k[â(τ ) + â†(τ )]e−iωk(t−τ )dτ.

(7)
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Substituting Eq. (7) into Eq. (5), we obtain a closed form of
â(t),

d

dt
â(t) = −iωcâ(t) − i[B̂(t) + B̂†(t)]

−
∫ t

0
dτ [â(τ ) + â†(τ )]K(t − τ ) − iE(t), (8)

where the environment operator B̂(t) = ∑
k G̃kb̂k(0)e−iωkt

and K(τ ) = f (τ ) − f ∗(τ ) = −2i
∑

k G̃2
k sin ωkτ ≡

−2i
∫

J (ω) sin ωτ with f (t) = ∑
k G̃2

ke
−iωkt , where

J (ω) = ∑
k

G2
k

4mkM0ωcωk
δ(ω − ωk) is the spectral density of

the reservoir. Because of the linearity of Eq. (8), the Brownian
particle operator â(t) can be expressed, in terms of the initial
field operators â(0) and b̂k(0) of the Brownian particle and the
reservoir, as

â(t) = N (t)â(0) + M(t)â†(0) + P̂(t), (9)

where the time-dependent coefficients can be obtained by
substituting Eq. (9) into Eq. (8),

Ṅ (t) = −iωcN (t) −
∫ t

0
dτ [N (τ ) + M∗(τ )]K(t − τ ),

Ṁ(t) = −iωcM(t) −
∫ t

0
dτ [N ∗(τ ) + M(τ )]K(t − τ ),

˙̂P(t) = −iωcP̂(t) −
∫ t

0
dτ [P̂(τ ) + P̂†(τ )]K(t − τ )

−i[B̂(t) + B̂†(t)] − iE(t), (10)

subjected to the initial conditions N (0) = 1, M(0) = 0, and
P̂(0) = 0. The integrodifferential equation (10) shows that
M(t) and N (t) are just the propagating functions of the
Brownian particle (the retarded Green’s function in nonequi-
librium Green’s function theory [35]). In addition, P̂(t) is, in
fact, an operator coefficient and its solution can be obtained
analytically from the inhomogeneous equation (10),

P̂(t) = ĉ(t) + U (t), (11)

with the fluctuation and coherent terms, respectively,

ĉ(t) = −i

∫ t

0
dτ [N (t − τ ) − M(t − τ )][B̂(τ ) + B̂†(τ )],

U (t) = i

∫ t

0
dτ [M(t − τ ) − N (t − τ )]Er (τ )

−
∫ t

0
dτ [M∗(t − τ ) − N (t − τ )]Ei(τ ), (12)

where the real part Er (t) and imaginary part Ei(t) can be
defined in Eq. (A10). Clearly, the first term ĉ(t) and the second
term U (t) of Eq. (11) are the influence of the environment
and the electric field on the system dynamics, respectively.
Physically, from the point of view of the Brownian particle, the
electric field and environment are regarded as the two external
“environments.” One is that the electric field coherently drives
the Brownian particle, while the other is that the environment
causes the system to dissipate.

Detailed derivations of Eq. (11) can be found in the
Appendix. From Eqs. (8)–(11) we can determine the exact

non-Markovian dynamics of the Brownian particle coupled
to a general reservoir with an arbitrary time-dependent electric
field, upon a given initial state ρSR(0) of the total system. In the
Heisenberg picture, quantum states are time independent. Once
ρSR(0) is given, the time evolution of any physical observable
can be obtained directly from Eqs. (8)–(11) through the identity

TrSR

[
dχ̂ (t)

dt
ρSR(0)

]
≡ TrS

[
χ̂(0)

dρS(t)

dt

]
, (13)

where χ̂ (t) is a function of â(t) and â†(t), i.e.,
χ̂ (t) = ∑∞

N1,N2=0 â(t)†
N1

â(t)N2 ≡ ∑∞
N1,N2=0 χ̂N1N2 (t). The

system density matrix operator ρS(t) = TrRρSR(t) with
ρSR(t) = U (t)ρSR(0)U †(t) that denotes the density matrix of
the whole system, and TrSR ≡ TrSTrR denotes traces over
the system and environment, respectively. For example, the
time evolution of the expectation values χ01(t) = 〈â(t)〉,
χ11(t) = 〈â†(t)â(t)〉, and χ02(t) = 〈â(t)â(t)〉 describe the
Brownian particle amplitude, the Brownian particle intensity,
and the two-photon correlation of the Brownian particle,
respectively. From Eq. (9), we can obtain an equation set of
χ01(t), χ02(t), χ11(t) as follows,

d

dt
χ01(t) = A(t)[χ01(t) − U ] + B(t)[χ∗

01(t) − U∗(t)] + U̇ (t),

d

dt
χ02(t) = 2A(t)χ02(t) + 2B(t)χ11(t) + 2χ01(t)[U̇ − A(t)U

−B(t)U∗] + d

dt
〈ĉ2〉 − 2A(t)〈ĉ2〉

−B(t)〈ĉĉ† + ĉ†ĉ〉 + B(t),

d

dt
χ11(t) = Ḟ

F 〈χ̂11(t) − ĉ†ĉ〉 + d

dt
〈ĉ†ĉ〉

+{B∗(t)〈χ̂02(t) − ĉ2〉
+χ∗

01(t)[U̇ − A(t)U − B(t)U∗(t)] + H.c.}, (14)

with

A(t) = (ṄN ∗ − ṀM∗)/F(t),

B(t) = (NṀ − ṄM)/F(t),

F(t) = |N (t)|2 − |M(t)|2, (15)

where M(t) and N (t) are determined by Eq. (10).
Suppose the system and the environment are initially

uncorrelated—the reservoir modeled by the Hamiltonian
ĤR = ∑

k ωkb̂
†
kb̂k is in a thermal equilibrium state, while the

system is in a coherent state |α〉. The reservoir is assumed to
have a Gaussian (thermal) initial state,

ρSR(0) = ρS ⊗ ρR,ρR = e−βĤR

TrR e−βĤR

, (16)

where ρS = |α〉〈α| can be obtained by defining it as an
eigenstate of the annihilation operator a with an eigenvalue
α, and β = 1/κBT with κB the Boltzmann constant, and T the
temperature of the reservoir. In this paper, we only focus on
the case of zero temperature.

