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The phenomenon of quantum phase transition is considered in the special case in which the evolution laws
remain unitary and in which the bound-state energies remain observable. The conventional Hermiticity of
observables is lost at the interface, replaced by the so-called quasi-Hermiticity. Several features of the passage of
the system through the interface are discussed and illustrated by elementary illustrative PT -symmetric examples.
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I. INTRODUCTION

In historical retrospective, the birth of quantum mechanics
was certainly facilitated by several remarkably friendly ex-
perimental as well as theoretical aspects of its applicability,
say, to the hydrogen atom or to elementary molecules [1].
Even the transition from nonrelativistic hydrogen-atom-like
Hamiltonians h to their relativistic Dirac-equation amend-
ments h̃ remained smooth, straightforward, and compatible
with the parallel refinements of the measurements of the
stationary bound-state energy spectra. An immanent limitation
of applicability of the traditional self-adjoint local-interaction
models emerged only after a next-step transition to the descrip-
tion of the motion of a relativistic electron (or electrons) in
some perceivably stronger (e.g., heavy-ion) central Coulomb
potential ṽ = −Ze2/|�r|. At the overcritical effective charges
with Z > 1/α ≈ 137, due to the so-called Klein paradox,
the system crossed the boundary of stability and entered a
“mathematically forbidden” zone. The ground-state energy
ceased to be observable since it acquired a nonvanishing
imaginary part (cf., e.g., pp. 195–206 in [2] for details).
Similar problems also occurred in the case of the Klein-Gordon
equation (cf. [3]).

The loss-of-observability process of the degeneracy and
of the subsequent complexification of the energy levels can
be interpreted as a nonconservative quantum phase transi-
tion [4,5]. In the language of physics, the phenomenon is
traditionally attributed to the emergence of a new relevant
degree of freedom [6,7]. In 1998, Bender and Boettcher [8]
proposed an alternative mathematical interpretation of the
phenomenon. They pointed out that within the conventional
Hermitian formulations of quantum theory the quantitative
description of the quantum phase transition phenomena is
difficult, mainly because one has to interrelate the unitary
quantum world with the nonunitary quantum world (cf. also
Jones’s dedicated study [9]).

The latter observation served as an immediate inspiration
of our present study. The paper will be organized as follows.
In Sec. II we shall recall a few facts about PT symmetry and
about quantum phase transitions. In Sec. III we then introduce,
via a schematic model, the key concept of our paper, viz., the
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notion of the so-called Hermitian–non-Hermitian interface.
This material will be followed by Secs. IV and V in which
we explain that for our present purposes the stationary non-
Hermitian Schrödinger-picture description of quantum dynam-
ics of reviews [10–12] will not suffice, and that we shall need its
generalized, time-dependent, and hiddenly Hermitian versions
as described in Refs. [13,14] and as critically reviewed, more
recently, in [15]. A compact summary of the theory will be
provided, listing the dynamical equations in Sec. IV and then
turning attention to some of the purely phenomenological
aspects of the resulting picture of physics in Sec. V. In Sec.
VI we then return again from the abstract theoretical lesson
to our concrete illustrative benchmark model. We use it to
explain, in some technical detail, some overall features of the
process of the abstract construction of the appropriate physical
Hilbert spaceH(second) and of its concrete representation (based
on the mere amendment of the inner product) in the more
friendly (albeit manifestly unphysical) Hilbert space H(first).
The text will be then completed by the two shorter sections of
Discussion and Conclusions.

II. PT SYMMETRY AND ITS BREAKDOWN

In the literature devoted to quantum systems and to the
questions of their stability, theoreticians are usually clearly
separating the conventional Hermitian theories (in which the
energies are assumed real and in which the evolution is unitary)
from the traditional versions of non-Hermitian theories which
deal, exclusively, with unstable and resonant quantum systems.
An explanation of such a split of scope may be found in Chapter
10 of monograph [7]. The author’s attention is paid there to the
latter, complex-energy models. A parallel outline of the current
understanding of the unitary, stable quantum systems may be
sought, e.g., in the most recent collection of reviews [16]. In our
present paper we shall restrict our attention just to the latter sub-
class of the quantum models and phenomena in which the en-
ergies remain real even if the representation of the observables
themselves becomes non-Hermitian, viz., quasi-Hermitian
[10] or PT symmetric [11] or pseudo-Hermitian [12].

A. Bound states: The loss of observability

The main purpose of our present paper is a clarification
of several paradoxes which were mentioned, in the litera-
ture, after the publication of the Bender’s and Boettcher’s
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influential letter [8]. The conventional Hermitian formulation
of quantum mechanics has been declared there over-restrictive.
The authors illustrated their idea via a hypothetical, manifestly
non-Hermitian ordinary differential Hamiltonian,

H = H (BB)(δ) = − d2

dx2
+ x2(ix)δ �= H †, (1)

living, for δ ∈ (0,2) at least, in the entirely conventional Hilbert
space L2(R). They came to the conclusion that in spite of the
manifest non-Hermiticity of the operator, its energy spectrum
is real, discrete and bounded from below, i.e., potentially
observable (rigorously, the conjecture was proved in [17]).
This property has been attributed to the PT symmetry of
the Hamiltonian, where P means parity while the antilinear
operator T simulates time reversal [11].

At the beginning of the new millennium, the resolution
of the apparent contradiction between the manifest non-
Hermiticity of Bender’s and Boettcher’s Hamiltonian and the
strict reality of the bound-state energies was found in the older,
quasi-Hermitian formulation of quantum mechanics [10,12].
The idea has been widely accepted, mostly under the name of
PT -symmetric quantum mechanics (PTQM).

