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Macroscopic realism (MR) per se specifies that a system which has two macroscopically distinct states available
to it (such as a cat being dead or alive) is at all times predetermined to be in one or other of those two states.
A minimal assumption of a macroscopic realistic theory therefore is the validity of a hidden variable λM that
predetermines the outcome (whether dead or alive) of a measurement M̂ distinguishing the two states. Proposals
to test MR generally introduce a second premise to further qualify the meaning of MR. Thus, we consider a
model, macroscopic local realism (MLR), where the second premise is that measurements at one location cannot
cause an instantaneous macroscopic change δ to the results of measurements made on a second system at another
location. To provide a practical test, we define the intermediate concept of δ-scopic local realism (δ-LR), where
δ �= 0 can be quantified, but need not be macroscopic. By considering the amplification of quantum fluctuations,
we show how negation of δ-LR is possible using fields violating a continuous variable Bell inequality. A modified
Bell-Clauser-Horne-Shimony-Holt inequality is derived that tests δ-LR, and a quantitative proposal given for
experiments based on polarization entanglement. In the proposal, δ is the magnitude of the quantum noise scaled
by an adjustable coherent amplitude α that can also be considered part of the measurement apparatus. Thus, δ is
large in an absolute sense, but scales inversely with the square root of the system size, which is proportional to
|α|2. We discuss how the proposed experiment gives a realization of a type of Schrödinger-cat experiment without
problems of decoherence.
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I. INTRODUCTION

In his essay of 1935, Schrödinger considered the quantum
interaction of a microscopic system with a macroscopic system
[1]. After the interaction, the two systems become entangled.
If the macroscopic system were likened to a cat, then according
to the standard interpretation of quantum mechanics, it would
seem possible for the “cat” to be in a state that is “neither dead
nor alive.” In a simplistic analogy to Schrödinger’s system,
the quantum state describing the microscopic and macroscopic
systems after the interaction can be written

|ψ〉 = 1√
2

(|dead〉C |↓〉S + |alive〉C |↑〉S). (1.1)

Here, |↑〉 and |↓〉 represent two distinct states of the mi-
croscopic system S, and |dead〉 and |alive〉 symbolize two
macroscopically distinct states of the macroscopic system C

(which we refer to as the “cat system”). Different forms of
such “cat states” have been realized experimentally [2–7]. The
interpretation of the cat system in the superposition state (1.1)
is that it is neither “dead nor alive” prior to measurement
[1,8]. This apparent contradiction with macroscopic realism
has motivated much research [9–19], including modifications
of quantum mechanics that aim to resolve the measurement
problem [20].

What constitutes a rigorous signature of a Schrödinger-cat
state and how such signatures can be interpreted as a falsifi-
cation of macroscopic realism is an important question. This
question was addressed by Leggett and Garg, who proposed a
model of macroscopic realism for dynamical systems [9]. The
Leggett-Garg inequalities allow a falsification of the Leggett-

Garg model and have motivated experiments and proposals to
test macrorealism, including for superconducting flux qubits
[21], solid state qubits [22], cold atoms and Bose-Einstein
condensates [23–25], and mechanical oscillators [26].

Here, we consider an alternative approach for testing
macroscopic realism (MR), that does not involve assumptions
about dynamics. To address the need for a strict test of
MR, Leggett and Garg defined macroscopic realism in terms
of a macroscopic hidden variable [9]. In their model, the
fundamental premise is as follows: Where a system can be
found to be in one or other of two macroscopically distinct
states (such as a cat being dead or alive), then that system is at
all times predetermined to be in one or other of those states. A
minimal assumption of MR therefore is the validity of a hidden
variable λM that predetermines the outcome (whether dead or
alive) of a coarse-grained measurement M̂ , that distinguishes
the two states. Leggett and Garg referred to this assumption
as macroscopic realism per se (MRPS). The direct negation
of the hidden variable λM proves difficult, and a second
premise is normally introduced to qualify the meaning of
MR. Leggett and Garg introduced the additional assumption of
macroscopic noninvasive measurability, to define a model now
called macrorealism. An analysis of the macroscopic realism
models tested by the Leggett-Garg inequalities has been given
recently by Maroney and Timpson [27].