042121-3



H. Z. SHEN, S. L. SU, Y. H. ZHOU, AND X. X. YI PHYSICAL REVIEW A 97, 042121 (2018)

III. EXACT NON-MARKOVIAN MASTER EQUATION

A. Non-Markovian master equation for Brownian particle

We define â(t) = ŝ(t) + ĉ(t) with ŝ(t) = N (t)â(0) +
M(t)â†(0) + U (t). We notice that the operator ŝ(t) commutes
with ĉ(t) from Eq. (9). Therefore, for any normal product
χ̂N1N2 (t) = â(t)†

N1
â(t)N2 , we obtain

χ̂N1N2 (t) =
N1∑

m=0

N2∑
n=0

Cm
N1

Cn
N2

ŝ†(N1−m)ŝ(N2−n)ĉ†mĉn, (17)

where the combination number Cm
N1

= N1!/m!(N1 − m)!. The
non-Markovian effects of the environment on a Brownian
particle are all incorporated into these terms ĉ†mĉn, whose
expansions yield

ĉ†mĉn =
∫ t

0
dt1 · · ·

∫ t

0
dtmϕ∗(t − t1) · · ·ϕ∗(t − tm)

×
∫ t

0
dτ1 · · ·

∫ t

0
dτnϕ

∗(t − τ1) · · · ϕ∗(t − τn)

×B̃(t1)B̃(t2) · · · B̃(tm) · B̃(τ1)B̃(τ2) · · · B̃(τn), (18)

where ϕ(t) = −i[N (t) − M(t)] and B̃(t) = B̂(t) + B̂†(t).
For the considered system-reservoir interaction (4), the

reservoir operators B̃(t1) satisfy the Gaussian statistics. That
is, (m + n)-time correlation functions vanish if n is odd. For
even n, according to the Gaussian property, the terms up to
second order in the reservoir correlation function are sufficient
to exactly describe the dynamics of the system [36,37],

〈B̃(t1)B̃(t2) · · · B̃(t2m)〉 =
∑
pair

∏
l1,l2

〈I+B̃(tl1 )B̃(tl2 )〉, (19)

where the index pairs denotes the division of the labels 1 to 2m

into n unordered pairs. The operator I+ is the index ordering
operator preserving the order of operators on the right-hand
side of Eq. (19) similar to the left-hand side. Note that here
we have applied a generalized Wick’s theorem in the form
of Wightman functions rather than the usual form with time-
ordered correlation functions [38,39].

Under the factorized initial density matrix (16) guarantees
that the Liouville operator is independent of the initial system
state, which was also observed in Refs. [14–16]. The initial
state (16) and the kernel in Eq. (17), both of which are
of Gaussian form and result from the linearity of the total
Hamiltonian, allow exact integration. This makes the reduced
density matrix ρS(t) = TrR[ρSR(t)] also a Gaussian. Together
with the requirements of conservation of probability [Tr(ρ̇S) =
0], Hermiticity (ρS = ρ

†
S), and state-independent coefficients,

we obtain the following form of a time-convolutionless master
equation,

ρ̇S = − i[Ĥeff(t),ρS]

+γ1(t)(2âρSâ
† − â†âρS − ρSâ

†â)

+γ2(t)(âρSâ
† + â†ρSâ − â†âρS − ρSââ†)

+[γ ∗
3 (t)(2âρSâ − ââρS − ρSââ) + H.c.], (20)

where the time-dependent effective Hamiltonian

Ĥeff(t) = δ(t)â†â + [D(t)â2 + φ(t)â + H.c.]. (21)

To figure out the time coefficients in Eq. (20), we also can
compute these physical observables χ01(t), χ02(t), and χ11(t)
from the master equation (20),

d

dt
χ01(t) = −[γ1(t) + iδ(t)]χ01(t) − 2iD∗(t)χ∗

01(t) − iφ∗(t),

d

dt
χ02(t) = −4iD∗(t)χ11(t) − [2γ1(t) + 2iδ(t)]χ02(t)

−[2γ3(t) + 2iD∗(t)] − 2iφ∗(t)χ01(t),

d

dt
χ11(t) = γ2(t) − 2γ1(t)χ11(t) + {2iDχ02(t)

+iφχ01(t) + H.c.}. (22)

By comparing Eqs. (14) and (22), we can obtain the time
coefficients as follows,

D(t) = B∗(t)/2i, δ(t) = −Im[A(t)],

φ(t) = −i[U̇∗(t) − A∗(t)U∗(t) − B∗(t)U (t)],

γ1(t) = −Ḟ(t)/2F(t),

γ2(t) =
(

d

dt
− Ḟ(t)

F(t)

)
〈ĉ†ĉ〉 − {B∗(t)〈ĉ2〉 + H.c.},

γ3(t) =
(

A(t) − 1

2

d

dt

)
〈ĉ2〉 + B(t)

2
〈ĉĉ† + ĉ†ĉ〉, (23)

whereA(t),B(t), andF(t) are given by Eq. (15). Below, we dis-
cuss the physical meaning of the time-dependent coefficients
in the non-Markovian master equation (20) as follows:

(i) The first term in Eq. (21), with δ(t), accounts for the
free dynamics of the Brownain particle, induced by frequency
shifts owing to its coupling with the environment.

(ii) The second term in Eq. (21) denotes the two-photon
process, originated from asymmetries in both position and mo-
mentum in the whole system. However, this term is small (equal
exactly zero in the rotating-wave approximation), leading to a
negligible squeezing effect in the weak-coupling regime.

(iii) The third term φ(t) in Eq. (21) is a coherent term,
which denotes the effective driving to the system, where
the renormalized driving φ(t) results from the backreaction
between the electric field and reservoir.