As a consequence of subsequent developments, the modern
theoretical description of unitary quantum systems is now
already partitioned into the so-called Hermitian and non-
Hermitian branches. The former branch is thoroughly ex-
plained in conventional textbooks [1]. For an introduction to the
latter, PTQM-inspired philosophy the reader is recommended
to consult, e.g., the well-written reviews [11,12] (cf. also the
nonstationary extension of the formalism as introduced in [13]
and reviewed in [14]). It is worth emphasizing that only the
proper use of the PTQM-inspired formulation of quantum the-
ory endowed, e.g., the first-quantized Klein-Gordon equation
of textbooks, almost a full century after its introduction, with
a correct and consistent probabilistic interpretation [18].

From a pragmatic point of view of experimental physics,
one of the most important innovations characterizing the
nonstandard PTQM models may be seen in their capability of
reaching the very boundary of the unitary and stable dynamical
regime. For example, the spectrum of the toy model (1) is
real (i.e., in principle, compatible with the unitarity of the
evolution) at all of the non-negative exponents δ � 0. This
spectrum, nevertheless, immediately loses these properties at
an arbitrarily small negative δ < 0, where the reality of the
energies only survives for a finite, δ-dependent number of
low-lying levels [8].

In the extensive dedicated literature, the sudden loss of
stability of a system at certain parameters and couplings is
usually interpreted as the spontaneous breakdown of PT sym-
metry [11]. This loss may be interpreted as a quantum phase
transition of the first kind [4] and/or as a cusp-like quantum
catastrophe [19]. Various simulations of such an abrupt loss of
the observability of the energy made the PTQM formalism
also enormously popular among mathematicians [16] and
nonquantum theoreticians and experimental physicists [20,21].

B. Scattering states: Giving up the unitarity

During the birth of the PTQM formalism, the conventional
self-adjoint phenomenological Hamiltonians h = h† (with the

robust reality of the spectrum) were declared not sufficiently
flexible. The innovated models sampled by Eq. (1) were found
to be compatible with the above-mentioned hypothetical, phe-
nomenologically well motivated requirement of the possibility
of a merger and of a subsequent complexification of the energy
eigenvalues. In the context of physics, the phenomenon of
such a type has been interpreted as a spontaneous breakdown
of the PT symmetry of the system (see, e.g., the physics-
oriented review [11] for details). The mathematical essence
of the necessary generalization of the formalism has been
reconfirmed to lie in the non-Hermiticity of the operators with
real spectra. In the benchmark model (1) even the technical
constraint δ ∈ (0,2) has been found to be removable. After
an ad hoc, δ-dependent amendment of the integration contour
of x, the spectrum has been shown to stay real for all of the
non-negative real exponents δ ∈ [0,∞).

The loss of the reality of the spectrum occurred at δ = 0. It
was not too difficult to conclude that the evolution controlled
by the toy-model Hamiltonian (1) is deeply nonunitary at
δ < 0. A more sophisticated interpretation of the evolution
at δ ∈ (0,2) or at δ ∈ (0,∞) was needed of course, but the
necessary amendment of the theory was soon developed. In
brief, the evolution has been found to be unitary in an ad
hoc Hilbert spaceH(physical) �= L2(R) in which the Hamiltonian
itself [which is non-Hermitian in L2(R) where we write H �=
H †] is reinterpreted as self-adjoint [12].

One of the limitations of the applicability of the PTQM
approach was revealed by Jones [22]. He turned attention to the
dynamical regime of unitary quantum scattering and replaced
the bound-state Hamiltonian (1) by the point-interaction toy
model

H = H (HJ )(α,β,L) = − d2

dx2
+ αV(H )(x) + iβV(N)(x,L).

(2)

The conventional attractive delta-function interaction
V(H )(x) = −δ(x) [which is Hermitian in L2(R)] was
complemented there by a non-Hermitian but PT -symmetric
partner V(N)(x,L) = δ(x − L) − δ(x + L). After a detailed
analysis of the model, Jones’s ultimate recommendations
were discouraging. He came to the conclusion that one
cannot accept the fact that in the non-Hermitian picture the
scattering in-state waves “enter from both left and right” and
that there exists no interface of Hermitian and non-Hermitian
interaction, i.e., in his interpretation, a spatial separation
distance L ≈ L0 at which one could treat model (2) as both
quasi-Hermitian and purely Hermitian. In his own words, “the
physical picture changes drastically when going from one
picture to the other” so that “the only satisfactory resolution of
this dilemma is to treat the non-Hermitian scattering potential
as an effective one, and work in the standard framework of
quantum mechanics, accepting that this effective potential
may well involve the loss of unitarity when attention is
restricted to the quantum mechanical system itself and not its
environment” [9].

III. PHASE TRANSITIONS IN A BENCHMARK MODEL

In contrast to the abrupt and drastic physics-changing losses
of observability and/or of causality as mentioned above, the
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more subtle and “softer” energy-conserving quantum phase
transitions of the second kind do not seem to have attracted
the attention of experimentalists yet. We believe that such
attention could be attracted by our forthcoming conceptual
considerations.