In this paper, we consider a different model for macroscopic
realism, where the second premise is the assumption of
macroscopic locality (ML). In this way, we consider a model of
MR called macroscopic local realism (MLR). ML asserts that
measurements at one location cannot cause an instantaneous
macroscopic change to the system at another. By a macroscopic
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FIG. 1. Testing δ-scopic LR using a Bell inequality: Here, P (n)
is the probability of obtaining a result n in a hypothetical experiment.
P0 is the probability of a result between −δ and +δ. We consider
experiments where the binned outcomes of a measurement M̂A made
on system A are distinct by an amount 2δ. Similarly, we consider
that the outcomes of a measurement M̂B made on a second system B

(spatially separated from the first) are distinct by 2δ. This is described
in the diagram with P0 = 0. An example of such an experiment is
illustrated in Fig. 2, which introduces two adjustable coherent fields
with amplitude α. The outcomes n for measurements JA

θ ,J B
φ defined

in Fig. 2 are binned into one of the regions 1,0,2. As α → ∞, P0 → 0
(for fixed δ). In that case, the two outcomes given byn < −δ andn > δ

are said to be δ-scopically distinct, and are referred to as “dead” and
“alive” as δ → ∞. A method accounting for nonzero P0 is given in
Sec. IV.

change to the system, we mean a macroscopic change to the
predictions for measurements made on that system. The ML
assumption is that defined originally by Bell [28], except that
small changes to the system due to microscopic Bell-nonlocal
effects are now permitted. The combined premises of MRPS
and ML constitute the premise of MLR [29–31]. In many
contexts, MLR cannot be expected to fail because of bounds
placed on the predictions of quantum mechanics in accordance
with the uncertainty relation [15,19,32].

To test a weaker hypothesis where the dead and alive states
of the system are not necessarily macroscopically distinguish-
able, but may be mesoscopically so, it is useful to define
the premise of δ-scopic local realism (δ-LR). We consider
a coarse-grained measurement M̂ that distinguishes the two
states, by way of two distinct outcomes. We suppose that the
two distinct outcomes have a difference of 2δ (Fig. 1). The
δ-LR premise asserts in the first instance the validity of a hidden
variable λδ to describe that the outcome of the measurement M̂
is predetermined. This is consistent with the premise that the
system is at all times actually in one of the two states distinct by
the amount 2δ. The second premise of δ-LR is that of δ-scopic
locality: that a measurement made at a different location to the
system cannot cause an instantaneous change of greater than
(or equal to) 2δ to the outcome of the measurement M̂ .

The contribution of this paper is to derive modified Bell
inequalities that may be used to test δ-LR where outcomes are
not necessarily confined to a dichotomic spectrum (Fig. 1),
and to give a context in which negation of δ-LR is predicted
by quantum mechanics. Certainly, violation of MLR occurs if
one can demonstrate a violation of a Bell inequality for two
spatially separated entangled cat systems where the outcomes
of all relevant measurements on the cat systems are macroscop-
ically distinct. Our main result is to give a potentially workable
proposal for testing δ-LR, where δ is “macroscopic” in an
absolute rather than a relative sense, for a scalable system.

To do this, we consider polarization squeezing experiments
[30,31]. These experiments give insight into the measurement
process, by creating a transition from microscopic to macro-
scopic that is controlled by a coherent field α [30,31,33–35].
In the transition, the quantum fluctuations are amplified by
the coherent field as part of the measurement process. In the
proposed test, the meaning of “δ-scopically distinguishable”
refers to particle number differences δ that are large in an
absolute sense, but small (∼1/

√
N ) compared to the total

number N of particles of the system.
We give a firm proposal to test local realism at a quantifiable

level, by deriving a Bell inequality, the violation of which
falsifies a δ-scopic local realism. The Bell inequality is then
applied to a definite proposal where experiments violate Bell
inequalities for continuous variable measurements [36–38].
The experiment is in one sense “scalable,” being feasible for
large systems, because the usual severe limitations due to
decoherence do not apply when the size of δ is reduced below
the level of quantum noise (which is of order ∼ √

N ).
In the final section of this paper, we discuss the degree

of analogy between the “cat” superposition state considered
in this paper and the entangled cat state (1.1). A state of
type (1.1) is formed after a quantum measurement. In that
case, the system C represents the macroscopic pointer of a
measurement apparatus. The “dead” and “alive” outcomes for
the cat system (being correlated with the spin being “up” or
“down”) correspond to the two positions (N+ and N−) on the
measurement dial that give the measurement outcome for spin.
We emphasize that the δ-LR tests proposed in this paper are not
sufficient to indicate that the measurement pointer is located
“simultaneously at two distinct ‘positions’ N+ and N− on the
dial,” or that there are nonlocal effects of the order N+ − N−.
For the cat state (1.1), the separation between N+ and N−
is normally considered to be well beyond the quantum noise
level. The δ-LR tests proposed in this paper, however, may
indicate Bell-nonlocal effects between a macroscopic pointer
and a second system, that manifest on the scale of “positions”
with a spread

√
N±.