(iv) γ1(t) in Eq. (20) is a dissipation (damping) rate, which
drives the center of the Brownian wave packet towards its
nonequilibrium stationary state induced by the reservoir.

(v) γ2(t) in Eq. (20) is the fluctuation (noise) coefficient due
to the backreactions between the system and the reservoir.

(vi) γ3(t) in Eq. (20) is the squeezing rate, given by the
counter-rotating terms âb̂k and â†b̂†k between the Brownian
particle and the reservoir.

As we see, the first three terms of Eq. (20) have the standard
form as the exact master equation for the system in Eq. (4)
without the counter-rotating terms âb̂k and â†b̂†k , but with the
coefficients modified by them. The last two terms of Eq. (20)
are contributed from the two-photon correlations âb̂k and â†b̂†k
in the reservoir. Under the derived coefficients (23), we can
check the identity (13) is valid for arbitrary operators χ̂N1N2 .
In addition, we also prove that Eq. (20) is correct by canceling
the driving term in Eq. (3) with an unitary transformation
U1(t) = e−ir(t)(â+â†), where r(t) is an arbitrary time-dependent
real function.
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The master equation (20) derived in this section is exact
in which its solution is guaranteed to agree with the reduced
state of a unitary dynamics of the universe, which is of a
Gaussian class, completely positive, trace-preserving, non-
Markovian dynamics in a charged-Brownian particle merged
into an electric field and coupled with a thermal reservoir
without invoking either the Born-Markovian or the rotating-
wave approximation (RWA). It relies on two hypotheses: that
the initial state of the universe is a product state and that the
initial state of the reservoir is Gaussian.

B. The case of rotating-wave approximation

In many physical systems described by the Hamiltonian of
Eq. (4), the typical coupling intensity G̃k is many orders of
magnitude smaller than the frequencies ωk , characterizing the
weak-coupling regime. It is then a good approximation to drop
the counter-rotating terms (âbk and â†b̂†k), a procedure which
is known as the rotating-wave approximation.

In this case, we can obtain the following master equation
with the rotating-wave approximation by using similar meth-
ods to those used in the previous section,

ρ̇(t) = −i[ĤRWA(t),ρ] + γ1(t)(2âρâ† − â†âρ − ρâ†â)

+γ2(t)(âρâ† + â†ρâ − ρâ†â − ρââ†), (24)

where ĤRWA(t) = δ(t)â†â + φ(t)â + φ∗(t)â†.
Therefore, considering that the reservoir is initially in the

thermal equilibrium state, the coefficients δ(t), γ1(t), and γ2(t)
in the master equation can be uniquely determined and given
by

δ(t) = −Im[u̇(t)/u(t)], γ1(t) = −Re[u̇(t)/u(t)],

γ2(t) = v̇ − [u̇(t)/u(t) ∗ v(t) + c.c.],

φ(t) = −iẋ∗(t) + i[u̇∗(t)/u∗(t)ẋ∗(t)], (25)

with the parameters satisfying

u̇ + iωcu(t) +
∫ t

0
f (t − τ )u(τ )dτ = 0,

v(t) =
∫ t

t0

dτ

∫ t

0
dτ ′u(t − τ ′)f̃ (τ ′ − τ )u∗(t − τ ),

x(t) = −i

∫ t

0
E(τ )u(t − τ )dτ, (26)

where f̃ (t − τ ) is the finite-temperature correlation function
f̃ (t − τ ) = ∫

J (ω)n(ω)e−iωtdω with environment mean pho-
ton number n(ω) = (eh̄βω − 1)−1 with β = 1/κBT , where κB

is the Boltzmann constant, and T the temperature. Especially,
γ2(t) = 0 due to n(ω) = 0 when T = 0.

For the quantum noise of Brownian motion, we consider
an environment fluctuating according to a Gaussian Ornstein-
Uhlenbeck stochastic process in a zero-temperature environ-
ment [40,41] characterized by its strength 
 and correlation
time 1/λ as follows,

f (t − τ ) = 0.5
λe−iωc(t−τ )−λ|t−τ |, (27)

which has a clear boundary between Markovian and non-
Markovian regimes [3,9]. More specifically speaking, the
parameter λ is connected to the reservoir correlation time τb

by the relation τb � λ−1, while the time scale τs , on which
the state of the system changes, is given by τs � 
−1. In
this sense, the boundary between Markovian regimes and
non-Markovian regimes can be approximately specified by the
ratio of τb/τs = 
/λ. When 
/λ is very small, which means
that the reservoir correlation time τb is much smaller than the
relaxation time of the quantum subsystem τs , the decoherence
mechanics is Markovian. When 
/λ is large, the memory effect
of the reservoir should be taken into account and the dynamics
of this open system is then non-Markovian. In fact, one can
demonstrate that the coupled Green’s-function equations in
Eq. (10) reduce to the usual Markovian Lindblad-type master
equation in the limit λ � max{
,ωc}, due to the fact that the
reservoir correlation function reduces to the Dirac δ function
f (t − τ ) → const δ(t − τ ) in this situation.

In Fig. 2, we show the two-photon term D(t), coherent
driving term φ(t), decay rate γ1, fluctuation (noise) coeffi-
cient γ2, and the squeezing rate γ3 for Ornstein-Uhlenbeck
correlation (27) in the weak- and strong-coupling cases with
a comparison to the RWA. For a given coupling strength 
,
we find from the figure that the results given by the exact
non-RWA given by Eq. (23) are in good agreement with those
obtained by the exact RWA results given by Eq. (25) when the
weak-coupling conditions are satisfied (
 = 0.05ωe � ωc =
5ω) [see Figs. 2(a)–2(j); in Figs. 2(f)–2(j), the spectral width of
the environment is larger than the coupling strength γ , which
approximately corresponds to the Markovian limit]. In this
case, the contribution of the counter-rotating wave to the time
coefficients is very small, i.e., the two-photon process D(t),
fluctuation (noise) coefficient γ2, and the squeezing rate γ3

are close to zero. With an increase of 
, 
 = 5ωe � ωc [see
Figs. 2(l)–2(n)], the curve obtained by the RWA case decided
by Eq. (25) has serious deviations from those obtained by the
exact non-RWA results (23). The largest difference between the
exact result and the RWA for a strong coupling is a significant
manifestation of counter-rotating terms, where the two-photon
process, fluctuation (noise) coefficient, and the squeezing rate
are larger than this case in weak coupling.