A rarely emphasized theoretical possibility of the energy-
conserving phase-transition processes of the second kind
has already been noticed to exist in several less popular
PT -symmetric toy models [23–25]. Here, we are reopening
the discussion. We are persuaded that, in particular, Jones’s
scepticism is mathematically correct but that it is based, in the
context of physics, on a rather subtle misunderstanding. At an
arbitrary fixed set of parameters, indeed, the quasi-Hermitian
and Hermitian pictures of reality must be, by definition, strictly
equivalent [12]. In other words, the concept of an interface of
Hermitian and non-Hermitian interaction, i.e., a Hermitian–
quasi-Hermitian phase transition, can only be introduced as
a specific, model-dependent set of parameters D(interface) at
which the Hermitian and quasi-Hermitian representations of
a quantum system would coincide [26].

A. The existence of interface

According to the conventional, Hermitian quantum theory
of textbooks, the parameter- and time-dependent family of
matrices

h(c,t) =
[

−1 i
√

t2 − c

−i
√

t2 − c 1

]
(3)

can be perceived as an elementary sample of a phenomeno-
logical Hamiltonian representing a stable quantum system
S(conventional) if and 3 only if the matrix is Hermitian in the
preselected physical Hilbert space, i.e., say, in H(conventional) =
C2,

h(c,t) = h†(c,t), t2 − c � 0. (4)

The evolution of the underlying quantum system will be unitary
due to the Stone theorem [27]. In the Schrödinger picture this
evolution will be controlled by the conventional Schrödinger
equation

i
d

dt
|ψ(t)	 = h(c,t)|ψ(t)	 , |ψ(t)	 ∈ H(conventional). (5)

In the plane of parameters c and t the set of admissible values

D(conventional) = {(c,t) | c � t2}
will fill the space on, and below, the lower, thicker parabola of
Figs. 1 and 2.

According to the slightly less conventional versions of quan-
tum theory (cf. review [12]) the candidates (3) for Hamiltoni-
ans may be made phenomenologically acceptable whenever
the energies remain real and nondegenerate, i.e., potentially
observable. Thus, after an ad hoc amendment of the physical
Hilbert space, the conventional Hermiticity requirement can
be generalized and replaced by a more sophisticated but less
restrictive hidden Hermiticity called quasi-Hermiticity [28].
For our matrix (3) such an innovation of the theory would
imply that the unitarity of the evolution of the underlying
quantum system can be guaranteed even in a non-Hermitian

t

c
conventional non-Hermiticity

conventional Hermiticity

spectrum is
complexspectrum is

real

physical regime:
evolution is unitary

0

1

2

–1 0 1

FIG. 1. The loss of the conventional Hermiticity with the growth
of c across the thick curve, and the ultimate end of the observability of
the energy in c-t plane (the spontaneous breakdown ofPT symmetry,
thin curve) for toy-model Hamiltonian (3).

dynamical regime or, more precisely, whenever the easily
evaluated eigenvalues

E±(c,t) = ±
√

t2 + 1 − c (6)

satisfy the much weaker reality and nondegeneracy constraint.
Besides the above-mentioned “Hermitian” quantum systems
S(conventional) one can, therefore, speak also about the non-
Hermitian but still unitary quantum systems S(quasi-Hermitian).

B. Quasi-Hermitian regime

In light of Eq. (6), the quasi-Hermitian extension of the
scope of quantum theory is feasible if and only if the parameters
c and t stay confined inside a complementary open set of
admissible parameters,

D(quasi-Hermitian) = {(c,t) | t2 < c < t2 + 1}. (7)

In Figs. 1 and 2 such a “quasi-Hermiticity” domain of the new
eligible parameters fills the curved-stripe space between the
two parabolas. The thicker parabolic curve lies in the middle
of the phenomenologically admissible physical domain

D(admissible) = D(conventional) ∪ D(quasi-Hermitian),

t

c

the domain of Hermiticity

quasi-Hermiticity
the domain of

unphysical domain

0

1

2

–1 0 1

FIG. 2. Hermitian–quasi-Hermitian interface [thick curve, Eq. (8)].
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which fills the whole space below the thinner parabola. Obvi-
ously, the lower, thick curve represents a well defined boundary
between the Hermitian (i.e., lower) and quasi-Hermitian (i.e.,
upper) unitary-evolution regimes. The Hamiltonian itself is
diagonal along this curve. We will call this curve an “interface,”

D(interface) = {(c,t) | c = t2}. (8)

We shall also slightly change here a few other notation
conventions. First, our toy model Hamiltonian will exclusively
be written in the lower-case format of Eqs. (3) and (4) on and
below the interface curve (8) of Figs. 1 and 2. In parallel, the
same matrix will be always denoted by the upper-case symbol
whenever the parameters get chosen above the interface,
making the matrix non-Hermitian,

H (c,t) =
[

−1
√

c − t2

−√
c − t2 1

]
�= H †(c,t), c > t2.

(9)

The key purpose of such a restriction is to underline that
the physics behind the different symbols [viz., behind h(c,t)
with c < t2 and behind H (c,t) with c > t2] is different, for
two reasons: not only because the parameters are different
but primarily because, in contrast to H (c,t) �= H †(c,t), the
self-adjoint operator h(c,t) may be assigned the conventional
spectral representation (cf. the account of such an aspect of the
theory in [29]).

Let us conclude that we do not need to care about the
description of the system in the Hermitian dynamical regime.
This would be purely routine and the details can be left to the
reader. In contrast, after the system passes the interface and
enters the quasi-Hermitian domain, multiple technical aspects
of its description become far from trivial.

