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Edge states at the interface of non-Hermitian systems
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Topological edge states appear at the interface of two topologically distinct Hermitian insulators. We study
the extension of this idea to non-Hermitian systems. We consider PT -symmetric and topologically distinct
non-Hermitian insulators with real spectra and study topological edge states at the interface of them. We show
that PT symmetry is spontaneously broken at the interface during the topological phase transition. Therefore,
topological edge states with complex energy eigenvalues appear at the interface. We apply our idea to a complex
extension of the Su-Schrieffer-Heeger model.
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I. INTRODUCTION

A topological insulator has gapless edge states and gapped
spectrum in the bulk. The most interesting feature of topologi-
cal edge states is their robustness against symmetry-protected
disorder. The topological phase is a very general concept that
can be applied to many branches of physics. For example,
the topological phase in photonics has attracted a great deal
of attention in the last decade. In recent years, topological
photonics systems with gain and loss have become a rapidly
growing field of study. This is particularly interesting since
theories of the non-Hermitian extension of the topological
phase can be tested in photonics. Quantum mechanical systems
are generally described by a Hermitian Hamiltonian, while
gain can be implemented and loss is generally inevitable in
optics. Topological photonics can also have some interesting
technological applications such as topological lasing [1]. A
topological laser is a laser that is immune to disorder and
fabrication defects. The topological phase in Hermitian sys-
tems has been extensively studied and the periodical table
of topological insulators for Hermitian Hamiltonians is well
known. However, until recently, there has been strong debate
about the existence of a topological phase in non-Hermitian
systems [2–7]. We note that the Berry phase cannot be directly
generalized to non-Hermitian systems [8]. Some authors had
the idea that the topological phase is not compatible in the
PT -symmetric region, where P and T are the parity and time-
reversal operators, respectively. Some other authors found
either growing or decaying edge states in the topological
domain. Until 2015, there had been few papers on this topic
because it was generally believed that the topological phase
is absent in non-Hermitian systems. The first paper that
theoretically predicted a stable topological phase in a non-
Hermitian was the Aubry-Andre model that appeared in the
literature in 2015 [9]. A year later, an experiment was realized
[10] and topological edge states in lossy waveguides were
observed through fluorescence microscopy. The first experi-
mental realization of topological edge states was followed by
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many other papers on the non-Hermitian topological phase
and this subfield has become a rapidly growing field. So far,
most of the investigations in this field have been restricted
to one-dimensional problems [11–15]. Of special importance
is the paper [16] which states that the topological insulating
phase can also be realized only by gain and loss. Theories
on a one-dimensional (1D) topological phase were generally
constructed on a generalized non-Hermitian Su-Schrieffer-
Heeger (SSH) model [17,18]. Contrary to 2D topological
insulators whose edge modes are propagating either chiral or
helical modes depending on the topological invariant, edge
modes in 1D are accumulated at edges and decay rapidly
away from edges. In the literature, there are also some papers
studying a non-Hermitian topological insulator in 2D [19]. In
addition to topological insulators, topological superconductors
and Majarona modes have also been studied in non-Hermitian
systems [20–24]. It is well known that the standard classifica-
tion of topological insulators and superconductors according
to the three discrete symmetries for a given Hamiltonian in
any dimension fails if the system is time dependent. Another
kind of topological insulator that appears in time-periodic
systems is called Floquet topological insulators [25,26]. The
non-Hermitian Floquet topological phase was also studied in
[27,28].

This subfield is new and there are some open problems
in non-Hermitian topological systems such as bulk-boundary
correspondence in non-Hermitian systems [29,30] and non-
Hermitian topological invariants. Standard bulk-boundary cor-
respondence tells us about symmetry-protected edge states at
the interface of two topologically distinct Hermitian systems.
At the interface of two topologically inequivalent systems,
there exist gapless conducting edge states, although the two
systems are insulators. The bulk energy gap closes somewhere
along the way when the topologically nontrivial system is in
contact with a topologically trivial one. A question arises: What
are the properties of topological edge states at the interface of
two topologically distinct non-Hermitian systems? Are they
robust against disorder? Is PT symmetry spontaneously bro-
ken during the topological phase transition in non-Hermitian
systems? In this paper, we will discuss what happens if two
topologically distinct non-Hermitian Hamiltonians have an
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interface. We will discuss that topological edge states with
complex energy appear at the interface of two topologically
distinct non-Hermitian Hamiltonians with real spectra. We
will show that such states are available in a complex SSH
model, which can be experimentally realizable with current
technology.