IV. DISCUSSION ON THE INITIAL CORRELATED
THERMAL EQUILIBRIUM STATE

In realistic situations, the Brownian particle is initially in a
state correlated to the state of the reservoir as follows,

ρSR(0) = e−βĤ /TrSR e−βĤ , (28)

with Ĥ given by Eq. (1). Assume that the system-environment
coupling is not so strong, such that we might expand the above
initial state up to the first few orders in the coupling constant.
The following equation will be used in the expansion,

eθ(X̂+Ŷ) = eθX̂T exp

[∫ θ

0
e−X̂τ Ŷ eX̂τ dτ

]
, (29)

whereT represents the time-ordered product, which orders any
product of operators such that the time argument increases from
right to left. By setting θ = β, X̂ = −ĤS − ĤR , Ŷ = −εĤSR

[for discussion purposes, here we introduce ε, which denotes
the dimensionless coupling strength; ε = 1 corresponds to
Eq. (1) in the main text], we can expand the thermal equilibrium
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FIG. 2. Value of the time-dependent two-photon term D(t), coherent driving term φ(t), decay rate γ1(t), fluctuation (noise) coefficient
γ2(t), and the squeezing rate γ3(t) as a function of the time t with the Ornstein-Uhlenbeck correlation (27). The electric field takes the plane
wave E(t) = Ee−iωet . The parameters chosen are (top) ωc = 5ωe, E = 2ωe, 
 = 0.05ωe, λ = 0.2ωe; (middle) 
 = 0.05ωe, λ = 5ωe; (bottom)

 = 5ωe, λ = 10ωe. Here and hereafter, ωc, E, 
, and U are rescaled in units of ωe, and the time t is then in units of 1/ωe. Hence all parameters
are dimensionless. Non-rotating-wave and rotating-wave results are given by numerically solving Eqs. (23) and (25), respectively.

state up to any order in the coupling constant ε,

e−βĤ = e−βĤS−βĤR

[
1 +

∞∑
j=1

(−ε)j
∫ β

0
dt1

∫ t1

0
dt2

· · ·
∫ tj−1

0
dtj ĤSR(−ih̄t1)ĤSR(−ih̄t2)

· · · ĤSR(−ih̄tj )

]

= e−βĤS−βĤR

[
1 +

∞∑
j=1

η̂j

]
, (30)

where ĤSR(t) = e
i
h̄

(ĤS+ĤR )t ĤSRe− i
h̄

(ĤS+ĤR )t , and

η̂j = (−ε)j
∫ β

0
dt1

∫ t1

0
dt2 · · ·

∫ tj−1

0
dtj ĤSR(−ih̄t1)

× ĤSR(−ih̄t2) · · · ĤSR(−ih̄tj ).

The partition function is given by

TrSR e−βĤ = {TrSR e−βĤS−βĤR }(1 + μ2 + μ3 + μ4),

with

μj = (−ε)j
∫ β

0
dt1

∫ t1

0
dt2 · · ·

∫ tj−1

0
dtj 〈ĤSR(−ih̄t1)

×ĤSR(−ih̄t2) · · · ĤSR(−ih̄tj )〉SR, (31)

where ρS = e−βĤS /{TrS e−βĤS }, ρR = e−βĤR/{TrR e−βĤR }.
〈•〉SR is denoted via TrSR{•ρSρR}. Therefore, Eq. (28) is
written as

ρSR(0) = ρ
(0)
SR(0) + ερ

(1)
SR(0) + ε2ρ

(2)
SR(0) + · · · , (32)

where the first few order expansions are

ρ
(0)
SR(0) = ρSρR, ρ

(1)
SR(0) = −ρSρR

∫ β

0
dβ1ĤSR(−ih̄β1),

ρ
(2)
SR(0) = ρSρR

∫ β

0
dβ1

∫ β1

0
dβ2{ĤSR(−ih̄β1)

×ĤSR(−ih̄β2) − 〈ĤSR(−ih̄β1)ĤSR(−ih̄β2)〉SR},
(33)

With Eq. (9) and the identity (13) as well as the correlated initial
state (32), we can study the time-dependent non-Markovian
dynamics for the Brownian particle when the system and
environment are initially prepared in a correlated thermal
equilibrium state. From the above results, we find that the
first term in Eq. (32) represents the zero-order approximation,
which corresponds to the uncorrelated initial state given by
Eq. (16). This is valid for weak system-environment couplings
limit. When the system-environment coupling is strong, we
need to consider the influence of the high-order terms ρ

(j )
SR(0)

(j � 1) to the system dynamics. The other terms in Eq. (32)
are high-order contributions to the initial dynamics.

From the analysis above, we can conclude that the initial
dynamics can be treated well by the high-order terms, which
is the correction to the zero-order term when the coupling
strength becomes strong. Although our results have been
limited to zero order, our conclusion is general. Namely, with
an increase in coupling strength, we need to consider the
higher-order contributions.
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V. EXACT TRANSIENT CURRENT FOR QUANTUM
TRANSPORT WITHOUT ROTATING-WAVE

APPROXIMATION

The transient current from the system flow into the environ-
ment is defined in the Heisenberg picture as

I (t) = d

dt
〈N̂ (t)〉 = −i〈[N̂ (t),ĤH (t)]〉, (34)

where N̂ (t) = ∑
k b̂

†
k(t)b̂k(t). By explicitly calculating the

above commutation relation with the Hamiltonian of Eq. (3)
and then transforming it into the Schrödinger picture, we have
a transient equation for conservation current,

∂n(t)

∂t
= S(t) − I (t) + C(t), (35)

where n(t) = TrS[â†âρS(t)] is the total exciton number in the
Brownian particle, S(t) = −i TrSR[E(t)â†(t) − E∗(t)â(t)] is
the source coming from the driving fields, and I (t) the transient
current from the system flow into the environment, this defined
term,

C(t) = 2i TrSR

∑
k

G̃kâ(t)b̂k(t)ρSR(0) + H.c., (36)

denotes the two-photon current from the non-rotating-wave
term. Equation (35) tells us that the increase of the photon
number in the resonators is equal to the photons received from
the driving field and non-rotating-wave term minus the photon
flow into the environment.