IV. NONSTATIONARY QUASI-HERMITIAN
DYNAMICS IN NUCE

We shall need the time-dependent extension of the station-
ary PTQM formalism of Refs. [11,12] in the form proposed
in Ref. [13]. The name “three-Hilbert-space (3HS) formula-
tion of quantum mechanics” was coined and advocated for
this upgrade of the theory in subsequent compact reviews
[14,15,30]. Nontrivial applications of the resulting nonsta-
tionary 3HS approach are currently being sought [30–34].
Attention is being shifted from the stationary context to the
general time-dependent scenario in which the quasi-Hermitian
(i.e., in our notation, upper-case) and time-dependent generic
Hamiltonians H (t) are treated as isospectral to their Hermitian
(i.e., in our notation, lower-case) alternative representatives

h(t) = �(t) H (t) �−1(t) = h†(t). (10)

In our present study of matrix models, the ad hoc construction
of a suitable invertible (often called Dyson’s) map �(t) is just
a routine linear-algebraic procedure. As long as relation (10)
may be rearranged to read

H †(t) �(t) = �(t) H (t), �(t) = �†(t)�(t), (11)

the matrix operator H (t) may be declared quasi-Hermitian
whenever we manage to find �(t) and �(t) such that Eq. (11)
is satisfied.

A. The doublet of Schrödinger equations

In Refs. [14,15] the ultimate, nonstationary 3HS version
of the quasi-Hermitian quantum theory is characterized as
a representation of a quantum system S(quasi-Hermitian) which
is based on the simultaneous use of the three representative
Hilbert spaces H(first), H(second), and H(conventional). The ket
vectors |ψ〉 ∈ H(first) are assumed to coincide with the kets
|ψ〉 ∈ H(second). In the nuclear-physics exemplification [10],
both of them describe the “effective” bosons while the “real”
nucleons, fermions, have to be represented by different, spiked-
ket symbols |ψ 	∈ H(conventional).

The mutual correspondence

|ψ(t)	= �(t) |ψ (t)〉. (12)

between the kets is just a time-dependent generalization of
Dyson’s old idea [13,35]. In its spirit one inserts ansatz (12)
in the conventional lower-case Schrödinger equation sampled
by Eq. (5), which lives in the Hilbert space H(conventional) of
textbooks. This insertion leads to the equivalent equation

i
d

dt
|ψ(t)〉 = G(t) |ψ(t)〉, (13)

which is defined in both of the spaces H(first) and H(second). We
must only add that

G(t) = H (t) − �(t), �(t) = i�−1(t)

[
d

dt
�(t)

]
. (14)

We have to remind the readers that our instantaneous-energy-
operator H (t) is assumed to be defined in a “friendly” Hilbert
space H(first) in which it is non-self-adjoint even though it
possesses the real (i.e., in principle, observable) spectrum.
This is the reason why another, “sophisticated” Hilbert space
H(second) had to be introduced:

(1) The space H(second) is physical—it is constructed as a
unitarily equivalent to H(conventional), i.e., to the Hilbert space
of textbooks.

(2) The conventional space is, by assumption, “pro-
hibitively complicated” and useless [10,35]. Simplifications
are expected from our working in H(second) [12].

(3) The manifestly unphysical Hilbert space H(first) is
assumed to be friendly. It is, therefore, used as a carrier of
the representation of H(second) (realized via a modification of
the inner product).

Conceptually, the latter representation is easy. It merely
requires a replacement of the antilinear Hermitian conjugation
defining the first space,

T (first) : |ψ〉 → 〈ψ | ∈ (H(first))′ (15)

by its second-space bra-to-curly-ket analog

T (second) : |ψ〉 → {ψ | ∈ (H(second))′. (16)

For this purpose it is sufficient to postulate the identification

|ψ(t)	= �(t)|ψ(t)〉 = [�†(t)]−1|ψ(t)}. (17)

One of the most immediate consequences is the validity of the
conjugate-evolution Schrödinger equation

i
d

dt
|ψ(t)} = G†(t) |ψ(t)}. (18)
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Another, equally useful consequence is that the conventional
textbook orthogonality and/or orthonormality relations in the
“prohibited” space H(conventional) become equivalent to the
biorthogonality and/or biorthonormality relations in the “rec-
ommended” space H(second),

≺ψ1|ψ2 	 = {ψ1|ψ2〉. (19)

Once the latter space is always represented in the friendly,
auxiliary Hilbert spaceH(first), one simply defines |ψ} = �|ψ〉
[14].

B. The doublets of Heisenberg equations

The variability of the Dyson maps with time forces us to
realize that even if the observable quantity represented by a
lower-case operator λ is chosen to be time-independent, its
isospectral partner would vary with time, anyhow. Still, in [36]
we revealed that working with the nonstationary lower-case
operators is truly tedious, so that we will keep assuming here
that λ = λ† �= λ(t) in H(conventional). Then we may Dyson-map

λ → 
(t) = �−1(t) λ �(t). (20)

The straightforward differentiation of this product leads to the
operator differential equation of Heisenberg type,

i
d

dt

(t) = 
(t)�(t) − �(t)
(t). (21)

Again, the self-adjointness inH(conventional) is translated into the
quasi-Hermiticity in H(first),


†(t) = �(t)
(t) �−1(t). (22)

Whenever we wish to keep the trace of the observability
explicit, it makes sense to work, in parallel, with the second
Heisenberg equation

i
d

dt

†(t) = 
†(t)�†(t) − �†(t)
†(t). (23)