II. FORMALISM

According to the bulk-boundary correspondence, topolog-
ical edge states appear at the interface of two topologically
distinct Hermitian systems. For example, such states appear
at the open edges of a topologically nontrivial tight-binding
lattice since the air is topologically trivial. Topological edge
states can also appear at the domain wall, which occurs if some
discrete symmetries are broken along the 1D tight-binding
lattice.

Let us now study topological edge states that appear at
the interface of non-Hermitian systems. The non-Hermitian
Hamiltonians considered here are assumed to be PT symmet-
ric and have gapped real spectra. We consider the following
two types of interface.

(i) The interface formed between two topologically dis-
tinct non-Hermitian systems. Since the two non-Hermitian
systems are assumed to be topologically inequivalent, there
is no way to adiabatically deform these two non-Hermitian
Hamiltonians into each other without band-gap closing. Now
a question arises: Do exceptional points occur during the
topological phase transition of these two systems? If they do,
the corresponding eigenvalues and the eigenstates coalesce.
Generally speaking, the answer is yes but we emphasize that
there may exist some systems where band-gap closing points
are not exceptional points. It would be interesting to find such a
system. Assume that exceptional points occur during the phase
transition. Then, complex energy eigenvalues appear as we
keep adiabatically deforming the non-Hermitian Hamiltonian.
In other words, PT symmetry is spontaneously broken when
deforming these two PT -symmetric non-Hermitian Hamilto-
nians into each other. This implies that the two systems have
real-valued energy eigenvalues in their bulk, but the topological
edge states at the interface have complex energy eigenvalues.
Therefore, such an interface can be used to obtain a topological
laser [1].

(ii) The interface formed between topologically distinct
non-Hermitian and Hermitian systems. A non-Hermitian sys-
tem with open boundaries falls into this category since the
air is a topologically trivial insulator. Since they are not
topologically equivalent, there exists no adiabatic deformation
connecting the two Hamiltonians. In other words, somewhere
along the way, the band gap must close and reopen. Band-
gap closing occurs during adiabatic deformation of the non-
Hermitian Hamiltonian into the Hermitian one. As opposed to
the previous case, the non-Hermitian degree must be adiabati-
cally switched off, too. Generally speaking, exceptional points
occur and then complex energy eigenvalues appear during the
phase transition. Fortunately, exceptional points are less likely
to occur compared to the previous case. In this way, stable
topological edge states (i.e., edge states with real eigenvalues)
appear at the interface. Stable topological edge states can exist

in a complex extension of the SSH lattice, as theoretically
shown in [9] and experimentally realized in [10].

Non-Hermitian SSH model

So far, we have qualitatively discussed the existence of
complex edge states at the interface of two topologically
inequivalent PT -symmetric non-Hermitian systems with real
spectra. To illustrate our idea, consider the following complex
extension of the celebrated SSH model, which is a one-
dimensional tight-binding model with alternating hopping
amplitudes and gain and loss,

H (k) = [ν + ω cos(k)]σx + ω sin(k)σy + iγ σz, (1)

where �σ are Pauli matrices, the crystal momentum k runs over
the first Brillouin zone, −π < k < π , the real-valued positive
parameters ν > 0, ω > 0 are tunneling amplitudes, and γ is
the non-Hermitian strength. The corresponding energy eigen-
values are given by E∓ = ∓

√
ν2 + ω2 + 2νω cos(k) − γ 2.

Consider first the Hermitian limit, γ = 0, in which two bands
are symmetrically arranged about zero energy and separated
by a gap of |ω − ν|. If we deform the Hamiltonian by varying
ω from a value ω > ν to a value ω < ν for fixed ν, we
see that the band gap closes and reopens at ω = ν. This
shows us that a topological phase transition occurs exactly
at ω = ν. Therefore, the cases with ω > ν and ω < ν are
topologically distinct. In the non-Hermitian case, γ �= 0, the
band gap gets narrower with γ at fixed ν. The band gap closes
and a topological phase transition occurs when ω = ν + γ .
Contrary to the Hermitian case, exceptional points occur when
the band gap is zero. More precisely, the two bands coalesce at
k = ∓π in such a way that eigenvalues and eigenstates become
simultaneously degenerate. In the Hermitian limit, the band gap
reopens just after closing (if ω is decreased infinitesimally).
However, this is not the case in our non-Hermitian problem. If
we decrease ω below the critical value ν + γ , complex energy
eigenvalues appear in pairs and the real part of the band gap
remains zero until ω is equal to ν − γ . Note that at ω = ν, the
imaginary part of the energy eigenvalues takes its maximum
value. At ω = ν − γ , exceptional points occur once more and
the band structure becomes real valued again. The band gap
reopens if we decrease ω further. In other words,PT symmetry
is spontaneously broken in the interval ν − γ < ω < ν + γ ,
while it is not broken and the spectrum is real valued out of this
interval. In Fig. 1, we plot the band structure for three choices
of the parameter ω for fixed γ = 0.2 and ν = 1. One can also
see the reality of the energy band as a function of ω from the
figure.

