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Gravitationally self-bound quantum states in unstable potentials
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Quantum mechanics at present cannot be unified with the theory of gravity at the deepest level, and to guide
research towards the solution of this fundamental problem, we need to look for ways to observe or refute predictions
originating from attempts to combine quantum theory with gravity. The influence of the gravitational field created
by the material density given by the wave function itself gives rise to nontrivial phenomena. In this study I consider
the wave function for the center-of-mass coordinate of a spherical mass distribution under the influence of the
self-interaction of Newtonian gravity. I solve numerically for the ground state in the presence of an unstable
potential and find that the energy of the free-space bound state can be lowered despite the nontrapping character
of the potential. The center-of-mass ground state becomes increasingly localized for the used unstable potentials,
although only in a limited parameter regime. The feebleness of the energy shift makes the observation of these
effects demanding and requires further developments in the cooling of material particles. In addition, the influence
of gravitational perturbations that are present in typical laboratory settings necessitates the use of extremely quiet
and controlled environments such as those provided by recently proposed space-borne experiments.
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I. INTRODUCTION

For quite some time, uniting quantum mechanics with
general relativistic gravity has been a problem at the forefront
of physics, and it remains an unsolved problem at the deepest
fundamental level [1–3]. Quantum mechanics of objects in an
external gravitational field, on the other hand, is unproblematic,
and both interference [4] and the effects of transverse bound
states have been demonstrated experimentally for neutrons
in gravitational fields [5]. Cesium atoms have been sent
bouncing multiple times in a stable gravitational cavity [6]
experiencing the acceleration due to earth’s gravitational field.
Atom interferometry has been performed with path separations
that are half a meter in size, showing that quantum mechanics
of massive, albeit very light, objects applies to macroscopic
separations [7].

Moving beyond trivial effects of external fields will require
the observation of quantum behavior of larger bodies. One pro-
posed avenue for extending quantum mechanics to solid bodies
approaching macroscopic sizes, quantum optomechanics, is a
fast-developing field [8] and experiments on massive objects
in the quantum regime have been proposed [9,10], some that
even include living organisms [11]. These experiments start
approaching the traditional quantum-classical boundary [12],
and one characteristic of classical bodies is that they are sources
of a gravitational field. A framework for uniting quantum
mechanics with static Newtonian gravity exists [13,14], and
the phenomenology of quantum mechanics of self-gravitating
degenerate systems has already been studied theoretically for
some time [15]. The detection of self-gravitational effects in
quantum systems [16] will have profound influence on physics,
even at the interpretational level [17]. It is therefore important
to investigate what possible phenomena exist and further to
investigate whether or not they are within the reach of present
and planned experiments. Quantum descriptions of extended
self-gravitating objects raise questions of a fundamental nature,

and issues regarding the framework are actively studied [18,19]
as are properties of the resulting equation, presently known
as the Newton-Schrödinger equation [13,14,20–23]. For a
nonrelativistic system under the influence of mutually and
self-interacting gravitational fields [13], the state is determined
by the stationary Schrödinger equation. In earlier works, the
system of a free, self-gravitating spherical mass was shown to
have a bound state with two different regimes [20,24].

Here I investigate the effects of adding an external potential
to the system and discuss limits for observing them. Earlier
studies investigated the effect of self-gravity on the dynamics
of squeezed states [22], and energy shifts of bound states of a
trapping harmonic potential [21]. The investigations here are
done for masses that are low enough to experience quantum
effects due to the extended density distribution. In Sec. II the
theoretical framework is outlined and in Sec. IV the results
of the main studies in this paper are reported. In Sec. V the
results of the preceding section as well as conditions needed
to observe them are discussed.