In the special case of the observable energy H (t) in the
conservative scenario with h �= h(t), the pair of Eqs. (21) and
(23) could be also used and, in this case, modified:

i
d

dt
H(t) = G(t)H(t) − H(t)G(t). (24)

An independent comment can be made concerning the metric
operator, for which one starts from the elementary mathemat-
ical identity

i
d

dt
�(t) = �(t)�(t) − �† (t)�(t) (25)

and deduces its equivalent alternative

i
d

dt
�(t) = G† (t)�(t) − �(t)G(t). (26)

In the recent paper [15] the direct solution of Eq. (26) was
discouraged as tedious, inefficient, and not always necessary.
Still, one could try to solve this differential equation for
operator �(t), numerically, in some sufficiently elementary
special cases. This was done, e.g., by Bíla [37] and, later, by
several other teams of researchers [34]. All of these authors
revealed and pointed out that the resulting operators of the
Hilbert space metric �(t) seem to be enormously sensitive

not only to the properties of the generators G(t) but also to the
initial choice of �(t) at the preparation time, i.e., in our present
physical context, at the interface, i.e., at the instant t = t0 of
the phase transition.

V. PHYSICS OF QUASI-HERMITIAN
HAMILTONIANS IN NUCE

In our present model-based analysis of the phenomena con-
nected with the existence of the Hermitian–quasi-Hermitian
interface, we may follow the conventional textbooks and use
trivial �(c,t) = I whenever (c,t) ∈ D(conventional), i.e., in the
Hermitian regime. In the more sophisticated regime with
(c,t) ∈ D(quasi-Hermitian), a nontrivial �(c,t) �= I will be needed.
After such a generalization the formalism becomes perceivably
more complicated.

A. Terminology

The information about the (say, unitary) time evolution
of a given quantum system S can be carried by its wave
function ψ(t) (one then speaks about the Schrödinger picture
of the reality, SP [38]), or by the relevant observables q(t)
(in the so-called Heisenberg picture, HP [39]), or both (in
the universal Dirac’s alias interaction picture, IP [1]). In
the light of recent theoretical developments (cf., e.g., the
dedicated book [16]) one can further distinguish between the
so-called Hermitian and non-Hermitian versions of the respec-
tive alternative formulations of the quantum dynamical laws.
Thus, the traditional reviews of the Hermitian formulations
(e.g., [40]) may be complemented by detailed outlines of
the non-Hermitian Schrödinger picture (NSP, [11,12]), of the
non-Hermitian Heisenberg picture (NHP, [36,41]) and/or of
the non-Hermitian interaction picture (NIP, [13–15,42]).

The shared feature of all of the innovative non-Hermitian
pictures is that they work with the operators of observables
[say, Q(t)] which are only non-Hermitian in an auxiliary,
mathematically strongly preferable and technically friendly,
but plainly unphysical Hilbert space H(first). In this sense the
widespread use of the term “non-Hermitian operators” [so that
one writes Q(t) �= Q†(t)] is mathematically correct (in H(first))
but conceptually misleading. This is because all of our “exotic”
observables Q(t) may be reinterpreted as traditional and self-
adjoint immediately after one replaces the auxiliary, “false”
Hilbert space H(first) by its manifestly physics-representing
“standard” amendment H(second).

The survival of the misleading terminology had a few
pragmatic and/or historical reasons. The main one is that the
“correct” physical Hilbert spaceH(second) is in fact never used in
practice. In the majority of applications it is either represented
inH(first) (see the preceding section) or replaced by its unitarily
equivalent avatar H(conventional). In the former case one should
better write, e.g., Q(t) = Q‡(t) := �−1(t)Q†(t)�(t).

In the literature, the notation is far from being unified.
For example, in the stationary quasi-Hermitian formalisms,
our present symbol � (denoting the special, time-independent
physical Hilbert-space metric) is just a greek transliteration of
the symbol T used in the oldest review [10]. For the same
operator, an entirely different, subscripted symbol η+ was
introduced by Mostafazadeh [12]. Equivalently, people also
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FIG. 3. Constant-c energies E±(c,t) of Eq. (6) in the Hermitian regime (left graph) and on its boundary (right graph).

use the special �’s equal to the products PC of parity with the
(Hamiltonian-dependent) charge [11].

B. Measurements

From the point of view of experimentalists, the evolution
of any quantum system controlled by the equations of the
preceding section must be initiated by the preparation of
the system (say, in a pure state) at an “initial” time (say, at
t = 0). Subsequently, the verification of the predictions is to be
performed using the measurement over the system at a suitable
“final” time t = T > 0. It is well known that “before the
phase transition,” i.e., in the conventional Hermitian regime,
the matrices �(c,t) = �(c,t) = I may be kept trivial so that,
in the 3HS language, all three Hilbert spaces coincide and the
upper- and lower-case Hamiltonians are allowed to coincide as
well: h(c,t) = H (c,t). This means that in the conventional dy-
namical regime one just follows the textbooks. The predictions
concerning, say, a time-dependent observable q(t) are simply
obtained via the routine evaluation of the mean-value overlaps

≺ψ(T )|q(T )|ψ(T )	 , (27)

where the time-dependence of the operator q(t) is assumed
to be prescribed in advance and where the time-dependence
of the wave functions |ψ(t)	 is obtained by the solution of
Schrödinger equation (5).