Now, we turn to the exact numerical calculation. We
compare the above transient current in the weak-coupling
limit (
 � ωc) with the exact numerical solution of coher-
ent driving sources, transient current, and the two-photon
current from the non-rotating-wave term, respectively. In the
numerical calculation, we take E = 0.1ωe, E = ωe, E =
10ωe. The result is plotted in Fig. 3 where the Brownian
frequency ωc = 10ωe and 
 = 0.1ωe which belongs to a weak
coupling and the RWA is applicable. As the electric field
intensity increases, the amplitude of the current increases.
From Figs. 3(a)–3(c), we find that in the weak-coupling
limit, RWA is in good agreement with the exact solution, in
particular, the coherence current S(t) coming from the electric
field source. This is because the coherence current S(t) =
−iE(t)[αN (t) + α∗M(t) + U (t)] + c.c. approaches the situa-
tion of RWA, whereN (t) → u(t),M(t) → 0. But the transient
current I (t) in RWA cannot witness a time oscillation with
non-RWA [in this case, the physical mechanism originates
from the transition paths; see the blue solid lines in Fig. 4(b)].
Nevertheless, it can still capture some useful information,
which is consistent with the upper edge of the transient current
in non-RWA. In the rotating-wave approximation, no two-
photon current exists. In contrast, the case in non-RWA has
a nonzero two-photon current C(t), which originates from
the terms containing âb̂k and â†b̂†k in Eq. (36). Therefore,
the non-RWA parts in Eq. (36) are the contribution of the
two-photon current C(t), which usually generates pairs of
photons. This is the other significance of the non-Markovian
strong-coupling dynamics.

FIG. 3. Comparison of the Brownian particle currents in the exact
numerical simulation (20) with rotating-wave approximation (24)
with different electric field intensities. (a)–(c), (d)–(f), and (g)–(i) are
current S(t) coming from the electric field source, transient current
I (t) from the system flow into the environment, and the two-photon
current C(t) from the non-rotating-wave term, respectively, with
the non-RWA solution (solid line) and the RWA solution (dashed
line). The parameters chosen are ωc = 10ωe, 
 = 0.1ωe, λ = 0.3ωe,
E = 0.1ωe for (a), (d), and (g); E = ωe for (b), (e), and (h); E =
10ωe for (c), (f), and (i). The inset shows differences between
non-RWA and RWA, i.e., �S(t) = Snon-RWA(t) − SRWA(t), �I (t) =
Inon-RWA(t) − IRWA(t).

Next, we shall present an exact numerical simulation
for different values of the coupling constants between the
Brownian particle and the thermal reservoir, to examine the
different non-Markovian dynamics in the weak-coupling and
the strong-coupling regime. Figure 5 shows the field amplitude
of Eq. (9) with different coupling strengths and different
Brownian particle frequencies. In the weak-coupling regime,
the behavior of the field amplitude depends highly on the ratio
of 
 to ωc. When the coupling strength is much smaller than the
Brownian particle frequency ωc (see Fig. 5), the field amplitude
dampens to zero. When the Brownian particle frequency ωc

turns down to ωe, the field amplitude increases gradually to a
steady value with small oscillations. These numerical results
agree with the RWA solution, as shown in Figs. 5(a)–5(d). In the
strong-coupling regime, the field amplitude keeps oscillating
without decay in both cases, where the case on RWA has very
large derivations with that in non-RWA [see Figs. 5(e) and
5(f)]. The absence of damping (dissipation) is totally due to
the effect of the counter-rotating terms and non-Markovian
contributions, where counter-rotating terms make the main
contribution to the system dynamics [the term âb̂k and coherent
term E(t) reach dynamical equilibrium, whereas â†b̂†k allows
an unlimited increase in the number of excitations in the sys-
tem]. Thus we can confirm that this process is predominantly
a two-photon process. The complicated oscillating behavior
[see Figs. 5(e) and 5(f)] is an interference effect between the
coherence electric field and the coupling between the Brownian
particle and reservoir.
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0, 1,

0,

2,

0,
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3,

(a)
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1,

non-RWA

RWA

driving

I(t)

+

 S(t)

I(t)

+C(t)

 S(t)+C(t)

(b)

FIG. 4. (a) In the framework of a factorized direct product of the
system and the environment Gaussian state, the conserved currents
connected with each part are established. (b) Energy diagram showing
the zero-, one-, and two-exciton states · · · mk + n exciton states
|n,mk〉 (n excitons in the Brownian particle, mk photons in kth mode
for the environment), and the transition paths: Blue solid lines with
arrows denote two-exciton transitions (non-RWA processes), green
dashed lines with arrows denote conversed exciton conversion (RWA
processes), and black dotted lines with arrows denote coherent driving
sources (coherent processes).