II. THEORY

For a homogeneous solid sphere described using quantum
mechanics, we expect that the intrinsic position uncertainty of
the individual atoms will result in a matter density ρM (�r) spread
out to a finite spatial extent. In principle, the system is governed
by a many-particle wave function describing all the individual
particles that constitute the sphere and the resulting dynamics
are of a prohibitively high dimension for exact analytical treat-
ments. In practice, a separation into center-of-mass and relative
coordinates [17] gives rise to a solution for the former due to
the electromagnetic interparticle interaction, the familiar bulk
solid. The solid has a characteristic energy far larger than that
possible for the remaining center-of-mass problem. This pro-
cedure results in the center-of-mass wave function �(�r) being
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treated as an independent dynamical entity. Here I will focus on
a solid sphere as the material object. Combining the separation
procedure with a continuum approximation for the solid
density drastically simplifies the treatment, and for the center-
of-mass description this leads to appearance of averaged
phenomena in the low-energy regime. For instance, a simplified
expression for the density distribution is given by

ρM (�r) = ρ0

∫
R3

�(|�r − �r ′| < 2R)|�(�r ′)|2dV ′, (1)

where ρ0 corresponds to the bulk density determined by the
solution for the relative coordinates in the variable separated
many-body problem and R is the radius of the solid sphere.
This material density has a spread in space due to the position
uncertainty of the center-of-mass wave function �(�r). Under
reasonable assumptions ρM (�r) can be taken to act as a physical
source for a gravitational field UG(�r) [17], which will then be
governed by a Poisson equation

∇2UG(�r) = −4πGρM (�r). (2)

The formal solution to Eq. (2) for the gravitational field UG(�r),
with (1) as a source, is given by the integral representation

UG(�r) = −G

∫
R3

ρM (�r ′)
|�r − �r ′|dV ′. (3)

The solution (3) for the case of a homogeneous solid sphere,
in principle, a six-dimensional integral, can be simplified to a
three-dimensional integral over the center-of-mass coordinates
as

UG(�r) =
∫
R3

VG(|�r − �r ′|)|�(�r ′)|2dV ′. (4)

The integral kernel VG(|�r − �r ′|) can be interpreted as the grav-
itational potential at the position �r due to a mass distribution
centered at the position �r ′. A homogeneous solid sphere has a
constant density within a radius R and the integration kernel
at a radial distance r = |�r| from the center has been calculated
analytically [20,25] and is given by

VG(r) =
{

−GM2

R

[
6
5 − 2

(
r

2R

)2 + 3
2

(
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5

(
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)5]
if r

2R
� 1

−GM2

r
if r

2R
> 1

(5)

For distances outside 2R, the kernel is identical to the potential
due to a pointlike distribution, whereas inside 2R, the spherical
symmetry leads to shielding of the exterior fraction of the mass.
As a result, only the internal mass fraction will contribute,
leading to an approximately parabolic dependence of the
potential for small distances of the effective potential. For
intermediate distances there is a transition zone joining the
two regimes in a smooth manner, thus interpolating between
the behavior of a pointlike and that of an extended distribution.

Using the effective gravitational potential in Eq. (4), the
center-of-mass wave function of a charge-neutral solid sphere
under the influence of the Newtonian gravitational potential
produced by the density ρM (�r) is governed by the time-
dependent integro-differential equation

ih̄
∂�(�r)

∂t
= − h̄2

2M
∇2�(�r) +

∫
R3

VG(�r − �r ′)|�(�r ′)|2dV ′

+VB (�r)�(�r), (6)

where VB(�r) is an arbitrary external potential. Equation (6)
is known as the Newton-Schrödinger equation, here written
down for the case of a spatially extended mass and with an
external potential added. Separation into the time-independent
case is straightforward and can be done in the usual manner.
The gravitational interaction term in Eq. (6) leads to bound
states even for free particles, i.e., in the absence of any trapping
potential. The dependence on mass and density of these free-
space bound states was investigated in a previous study [24].
For high masses the quantum state is largely determined by
the quadratic part of the potential, whereas for low masses the
behavior is well approximated by that of a single pointlike
particle [26]. In the latter case the extent of the wave function
is much larger than the material distribution, which then

effectively is that of a point source. A crossover between the
two regimes is found at approximately 2 × 10−17 kg.