Our above discussion was for the infinitely extended pe-
riodical complex SSH system. Let us now study topological
edge states and their stabilities for a finite chain. Consider
now two topologically distinct complex SSH systems. The
two systems are assumed to have real-valued gapped spectra.
Consider now that an interface is formed between these two
topologically distinct systems. Exceptional points must be
crossed somewhere along the way and we expect topological
edge states with complex energy eigenvalues at the interface.
We emphasize that topological edge states occur not only at the
interface but also at the open end of the topologically nontrivial
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FIG. 1. The energy bands for γ = 0.2, where the curves in blue
and orange represent the real and imaginary parts of the energy
eigenvalues, respectively. For ω = 1.3 and ω = 0.7: The energy
eigenvalues are real and they are gapped. However, the two cases are
topologically distinct. Whenever a phase transition occurs, i.e., the
band gap closes, the system enters a broken PT -symmetric region
since a complex spectrum appears. Therefore, at the interface of two
systems with ω = 1.3 and ω = 0.7 (left plots), there exist complex
energy interface states. Bottom right plot: The interval of ω for the
appearance of complex energy eigenvalues.

chain. These two topological edge states are well localized and
robust against disorder.

To validate our discussion, we perform numerical computa-
tion for a finite chain of N = 20 + 20 = 40 lattice sites. Chain
I and chain II consist of 20 lattice sites and these two chains
are coupled together with a coupling constant �. Figure 2
illustrates such a system for N = 6 + 6 = 12. To make our
system non-Hermitian, we introduce balanced gain and loss
into the system. One can introduce alternating gain and loss
along the whole lattice. This leads to a very small critical
value of γ for PT -symmetry breaking. Instead we introduce
gain and loss at the neighboring sites of the edges, as can
be seen from Fig. 2. In this way, one can study the system
in the unbroken PT -symmetric region in a wider range of
non-Hermitian strength. We note that gain and loss are not

FIG. 2. Our structure is displayed for N = 6 + 6 = 12 lattice
sites. The gain and loss (shaded circles) are assumed to be located
as in the figure. The non-Hermitian degree is chosen in such a way
that both chains have real spectra. The first six sites are in the chain-I
region, while the second six sites are in the chain-II region. Both chains
are SSH systems so tunneling amplitudes alternate from site to site,
but they are topologically distinct. The two chains are coupled with
a tunneling amplitude �. Therefore, the topological phase transition
occurs and topological edge states with complex energy appear at the
interface. Note also that topological edge states occur at the open end
of a topologically nontrivial chain too.

FIG. 3. The real and imaginary parts of the energy eigenvalues for
two topologically distinct complex SSH chains with N = 20 + 20 =
40 and γ = 0.5. The two chains are coupled together with � = 0.1.
The hopping amplitudes are parametrized as ν = 1 − 0.5 cos(�) and
ω = 1 + 0.5 cos(�), where � is an additional degree of freedom. The
coupled system has topological zero-energy modes for all �, unless
� is not around either π/2 or 3π/2. We also plot the densities of
topological edge states for � = 0 and � = 0.1. The stable edge states
are depicted in orange color, while the edge state with complex energy
are in blue color. As can be seen, the topological edge state with a
complex energy eigenvalue appears at the interface when � = 0.1.

introduced at the edges since they have a detrimental effect
on the topological edge states, as discussed in [9]. The non-
Hermitian strength is assumed to be equal to γ = 0.5. We first
numerically check that both chains have real spectra in the limit
� = 0. This is because of the fact that both systems have PT
symmetry. Suppose now that they are coupled together with
a small coupling constant � = 0.1. Switching-on � breaks
the PT symmetry spontaneously at the interface as a result of
the topological phase transition. Therefore, we expect that the
energy eigenvalue of the topological edge state at the interface
becomes complex valued. To see topological phases for various
values of the tunneling parameter, we parametrize the tunneling
parameters as ω = 1 + 0.5 cos(�) and ν = 1 − 0.5 cos(�),
where the modulation phase � is another degree of freedom.
Figure 3 plots the real and the imaginary parts of the spectrum
as the parameter � is varied. As seen, the imaginary part of
the coupled system is different from zero at all values of �.
This is in agreement with our above discussion. If we look
at the real part of the energy spectrum in Fig. 3, we see that
topological zero-energy modes appear in the system unless �

is not inside two intervals around � = π/2 and � = 3π/2
(the tunneling becomes not staggered, ω = ν, at � = π/2 and
� = 3π/2). Therefore, we say that the system is topologically
trivial and localized edge states do not exist only in these two
small intervals. Below, we study topological edge states.