VI. TIME EVOLUTION OF THE POSITION AND
MOMENTUM

The advantage of having solved the equations of mo-
tion in the Heisenberg picture is that they easily allow us
to compute the expected values of relevant operators. The
expectation values for q̂ and p̂ follow straightforwardly

FIG. 5. The time evolution of the Brownian particle field am-
plitude with different coupling strengths and free frequency of the
Brownian particle. The figure shows the differences in the non-
rotating-wave and rotating-wave situations. The parameters chosen
are α = 1, λ = 0.3ωe, E = 0.1ωe, ωc = 10ωe, 
 = 0.1ωe, for (a);
ωc = ωe, 
 = 0.1ωe for (b); ωc = 10ωe, 
 = 3ωe for (c); ωc = ωe,

 = ωe for (d); ωc = ωe, 
 = 2ωe for (e); ωc = ωe, 
 = 3ωe for (f).
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FIG. 6. Evolution in time of the expectation value of (a) position
and (b) momentum [see Eq. (37)]. The different lines correspond
to different values of the electric field intensity: E = 0 (solid line),
E = 0.05ωe (dashed line), E = 0.25ωe (dotted line); the other pa-
rameters are 
 = 0.05ωe, λ = 0.2ωe, and ωc = 0.5ωe, whereas as
initial conditions we set

√
h̄/2M0ωcq(0) = 1, p(0)/

√
h̄M0ωc = 0;

the expectation values of position and momentum are expressed in
units of

√
h̄/M0ωc and

√
h̄M0ωc, respectively.

from Eq. (20),

q(t) = TrS[q̂ρS(t)], p(t) = TrS[p̂ρS(t)]. (37)

The evolution of the position variance σq2 (t) = TrS[q̂2ρS(t)] −
q2(t) is obtained by squaring Eq. (37) and taking the expecta-
tion value, and similarly for the momentum variance σp2 (t) =
TrS[p̂2ρS(t)] − p2(t) and the position-momentum covariance
σqp(t) = TrS[{q,p}ρS(t)]/2 − q(t)p(t).

First, in Figs. 6(a) and 6(b) we show the time evolution of the
expectation values of position and momentum, respectively, for
different values of the electric field strength E. In both cases
and for a zero value of E, we find the expectation possessing
decaying oscillations until approaching the asymptotic value
zero. On the other hand, the introduction of coupling with
the electric field decelerates the relaxation process of both
quantities. The higher the value ofE, the faster is the decay. The
coupling with the electric field brings a further contribution to
the Brownian particle due to its coupling with the environment.
Indeed, referring to the master equation (20), it is clear how
this feature can be traced back to the changes in the coherence
coefficient φ(t), which now depends on E(t).

Now, let us move our numerical analysis to the elements
of the system covariance matrix, which, as said, completes the
description of the reduced observables if we restrict ourselves
to Gaussian states. In Figs. 7(a)–7(c), we show the evolution of
σq2 (t), σp2 (t), and σqp(t), respectively, for different values of E.
Once again, we observe the relaxation toward the asymptotic
value is faster when the electric field is strong. The coupling
with the electric field accelerates the dissipation of the open
system. In addition, the whole evolution of σqp(t) is not
modified qualitatively. Master equation (20) implies that the
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FIG. 7. Evolution in time of the elements of the covariance matrix:
Variance of the position σq2 (t) in (a), variance of the momentum σp2 (t)
in (b), and position-momentum covariance σqp(t) in (c). The different
lines correspond to E = 0 (solid line), E = 0.05ωe (dashed line), and
E = 0.25ωe (dotted line). The other parameters are as in Fig. 6; the
position variance is expressed in units of h̄/M0ωc, the momentum
variance is expressed in units of h̄M0ωc, and the position-momentum
covariance is expressed in units of h̄.

Gaussian state is no longer the equilibrium state of the reduced
dynamics, which instead exhibits a nonzero value of σqp(t).

Recalling that the evolution of the momentum and position
expectation values and covariances is calculated for a fixed
initial condition, one might wonder if the feature observed
depends on initial conditions. We verified numerically that
the discussed asymptotic values do not depend on the initial
conditions (at least, as long as one stays within the set of
initial Gaussian states). Representative examples are given in
Figs. 8(a) and 8(b) for the evolution of σq2 (t) and σp2 (t) with
E = 0, and Figs. 8(c) and 8(d) with E = 0.25ωe, respectively.
The system relaxes to a unique asymptotic state, for both
cases. Moreover, from Figs. 8(c) and 8(d) we can observe
that, for certain initial conditions, the position and momentum
variances also relax to the asymptotic value in a nonmonotonic
way, as we already observed for the expectation values in a
nonzero electric field. Each variance can show even strong
oscillations when its initial value is high enough and the
oscillations are higher.

VII. COMPARISONS WITH THE APPROXIMATE
METHODS

There are several methods with approximations in the
literature to explore dissipative Brownian motion. In this
section, we will compare the results by approximation with
our exact one.

In the weak-coupling limit, the non-Markovian master
equation can be derived perturbatively up to second order in
system-environment couplings. Hence this master equation is
available for weak system-environment couplings. Following
the perturbation theory and after some algebra, we obtain
a second-order time-convolutionless (TCL) non-Markovian

ωet
0 100 200

σ
q2

(t
)

0

0.5

1

1.5

α = 1 − i
α = i
α = 1 + i
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FIG. 8. Relaxation to the nonequilibrium stationary state of the
variance for (a) and (b) E = 0 and (c) and (d) E = 0.25ωe. The
different lines correspond to different initial coherent states: α =
1 − i (solid line), α = i (dashed line), and α = 1 + i (dotted line).
The other parameters are the same as in Fig. 7.

master equation [42–45] for the system (3),

ρ̇S(t) = − i[Ĥωc(t),ρS(t)]

+ γ1(t)(2âρSâ
† − â†âρS − ρSâ

†â)

+ γ2(t)(âρSâ
† + â†ρSâ − â†âρS − ρSââ†)