III. METHOD

With the framework presented in the preceding section in
place, the next step is to solve Eq. (6), which is a nonlinear
integro-differential equation with no presently known exact
analytical solutions, and there are few reasons for believing that
any will exist. All solutions are obtained by solving Eq. (6) with
the gravitational potential (5) in the integral kernel, by either
analytical approximations or numerical methods. Here I per-
form a numerical solution where the derivatives are calculated
using a pseudospectral method [27,28]. The wave function is
then computed in a discrete number of points with positions
determined by the explicit choice of pseudospectral basis. We
have for the two-dimensional cylindrically symmetric case we
consider here

�ij = �(ri,zj ), (7)

where ri and zi are the collocation points with indices

1 � i � Nr, 1 � j � Nz. (8)

Calculating derivatives of the wave function amounts to
performing a linear transformation on the discretized wave
function according to

∂�ij

∂r
≈

Nr∑
i ′=1

dii ′�i ′j , (9)

where the transformation coefficients di,j are matrix elements
of a pseudospectral differentiation matrix [28], which in
general is dense. Higher-order derivatives as well as mappings
for the other spatial variable are done in the same way. In
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addition, we have to deal with the effective interaction term
given by Eq. (4), where the integral can be calculated using
Gaussian integration [29]

UG(ri,zi) =
Nr∑

i ′=1

Nz∑
j ′=1

VG(ri ′,ri,zj ′ ,zj )|�i ′j ′ |2wr,i ′wz,j ′ , (10)

where wr,i ′ and wz,j ′ are the Gaussian integration weights
for each spatial dimension. The pseudospectral method im-
plemented with differentiation matrices taken together with
Gaussian integration represents the union of two methods
that both allow for exponential convergence with respect to
the basis size, which in turn guarantees high accuracy for
the calculation of the quantities of interest. As it stands, the
space-continuous wave function is now discretized and the
time-dependent integro-differential equation (6) is transformed
into a set of nonlinear ordinary differential equations

ih̄
∂�ij

∂t
= Hij ([�i ′j ′]), (11)

where the matrix-valued function H denotes the right-hand
side of Eq. (6), which is a nonlocal function of the wave
function, here denoted by the whole set of values [�i ′,j ′ ].
To obtain the ground state of the system, imaginary-time
propagation [30–32] can be used. The method consists in
mapping the time variable into imaginary time by

it = τ, (12)

which then transforms the time-dependent set of coupled
equations (11) into

h̄
∂�ij

∂τ
= −Hij ([�i ′j ′ ]), (13)

which is of diffusion type. As a result, eigenstates decay
exponentially with rates depending on the energy eigenvalues
of the right-hand side of Eq. (11) As the transformation into
imaginary time turns Schrödinger equations into diffusionlike
differential equations, the norm decays with propagated time
and the wave function must be renormalized between itera-
tions. The resulting equations are propagated stepwise in time
until convergence is reached. Demands for precision were set
by the requirement that for a free-space system, the lowest
energy obtained by solving the two-dimensional problem using
the method here coincided with a one-dimensional method
based on straightforward diagonalization and iteration up to a
sufficient accuracy. The nonlinear integro-differential equation
(6) is thus propagated to convergence, using a combination of
pseudospectral collocation and mapping onto imaginary time,
with the method of lines [33].

IV. RESULTS

As the first investigation, the ground-state energy was deter-
mined using Eq. (6) by solving the equation numerically until
convergence was reached, followed by repeating the procedure
for different values of the mass. In Fig. 1 the ground-state
energy for a sphere of fused silica is shown as a function of
total mass. For low masses, the system becomes weakly bound,
which is seen as a change in the slope of the ground-state
energy as a function of mass. Also shown in Fig. 1 is VG(0),

M (kg)
10-17 10-16 10-15

E (K)

-10-12

-10-14

-10-16

-10-18
Energy
V

G
(0)

FIG. 1. Ground-state energy as a function of mass for a self-
gravitating quantum sphere of fused silica in the absence of any
confining potential. The dotted line shows the bottom of the bare
gravitational potential VG(0) given by Eq. (5). For large masses the
ground state becomes strongly bound and is located close to the
bottom of the bare potential, as can be seen in the figure. For small
masses the system is weakly bound and a crossover between the two
behaviors can be seen at M ≈ 2 × 10−17 kg. This latter value of the
mass gives rise to a state with average radius of the center-of-mass
wave function comparable to that of the solid mass distribution.

the bottom of the bare potential given by Eq. (5). For high
masses, the ground-state energy is close to the bottom, whereas
for low masses it rapidly approaches zero. The weakly bound
states are spread out outside R, the radius of the bulk sphere,
and as a result the gravitational interaction becomes averaged
over a large region, resulting in a weak effective potential.
The gravitational interaction is then too weak to localize the
free-space quantum state enough for it to experience the inner
part of the effective potential sufficiently to become more
deeply bound. Averaging the self-interaction term over the
wave function thus effectively makes the potential shallower
for extended states.