After the quantum system in question passes the Hermitian–
quasi-Hermitian interface and after it continues evolving
in its quasi-Hermitian phase, the latter formula defined in
H(conventional) may be declared intractable because we are only
given now our Hamiltonian [i.e., its toy model sample H (c,t)]
in its non-Hermitan form [cf. Eq. (9)]. Our overall method
assumptions force us to use the general 3HS formalism and, in
particular, the nontrivial forms of the Dyson maps �(t) �= I .
Also just the upper-case representations of the observables
may be assumed tractable. In the light of Eqs. (10) and (20)
[in its specification Q(t) = �−1(t) q(t) �(t)], this means that
the lower-case representatives of the observables become un-
known and different from their upper-case avatars. Fortunately,
in the general 3HS setting the knowledge of the lower-case
observables is superfluous due to the identity

≺ψ(T )|q(T )|ψ(T )	 = {ψ(T )|Q(T )|ψ(T )〉. (28)

Thus, it is sufficient to evaluate just the right-hand-side expres-
sion in practice.

C. Instantaneous energies

Via Figs. 1 and 2 we discussed, in Sec. III, the influence and
the consequences of the growth of parameter c at a given time
t . For the purposes of the study of dynamics in the language
of the above-outlined nonstationary 3HS formalism, it makes
better sense to keep the parameter c unchanged and to check
what is happening during the evolution of the system in time.

What is of primary interest is the time dependence of the (in
principle, measurable) instantaneous energies as prescribed by
Eq. (6). In the two graphs of Fig. 3, let us sample the conven-
tional scenario in which the energies exhibit a characteristic
pattern of the so-called avoided crossing.

In the subsequent example of Fig. 4 we see that the same
avoided crossing behavior remains unchanged even if we
move to a non-Hermitian but still quasi-Hermitian dynamical
regime with c ∈ (0,1). From the spectrum itself one could
hardly guess that a nontrivial Hilbert-space metric �(t) �= I

must be constructed in the interval of t ∈ (−√
c,

√
c). Inside

this interval we have (c,t) ∈ D(quasi-Hermitian) so that the prob-
abilistic interpretation of the nonstationary quantum system
in question becomes nontrivial. The predictions of the results
of instantaneous measurements must be calculated using the
right-hand-side expression in formula (28) of course. In other
words, besides the necessity of the solution of the pair of
Schrödinger equations (13) and (18), also the time-dependence
of the generic observables must be deduced from the solution

time

energy

(c=3/4)

AA

–1

1

2

3

–3 –2 –1 1 2 3

FIG. 4. Constant-c energies (6) in the partially quasi-Hermitian
regime. The two arrows mark the interval of non-Hermiticity with
boundaries t(interface) = ±√

c ≈ ±0.866.
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time

energy

(c=3/2)
–2

2

–2 2
time

energy

(c=1)
–2

2

–2 2

FIG. 5. Real parts of the constant-c energies (6) at the boundary of the quasi-Hermitian regime (left graph; notice the degeneracy at t = 0)
and beyond (right graph).

of the underlying Heisenberg-like equations as discussed in
Ref. [15] in full detail, and as sampled in Sec. IV B above.

We saw that in our toy models of Sec. III A the avoided-
crossing behavior of the spectrum is shared by the negative-
parameter regime with c < 0 (where the Hamiltonian is safely
Hermitian) and by the partially quasi-Hermitian regime at
small and positive c ∈ (0,1). The purely Hermitian description
only survives there at such times that t2 > c; cf. Fig. 1. In con-
trast, a drastic qualitative change of the spectrum occurs when
we choose a larger value of c � 1. This is illustrated by Fig. 5,
where the left graph with c = 1 samples the rather remarkable
“unavoided-crossing” spectral anomaly, and where the right
graph samples the c > 1 scenario in which the energies cease
to be real in the interval of t ∈ (−√

c − 1,
√

c − 1).
The two instants t± = ±√

c − 1 of the “quantum catas-
trophe” [19] mark the collapse of the system and reflect
the spontaneous breakdown of its PT symmetry [11]. In
mathematics these values are called “exceptional points” [43].
Inside the interval of t ∈ (−√

c − 1,
√

c − 1) our toy model
Hamiltonian H (c,t) of Eq. (9) is not even quasi-Hermitian. It
ceases to describe any physical reality whatsoever. In contrast,
once we restrict attention, say, to the left half-line of time
t ∈ (−∞,−√

c − 1), the importance of the Hermitian-to-non-
Hermitian interface (8) is enhanced because its existence now
represents a gate and one of conditions of the realization of
the evolution leading to an ultimate fall of the quantum system
into instability. This makes the models with c > 1 theoretically
relevant, phenomenologically appealing, and method-wise
truly interesting.

VI. BENCHMARK MODEL: PROBABILISTIC
INTERPRETATION

Whenever we are given the operators of observables and
whenever we find the metric � compatible with relations
(22), we may factorize � → � and formulate the dynamical
evolution equations. The recipe (cf. Ref. [15]) was thoroughly
described above. For its present new application let us now
return to matrix (9) with parameters c (coupling) and/or t

(time) localized, in the c − t f plane, between the two parabolic
curves of Fig. 1. Once we assume that the parameters lie not
too far from the lower parabola (i.e., from the interface of our
current interest), matrix (9) can be perceived as the operator
of an observable energy. It characterizes our hypothetical
quantum system, which was initially Hermitian but which

suffered the phase transition. This means that the parameters
were slightly changed. The system passed the Hermitian–
quasi-Hermitian interface but in the new dynamical regime
the evolution is still unitary.