+ [γ ∗
3 (t)(2âρSâ − ââρS − ρSââ) + H.c.], (38)

with the effective Hamiltonian

Ĥωc(t) = δ(t)â†â + [D(t)â2 + φ(t)â + H.c.], (39)

where

D(t) =
∫ t

0
dτ

∫
dωJ (ω)eiωc(t−τ ) sin ω(τ − t),

δ(t) = 2
∫ t

0
dτ

∫
dωJ (ω) cos ωc(t − τ ) sin ω(τ − t),

φ(t) = 2
∫ t

0
dτ

∫
dωJ (ω) sin[ω(τ − t)]�(τ − t),

γ1(t) =
∫ t

0
dτ

∫
dωJ (ω) sin(ω − ωc)(t − τ ),

γ2(t) =
∫ t

0
dτ

∫
dωJ (ω) sin(ω + ωc)(t − τ ),

γ3(t) =
∫ t

0
dτ

∫
dωJ (ω)e−iωc(t−τ ) cos ω(t − τ ). (40)

Here, �(t) = i
∫ t

0 dτE∗(τ )eiωc(t−τ ) + c.c. Figure 9 shows a
comparison of the exact and weak-coupling master equations
with the bandwidth λ = 0.3ωe. We find that the results given by
the weak-coupling master equation (38) are in good agreement
with those obtained by the exact master equation (20) on any
time scales [see Figs. 9(a) and 9(b)]. We therefore claim that
for this range of parameters the TCL master equation gives
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FIG. 9. Comparison of the exact non-rotating-wave and weak-
coupling results for Brownian particle field amplitude |〈â(t)〉| as a
function of time in Ornstein-Uhlenbeck correlation (27). Red solid
lines show the exact numerical results [see Eq. (20)]. Dashed lines
are weak-coupling results [see Eq. (24)]. In all plots, we chose α = 1,
ωc = ωe, E = 0.1ωe, λ = 0.3ωe. The large deviation of (c)–(f) for
the results from the exact non-rotating wave is caused by the strong
coupling between the Brownian particle and environment, where the
case is only valid in weak-coupling assumptions.

a better description for the dynamics, because it reflects all
the qualitative characteristics of the exact results. In this case,
the master equation in the weak-coupling limit gives a very
good description of the dynamics. With a further increase
of coupling strength in Fig. 9, clearly, the results given by
the weak-coupling equation are in good agreement with those
obtained by the exact one on a short-time scale, but they deviate
from each other on a long-time scale [see Figs. 9(c)–9(e)].
Thus, in this case, the approximate method is not suitable to
describe the dynamics.

VIII. QUANTUM NETWORK CONSISTING OF COUPLED
CHARGED-BROWNIAN PARTICLES

In this section, we generalize these results to a more general
network involving an arbitrary number of coupled quantum
Brownian particles (CQBPs), whose Hamiltonian (see Fig. 10)
is given by

Ĥ = ĤS + ĤR + ĤSR + ĤE, (41)

with

ĤS =
N∑

m,n=1

h̄αmnâ
†
mân, ĤR =

∑
k

h̄ωkb̂
†
kb̂k,

ĤSR =
∑
n,k

h̄gn,k(ân + â†
n)(b̂†k + b̂k),

ĤE =
N∑

n=1

h̄En(t)â†
n + h̄E∗

n(t)ân, (42)

where αmn are coupling constants between Brownian particles.
The first equation is the free Hamiltonian of the N interacting

+ N

+ 1

+ 2

+

1Nα 1α

2α

1α 3

3

2

Nα2

Nα3

3

FIG. 10. Quantum network consisting of N mutually coupled
charged-Brownian particles (coupling constants are αmn) linearly
interacting with the reservoir (modeled as harmonic oscillators with
frequency ωk). The blue circle represents the charged-Brownian
oscillator, which is coupled to a large number of oscillators (the
environment, shown by small black circles) interacting via the
coupling constants gn,k .

Brownian oscillators with frequency αnn. The second term
describes a general non-Markovian reservoir which is modeled
as a collection of photonic modes (oscillators), where b̂

†
k and

b̂k are the corresponding creation and annihilation operators of
the kth photonic mode with frequency ωk . gn,k are the reservoir
mode-particle coupling constants. The fourth term denotes the
interaction between the nth Brownian particle and the electric
field. In this case, Eq. (8) reduces to

∂âj (t)

∂t
= −i

N∑
n=1

αjnân(t) − i[B̂j (t) + B̂
†
j (t)]

−
N∑

m=1

∫ t

0
dτKjm(t − τ )[âm(τ ) + â†

m(τ )] − iEj (t),

(43)

where the environment correlation function Kjm(t) =
fjm(t) − f ∗

jm(t) with fjm(t) = ∑
k gj,kgm,ke

−iωkt . According
to the linearity of Eq. (43), we can write the operator âm(t) as

âm(t) =
N∑

l1=1

Nml1 (t)âl1 (0) +
N∑

l2=1

Mml2 (t)â†
l2

(0) + P̂m(t),

(44)

with the initial values Nml(0) = δml , Mml(0) = 0, and P̂m(0) =
0. The time-dependent coefficients satisfy the matrix differen-
tial equations,

Ṅ (t) = −iαN (t) −
∫ t

0
dtK(t − τ )[N (τ ) + M∗(τ )],

Ṁ(t) = −iαM(t) −
∫ t

0
dtK(t − τ )[N∗(τ ) + M(τ )],

˙̂P (t) = −iαP̂ (t) −
∫ t

0
dtK(t − τ )[P̂ ∗(τ ) + P̂ (τ )]

−iB̂(t) − B̂†(t) − iE(t), (45)

where coefficient matrices P̂ (t) = P̂ (t)N×1, B̂(t) = B(t)N×1

with B̂m(t) = −i
∑

k (gm,k)∗e−iωkt b̂k(0), E(t) = E(t)N×1. By
solving the coupled Green’s function equation (45), we can
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obtain the complete information of the coupled-Brownian
particles. It is particularly useful in the derivations of the
exact master equation for the CQBP, achieved by com-
pletely integrating out the environmental degrees of free-
dom. Applications of the CQBP exact master equation
cover various topics, such as quantum decoherence, the
quantum-to-classical transition, and quantum measurement
theory.