In principle, there is also a dependence of UG(�r) on the den-
sity, which is often fairly weak and which becomes negligible
for sufficiently low masses where the size of the solid sphere is
irrelevant. A solid sphere of radius R and density � has a mass
M = 4π�R3/3, where the density of solid elements varies
from � = 534 kg m−3 for lithium to � = 22 610 kg m−3 for
osmium, the densest stable element. Here I use the density of
fused silica, � = 2210 kg m−3, as this material has been used in
experiments both for the cooling of the center-of-mass motion
in optical traps [34] and also for suggestions of experiments
probing the quantum-classical boundary [9].

Noting that the interior of the effective potential constitutes
a potential well of finite depth, it begs the question as to
whether or not the wave function can be made to probe
its bottom by any external manipulation. It turns out that
increased localization can be produced with the addition of
a trapping potential, which in turn could lead to a lowering
of the ground-state energy. A similar shift in energy happens
with Bose-Einstein condensates [35] with negative scattering
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FIG. 2. Picture of ground-state wave functions and equipotential
surfaces for two potential configurations that lower the energy: (a) a
vertical confinement configuration, as given by Eq. (14), and (b) the
radial confinement configuration given by Eq. (15).

lengths. In straightforward terms, the effect of a closed trapping
potential can be seen to increase the spatial localization and
thus enhance the effect due to the gravitational self-interaction
term, effectively lowering the ground-state energy. In quantum
mechanics, on the other hand, such regions in space, where
potential surfaces have saddle points, are dynamically avoided
since the quantum pressure will always produce an effective
force resulting in repulsion away from narrow regions. With
the gravitational interaction the situation is different as an
attractive nonlinearity can balance and even contribute more
than the increased repulsion due to the quantum pressure.
Here I present examples of potentials where the presence of
saddle points leads to a lowering of the ground-state energy
through increased localization. To investigate the behavior in
some detail, two different potential functions were used. Both
were chosen to be open and to have minima equaling zero at
the origin. As a result, these potentials do not support bound
states without the presence of the gravitational term in the
Hamiltonian. For the sake of simplicity, only systems with
cylindrical symmetry were used as this reduces the numerical
complexity of the calculations. The first system, which consists
of an axially symmetric harmonic binding in the z direction,
has a potential given by

VB(�r) = Mω2
z

2
z2e−r2/2
z2

, (14)

where ωz is the transverse oscillator frequency at the center
of the potential. Here the value M = 1 × 10−17 kg is used as
this is right at the boundary of the delocalized regime, yet
is large enough to give a fairly localized state. A contour
surface for the potential is shown in Fig. 2(a) together with
the resulting probability density as a shaded cloud for the

ω (fK)
10-3 10-2 10-1

Δ E (fK)

10-5

10-4

10-3

10-2

Radial
Vertical

FIG. 3. Lowering of the ground-state energy for potentials with
radial confinement (dash-dotted line) of the form given by Eq. (15)
and also for vertical confinement (solid line) as given by Eq. (14).

center-of-mass wave function. The potential becomes less
confined with increasing radial distance approaching zero far
from the z axis. The second potential, shown in Fig. 2(b), is
given by

VB(�r) = Mω2
r

2
r2e−z2/2
z2

, (15)

where ωr is the transverse oscillator frequency at the cen-
ter of the potential. This potential has a central narrowing
reminiscent of a quantum point contact [36–38]. For both
potentials (14) and (15) the numerical solutions showed that the
wave function localizes to the center of the potential despite
the fact that the quantum pressure is higher there as both of
the potentials have their narrowest regions at the origin. The
increased attraction from the gravitational interaction thus wins
over the increase in quantum pressure due to the repulsion from
the external potential. Lowering of the ground-state energy
of the system locally indicates that a quantum system will
seek these regions as they are energetically favorable. For both
potentials, the transverse binding strengths, as measured by the
transverse oscillator frequencies ωr and ωz, were varied and
the resulting equation was solved to determine the magnitude
of the lowering of the ground-state energy. The energy shift
was calculated as