A. Metric operator

In the quasi-Hermitian regime the physical contents of our
real Hamiltonian matrix H (c,t) of Eq. (9) are given by the real
and symmetric matrix

�(c,t) =
[
a(c,t) b(c,t)

b(c,t) d(c,t)

]
= �†(c,t) > 0 (29)

of the Hilbert-space metric. Compatibility condition (11) may
be checked to hold if and only if b(c,t) = γ (c,t)u(c,t), where
γ (c,t) = √

c − t2 and u(c,t) = [a(c,t) + d(c,t)]/2. In this
notation the energy eigenvalues (6) acquire the transparent
form E± =

√
1 − γ 2(c,t) so that with γ (c,t) = sin τ (c,t) all

the information about our quasi-Hermitian input Hamiltonian
is reduced to the specification of τ (c,t) ∈ (0,π/2). Effectively,
this parameter measures the distance from the interface (8).

What remains for us to guarantee is the positivity of the
metric. This means that with v(c,t) = a(c,t)d(c,t) both of its
eigenvalues θ± = u ±

√
(1 + γ 2)u2 − v > 0 must remain real

[i.e., we must have v � (1 + γ 2)u2] and positive (i.e., we must
require u > 0 and v > γ 2u2). This enables us to reparametrize
v = v(u,ξ ) = γ 2u2 + u2 cos2 ξ with ξ ∈ (0,π/2). The
change v → ξ also simplifies θ± = (1 ± sin ξ )u. Thus, the
entirely general form of the metric will vary with the two
free parameters, viz., with u = u(c,t) ∈ (0,∞) and with
ξ = ξ (c,t) ∈ (0,π/2).

The backward changes of parameters yielding the explicit
form of metric (29) are trivial. The derivation of the formulas
is left to the readers. With this being done, the first step of the
construction of the model would be completed. What would
have to follow in applications would be the factorization of the
metric into Dyson maps �(c,t), the construction of operators
�(c,t) and G(c,t) [cf. Eq. (14)] and, finally, the solution of the
Schrödinger and Heisenberg equations.

B. Physics near the interface

One of the key messages delivered by the preceding sub-
section is that, due to the nonstationarity of our toy model
Hamiltonian H = H (c,t) ≡ H [γ ], one can select its physical
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interpretation out of a two-parametric menu of the eligible
metrics � = �(γ,u,ξ ), i.e., of the physical Hilbert spaces
H(second)(γ,u,ξ ), i.e., of the metric-dependent sets of the quasi-
Hermitian operators of observables 
 = 
j (γ,u,ξ ) with j =
1,2, . . . [cf. Eq. (22)].

The concrete specification of our present quasi-Hermitian
model as a system which was created by its passage through
the interface has two important consequences for our method.
First, it makes sense to simplify our task and to restrict the scope
of our analysis to the very small vicinity of the interface, i.e.,
to the very small (though still positive) values of the dynamical
input-representing parameter γ � 1, i.e., of the rescaled time
initiated at the instant of the phase transition. Second, we
have to postulate that all of the changes of the system with
time should be smooth. In particular, this means that the two
eigenvalues θ± = (1 ± sin ξ )u of the metric should be smooth
functions of γ , i.e., the difference u − 1 and the size of the
second parameter ξ should remain small at the small “rescaled
times” γ � 1.

Due to the elementary two-by-two matrix nature of our
present benchmark example, we can make use of the available
explicit formulas and we could easily deduce the explicit forms
of the corresponding illustrative power-series expansions. It
is, method-wise, more important to notice that the explicit
construction of the approximations can proceed, in fact, in an
entirely model-independent manner. One only has to consider
a generic quasi-Hermitian γ -dependent Hamiltonian (i.e., say,
its arbitrary non-Hermitian N -by-N real-matrix exemplifica-
tion with real eigenvalues) which is defined, near the interface,
by its Taylor series,

H [γ ] = H [0] + γ H ′[0] + O(γ 2). (30)

On the interface we have H [0] = H †[0] of course. We can
combine this general dynamical input information with a
parallel perturbation-series ansatz for the related metric near
the interface,

�[γ ] = I + γ K + O(γ 2). (31)

After insertion in Dieudonné’s compatibility condition (11),
this will yield the first-order perturbation version of the
constraint,

H †[0] K − K H [0] = H ′[0] − (H ′[0])†. (32)

Routinely, this equation is to be solved, for K , by a suitable
linear algebraic algorithm. In a similar spirit one could also
proceed in the higher-order perturbation constructions (we
defer these technicalities to a more mathematically oriented
future publication).

VII. DISCUSSION

A. Ambiguities

In the present application of the nonstationary quasi-
Hermitian theory, we were only given the observable of
energy in its manifestly non-Hermitian matrix representation
(9). This implies that Dieudonné’s equation (22) can only
be interpreted as a mere self-consistent restriction upon our
choice of operators [say, of h(c,t) and �(c,t)] rather than as
their unambiguous specification. This type of ambiguity was

thoroughly discussed in Ref. [10]. In the context of physics
the most elementary method of the removal of the ambiguity
of the specification of operators h(c,t) and �(c,t) may be
based on certain additional phenomenological assumptions.
Besides the observability of the energy we may also require
the existence of another (generic) observable represented,
say, by a self-adjoint operator q(c,t) = q†(c,t) [or operators,
not necessarily (c,t) dependent] or by its/their upper-case
isospectral quasi-Hermitian avatar(s),

Q(c,t) = �−1(c,t) q(c,t) �(c,t). (33)

The mapping �(c,t) itself remains the same as before. This
means that the Hermiticities of the lower-case operators can be
simply reinterpreted as the respective Dieudonné’s [28] quasi-
Hermiticity properties (22).