IX. DISCUSSION AND CONCLUSION

In summary, we have derived a non-Markovian master
equation for a charged-Brownian particle in one dimension
in an electric field and subject to a thermal reservoir. We find
the non-Markovian dynamics governed by the master equa-
tion contains both time-dependent coefficients and coherent
terms, which manifest the effects of the environment and
the driving electric fields, respectively. We derive a current
equation including a source coming from the driving fields,
transient current from the system flowing into the environment,
and the two-photon current from the non-rotating-wave term.
Comparisons with the results given by second-order Born and
Markovian approximations are made. We find that the latter
two methods cannot exactly describe the system dynamics in
the strong system-environment coupling regime. The presented
results are generalized to a more general quantum network
involving an arbitrary number of coupled-Brownian particles
coupled to thermal reservoirs.

In experiments, the non-Markovian quantum Brownian
motion in electric fields describes the forced oscillation
of Brownian particles containing all feedback of the non-
Markovian environment on quantum systems, which might be
realized by a cold-atom Brownian motor in optical lattices [46],
hard-sphere-plus-dipolar Brownian colloidal system [47], and
optical tweezer experiments [48] as well as optically driven
Brownian particles [49]. The electric fields may enter the
system via a vector potential. In this sense, the prediction
presented here is observable within the current technology.

Applications of our theory to a variety of physically relevant
systems as well as its extension to a wide class of open quan-
tum system, e.g., nonlinear coupling with the environments,
deserve future investigations.
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APPENDIX: DERIVATIONS OF EQ. (11)

1. Coupled modified Green’s functions

Considering the initial conditions N (0) = 1, M(0) = 0,
and P̂(t) = 0, we introduce two new coefficients X (t) =
M(t) + N (t) with the initial condition X (0) = 1, and Y(t) =
M(t) − N (t) with the initial condition Y(0) = −1. Then we

can obtain the evolution equation for Y(t) as follows,

d

dt
Y(t) = −iωcY(t) −

∫ t

0
dτ [Y(τ ) − Y∗(τ )]K(t − τ ).

(A1)

Introducing Z(t) = 1
2 [Y(t) + Y∗(t)] with the initial condition

Z(0) = −1 and W(t) = 1
2i

[Y(t) − Y∗(t)] with the initial con-
dition W(0) = 0, the evolution equation of Z(t) and W(t) can
be obtained,

d

dt
Z(t) = ωcW(t) − 2i

∫ t

0
dτW(τ )K(t − τ ),

d

dt
W(t) = −ωcZ(t). (A2)

The Laplace transformation for Eq. (A2) can be obtained as
follows,

sZ(s) + 1 = ωcW(s) − 2iW(s)K(s),

sW(s) = −ωcZ(s). (A3)

Solving Eq. (A3), we obtain

Z(s) = − s

ω2
c + s2 − 2iωcK(s)

,

W(s) = ωc

ω2
c + s2 − 2iωcK(s)

. (A4)

With the same method, we can obtain the evolution equations
for X (t) and X ∗(t),

d

dt
X (t) = −iωcX (t) −

∫ t

0
dτ [X (τ ) + X ∗(τ )]K(t − τ ).

(A5)

Introducing C(t) = 1
2 [X (t) + X ∗(t)] with the initial condition

C(0) = 1 and D(t) = 1
2i

[X (t) − X ∗(t)] with the initial condi-
tion D(0) = 0, the evolution equation of C(t) and D(t) can be
obtained,

d

dt
C(t) = ωcD(t),

d

dt
D(t) = −ωcC(t) + 2i

∫ t

0
dτC(τ )K(t − τ ). (A6)

The Laplace transformation for Eq. (A6) leads to

sC(s) − 1 = ωcD(s),

sD(s) = −ωcC(s) + 2iC(s)K(s). (A7)

Solving Eq. (A7), we obtain

C(s) = s

ω2
c + s2 − 2iωcK(s)

,

D(s) = − ωc − 2iK(s)

ω2
c + s2 − 2iωcK(s)

. (A8)

Collecting all these together, we get

M(t) = 1
2 [[C(t) + Z(t)] + i[D(t) + W(t)]],

N (t) = 1
2 [[C(t) − Z(t)] + i[D(t) − W(t)]]. (A9)
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2. Solutions of nonhomogeneous Green’s operator equation

If we set Q̂(t) = 1
2 [P̂(t) + P̂†(t)] and R̂(t) =

1
2i

[P̂(t) − P̂†(t)], we obtain evolution equations of Q̂(t)
and R̂(t) as follows,

d

dt
Q̂(t) = ωcR̂(t) + Ei(t),

d

dt
R̂(t) = −ωcQ̂(t) + 2i

∫ t

0
dτQ̂(τ )K(t − τ )

−B̂(t) − B̂†(t) − Er (t), (A10)

where Er (t) = 1
2 [E∗(t) + E(t)] and Ei(t) = i

2 [E∗(t) − E(t)]
are the real and imaginary parts of E(t), respectively. The
Laplace transformation for the Eq. (A10) can be obtained

sQ̂(s) = ωcR̂(s) + Ei(s),

sR̂(s) = −ωcQ̂(s) + 2iQ̂(s)K(s) − B̂(s) − B̂†(s) − Er (s).

(A11)

Solving Eq. (A11), we obtain Q̂(s) and R̂(s),

Q̂(s) = sEi(s) − [Er (s) + B̂(s) + B̂†(s)]ωc

s2 + ωc[ωc − 2iK(s)]
,

R̂(s) = −[Er (s) + B̂(s) + B̂†(s)]s − Ei(s)[ωc − 2iK(s)]

s2 + ωc[ωc − 2iK(s)]
.

(A12)

Comparing with Eqs. (A4), (A8), (A9), and (A12), we obtain

P̂(s) = −i[N (s) − M(s)][B̂(s) + B̂†(s)] + U (s), (A13)

with

U (s) = iEr (s)[M(s) − N (s)] − Ei(s)[M∗(s) − N (s)].

(A14)

With an inverse Laplace transformation to Eq. (A13), we can
obtain Eq. (11).
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