E = E − E0, (16)

where E0 is the ground-state energy without the potential. The
energy shifts are shown in Fig. 3 as functions of the transverse
oscillator frequency for both cases of trapping. Both energy
shifts were found to increase quadratically with the transverse
oscillator frequencies. This can be expected from perturbation
theory, which applies when the trapping is sufficiently weak,
corresponding to the oscillator frequency being small enough.
As can be seen in Fig. 3, the initial slopes for 
E(ω) are
identical. For larger values of trapping frequencies, maxima
are reached, beyond which it no longer pays to increase the
strength and the energy shifts go through a zero. For larger
values of the oscillator frequency, the gravitational interaction
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no longer dominates the change in ground-state energy and the
state is no longer preferable over the free-space solution. There
is thus a limited parameter region for both cases of trapping
where the state will localize at the origin due to lowering of
the ground-state energy.

V. DISCUSSION

In this study I have presented a nontrivial quantum feature
of self-gravitating solid systems in the presence of external
potentials, namely, the lowering of ground-state energy at the
center of unstable potentials. It follows readily that sufficiently
cold nanospheres will be trapped at the potential centers
despite the possibly unstable character of the latter. The reason
why a repulsive potential can lower the ground-state energy
of a self-gravitating quantum system is that the potential
induces a change in the balance between quantum pressure,
i.e., curvature of the wave function, and the self-gravitational
attraction. The repulsive potential will lower the density in the
region where the potential is high and as a result the density
will become higher at the center of the state. This change to
the center-of-mass wave function reduces the averaging of the
interaction term and results in a deeper effective potential.
This mechanism will lower the ground-state energy as long
as there is a net gain in the changed balance between the
different contributions to the energy. Since the gravitational
potential is bounded from below, there is a limit on how much
energy can be gained and eventually quantum pressure wins
out, increasing the energy if the compression becomes too
large. The presence of a self-gravitating system in the vicinity
of two different potential surfaces can, in principle, lower the
energy as a function of interpotential distance and would give
rise to an effective force between different potential surfaces.
This constitutes a force of quantum-mechanical origin, similar
in this sense to the Casimir-Polder force [39,40], which is due
to zero-point fluctuations in a quantum field. The potential
given by Eq. (14) and shown in Fig. 2(a) is similar in shape to
the configuration used for quantum point contacts [36] in that
it has a narrowing, although in three dimensions rather than in
two. In quantum point contacts, it has been suggested that the
presence of a bound state due to effective spin-spin interactions
could provide an explanation for the 0.7 conductance anomaly

[41]. Here we thus have an analogous situation inducing a
nontrivial result for an interacting system in a constriction. In
both cases the interaction leads to a localized quantum state
defying classical expectations for the system. We also note
that Bose-Einstein condensates with attractive interaction, i.e.,
negative scattering length, have bound states with increased
localization, but that these are limited in terms of the number
of atoms that can be included since there is no lower bound
on the interaction energy. A similar effect should thus be
observable for attractive Bose-Einstein condensates of small
particle numbers.

Experiments in cooling objects [34], either in liquids or
trapped in optical lattices, and measuring forces on them have
reached sensitivities of femtonewtons [42] and zeptonewtons
[43] respectively, showing the considerable progress being
done in detecting weak influences on objects, especially in the
quantum regime. The energy shifts involved in the effects stud-
ied here are exceedingly small, corresponding to temperatures
around femtokelvin degrees or less due to the feebleness of
gravity. The lowest temperature achieved experimentally so far
is around 500 fK for Bose-Einstein condensates [44] and mi-
crokelvin degrees for solids [45]. Observation of these effects
in the quantum regime will thus require further developments
in the cooling of solid objects [46,47]. In addition, the presence
of environmental decoherence will make it challenging to
observe these effect, especially due to scattering if optical
potentials are used. It is thus most likely that these effects
will require experiments in low gravity. Present experiments
are conducted in the microgravity of a drop tower [48], as
well as in airborne zero-gravity environments [49]. In the near
future, space-borne missions [50–52] will reach noise levels
on the order of femtokelvin degrees. To go to temperatures
below this, shielding of gravitational noise must be done and
passive noise attenuation will reach down to picogravity [53],
which will be insufficient for measuring the shifts discussed
here, indicating the need for further developments.
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