B. Interfaces

Quantum phase transitions are usually interpreted as a
breakdown of the unitarity of the evolution, which is connected,
in the light of the well known Stone’s theorem [27], with
an abrupt change of the effective Hamiltonian, i.e., with the
sudden emergence of some new relevant degrees of freedom.
Still, there exist the quantum evolution processes during which
the Hamiltonian remains unchanged and during which the
responsibility for the phenomenon of the phase transition is
transferred to a redefinition of the underlying physical Hilbert
space. In 1992, for example, Scholtz et al. [10] introduced
a sophisticated non-Hermitian boson-field generalization of
the so-called Lipkin-Meshkov-Glick model. These authors
demonstrated (cf. Fig. 1 in [10]) that the system exhibits a
phase transition which is not caused by a modification of the
operators of the observables themselves.

In the real world of experimental physics, the passage of
a given quantum system through its phase transition instant
t0 is usually assumed to proceed very slowly, in an adiabatic
dynamical regime. Unfortunately, the authors of Ref. [44]
demonstrated that in non-Hermitian cases such an approx-
imation strategy need not be applicable in quasi-Hermitian
quantum mechanics in general. In the light of the relevant
review papers (cf., e.g., [15]), the transition from the well
known Hermitian formalism of textbooks to the slightly coun-
terintuitive quasi-Hermitian picture of dynamics may also lead
to several other theoretical as well as purely mathematical
consequences. On the theoretical side one must emphasize that,
after the passage through the interface, the observability status
of the energies themselves remained, by the construction of
our illustrative model, unchanged. Formally, this means that
in place of the pre-passage Hermitian lower-case matrix (3)
living, by definition, in the Hermitian dynamical regime with
(c,t) ∈ D(conventional), i.e., with c � t2, the role of the energies
was changed and played by the (strictly real) eigenvalues of
the new, non-Hermitian matrix (9).

The passage from model (4) to its phenomenologically
acceptable continuation (9) was postulated to be smooth. After
one leaves the safe textbook half-plane with c � 0 and after
one moves to small and positive c’s, one does not observe any
qualitative changes in the time dependence of the energy levels
at the instants of transition t = ±√

c. Incidentally, a similar
smoothness characterizes the phase transition occurring in the
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Lipkin-Meshkov-Glick-type model of Ref. [10] (cf. Fig. 2 in
that work). In our present model, this smoothness (i.e., the
phase transition of the second kind [4]) is illustrated by Fig. 4,
where the smooth spectral shape does not offer any indication
that in the interval of times t ∈ (−√

c,
√

c) (indicated by the
two thin markers below the curves) the Hermitian matrix (3)
gets replaced by its non-Hermitian continuation (9).

VIII. CONCLUSIONS

From a historical perspective, it was fortunate that during
the birth of quantum mechanics people did not pay too much
attention to the elementary hydrogen-type quantum systems
in which the electrons (i.e., fermions) would be replaced by
pions (i.e., bosons). This almost certainly would have slowed
down the early stages of development. The experiments would
be found to disagree with the theory and the theory would
suffer from the emergence of multiple theoretical challenges
including, first of al, the manifest non-Hermiticity of the
underlying relativistic Klein-Gordon Hamiltonian (cf., e.g., pp.
357–360 in [3] for more details). Some of these conceptual
questions remained, for a long time, unanswered (cf., e.g., the
related remark on p. 349 in [3]).

The much-delayed consequent resolution of the problem
was only published, ca. 15 years ago, in Ref. [18]. An
acceptable probabilistic interpretation of the pionic-atom-like
quantum mechanics was based there, in essence, on the appli-
cation of the concept of the quasi-Hermiticity. Unfortunately,
the solution of the Klein-Gordon puzzle was still incomplete,
based on the very strong assumption that the system in question
is static (cf., e.g., Theorem 2 in Ref. [12]). In other words, for
pionic atoms the Klein-Gordon Hamiltonians were only shown
to describe the critical quantum phenomena (e.g., the complex-
ification of the energies) in an adiabatic approximation.

The approximation-free 3HS formalism able to provide a
complete description of the processes of quantum degeneracies
was formulated only very recently (see, e.g., Ref. [15], with
further references listed therein). In our present paper we
imagined that it would be desirable to apply such a formalism
to the evolution of systems which happen to pass from the
Hermitian to the quasi-Hermitian dynamical regime. Via an
elementary illustrative example, we explained the key ideas of
the approach and we demonstrated that the detailed description
of an elementary toy model is able to shed light on multiple
conceptual questions. Among them, we made it clear that

(1) the analysis restricted to the mere description of the
energy levels need not provide any hint that the system is going
to pass through a quantum phase transition;

(2) the traditional textbook versions of quantum theory
based on work with the fixed physical Hilbert space and with
the operators of observables which are self-adjoint in this space
admit extensive generalizations;

(3) one of these generalizations has been developed and
discussed here via an elementary benchmark model in which
the dynamical input knowledge has the form of a given non-
Hermitian and time-dependent energy operator H (c,t) with
real spectrum.

Finally, the study led to the rather optimistic conclusion that
the 3HS formalism is able to provide a consistent and math-
ematically correct representation of physical reality in which
the description of the passage of a quantum system through
its Hermitian–quasi-Hermitian interface exhibits a number
of close analogies with its simpler, adiabatic-approximation
predecessors.
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