Let us numerically obtain edge states at a specific value
of the modulation phase, � = 0. Chain I is topologically
nontrivial and topological edge states appear at both edges
of this chain. If the two chains are not coupled, � = 0,
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there are two zero-energy topological states and each one is
symmetrically arranged on both open edges. Therefore, the
density has two peaks at both ends and the peak value is
around 0.4. This can be seen from Fig. 3. We stress that
these zero-energy topological edge states are stable since their
energy eigenvalues have no imaginary parts. Consider now
that the two chains are coupled with � = 0.1. In this case,
the symmetry at both edges of chain I is lost since one of
its edges has an open boundary, while the other one has an
interface with the non-Hermitian topologically trivial system.
In this case, topological edge states at the two edges of chain I
are no longer mixed. Therefore, the corresponding maximum
density becomes approximately equal to 0.8, as can be seen
from Fig. 3. As expected, the edge state at the open edge is
stable (it has a real-valued energy eigenvalue), while the edge
state at the interface grows. Note that the edge state at the
interface can be made growing or decaying by changing the
sign of γ , which can be achieved by interchanging the gain
and loss locations. As discussed above, the complex nature
of the energy eigenvalue for the edge states at the interface is
due to the fact that exceptional points are crossed during the
topological phase transition.

The most interesting feature of the topological edge states
is that they are robust against certain types of disorder in
the system. We analyze robustness of the edge states in our
system against tunneling amplitude disorder. In our numerical
computation, we introduce randomized coupling all over the
lattice. The new tunneling amplitudes become ω → ω + εn

and ν → ν + δn, where εn and δn are a real-valued random
set of constants with |εn| � ω and |δn| � ν. Therefore, the
tunneling amplitudes between the nth and (n ∓ 1)th sites
become completely independent. In our numerical compu-
tation, we take −0.1 < εn < 0.1 and −0.1 < δn < 0.1. We
perform a numerical calculation and repeat it for 300 different
random numbers to study the topological robustness against
the disorder. In each calculation, we find that the real part of
the energy eigenvalues of these edge states resists the disorder,
i.e., they are always equal to zero. This is expected because
of the topological nature of the edge states. However, the
energy eigenvalues for the bulk states change considerably
with disorder. The imaginary parts of the energy eigenvalues of
both topological and bulk states change with εn and δn since the
disorder breaks thePT symmetry of the system. In the absence
of disorder, the imaginary parts of the energy eigenvalues of the
edge states are equal to 25 × 10−8 and 20 × 10−4 at the open

edge and the interface, respectively. Note that the maximum
absolute value of the imaginary parts of the energy eigenvalues
of the bulk states is 4 × 10−2. We can say that the topological
edge state at the open edge is practically stable. This is also true
in the presence of disorder. We calculate the average value and
root-mean-square deviation of Im(E) for the topological state
at the interface in the presence of the disorder. They are given
by 29 × 10−4 and 24 × 10−4, respectively. Let us now study
eigenstates in the presence of disorder. The eigenstates and the
corresponding densities for the bulk states are highly sensitive
to disorder. However, the topological edge states remain well
localized around the edges, even in the presence of disorder. In
fact, the densities of the topological edge states with disorder
are almost the same as the one given in Fig. 3 for � = 0.1. This
shows us that topological edge states are immune to disorder.

One can find other examples in 1D or higher dimensions
to explore complex topological edge states. But the above
example is particularly interesting since the complex SSH
Hamiltonian (1) can be realizable in photonics using waveg-
uides. An experiment similar to the one in Ref. [10] can verify
our findings.

III. CONCLUSION

In this paper, we have studied topological edge states in non-
Hermitian systems. Although bulk-boundary correspondence
is well understood in Hermitian systems, its complex extension
is still absent in non-Hermitian systems. In the literature,
there is no general theory explaining topological edge states
at the interface of two topologically distinct non-Hermitian
systems. In this paper, we have discussed this issue and given
an example. We have shown that exceptional points are crossed
somewhere along the way during a non-Hermitian topological
phase transition. This, in turn, leads to topological edge states
with a complex energy eigenvalue even if the two topologically
distinct non-Hermitian systems have real-valued gapped spec-
tra. Our system may have applications in a topological laser
system. It is worth studying a higher-dimensional topological
phase transition in non-Hermitian systems.
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