II. BELL INEQUALITIES FOR TESTING δ-SCOPIC
LOCAL REALISM

We consider two spatially separated cat systems A and B

that at any given time can each be found (upon measurement) to
be in one of two macroscopically distinguishable states (dead
or alive). We suppose that the two states can be distinguished by
appropriate coarse-grained local measurements M̂A and M̂B

made on each system (as discussed in the Introduction, with
δ → ∞). In this section, we consider a Bell inequality to test
macroscopic local realism.

Macroscopic local realism (MLR) asserts the validity of
the minimal assumption of macroscopic realism, called macro-
scopic realism per se (MRPS), that at any given time the result
of the coarse-grained measurement on a particular cat system is
predetermined, prior to measurement. This implies the validity
of a hidden variable that describes which state (dead or alive)
the system is in, prior to the measurement. The hidden variables
will be denoted λA

M and λB
M for the cat systems A and B,

respectively, and will be referred to as the “macroscopic hidden
variables.” In such a model, the result of the measurement M̂A
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made on system A is determined by the value of the hidden
variable λA

M . Similarly, the result of the measurement M̂B at B

is determined by the value of λB
M . In this paper, we are careful

to use only the minimal assumption of macroscopic realism
(referred to as MRPS), in which the meaning of “state” refers
only to the macroscopic state of the system, whether dead or
alive. This macroscopic meaning is defined with reference to
the outcome of the coarse-grained measurements M̂A/B , and
therefore does not distinguish states that have a microscopic
difference in the predictions of an observable.

The second assertion of macroscopic local realism (MLR)
is macroscopic locality, that the measurement M̂ on one
system cannot bring about an immediate macroscopic change
to the system at the other location. By a macroscopic change
in this context, we mean a transition of the macroscopic
hidden variable λM being +1 to being −1, or vice versa, i.e.,
a transition between dead and alive states. The premise of
macroscopic locality asserts that the measurement cannot make
a macroscopic change to the outcomes of measurements made
on the other system, but we cannot exclude that microscopic
changes may occur.

We consider local measurements M̂A
θ and M̂B

φ that can be
made on each system A and B. Here, θ and φ are measurement
settings and we consider two measurement choices θ,θ ′ and
φ,φ′ for each system. We suppose that the measurements
M̂A

θ ,M̂A
θ ′ and M̂B

φ′ ,M̂
B
φ each give macroscopically distinct

binary outcomes which are denoted +1 and −1 (corresponding
to the alive and dead regimes 2 and 1 shown in Fig. 1). If we as-
sume macroscopic local realism, the following Clauser-Horne-
Shimony-Holt (CHSH) Bell inequality will hold [31,39],〈

M̂A
θ M̂B

φ

〉 − 〈
M̂A

θ M̂B
φ′

〉 + 〈
M̂A

θ ′ M̂
B
φ

〉 + 〈
M̂A

θ ′ M̂
B
φ′

〉
� 2. (2.1)

The MLR model is an example of a local hidden variable
(LHV) model. The derivation of (2.1) follows as for the CHSH
Bell inequality that applies to all LHV models where the
measurements have binary outcomes [28,39]. The violation
of (2.1) will imply failure of MLR.

Violations of Bell inequalities for cat states similar to (1.1)
have been predicted and observed experimentally [6,7,38].
However, these violations do not involve macroscopically
distinct binary outcomes for all measurements θ , θ ′, φ, and φ′
and hence do not violate (2.1). We mention that similar hybrid
inequalities based on the combined premises of macrorealism
and Bell locality have been derived and tested experimentally
for small systems [40]. These inequalities are, however, differ-
ent to those above. Applying to a single experimental ensemble
with fixed analyzer settings and requiring weak measurements
for their violation, they test a different model of macroscopic
realism.

As might be expected, the possibility of violating the
inequality (2.1) depends on how we interpret macroscopic. To
quantify the meaning of “macroscopic” in a given situation,
we generalize the definition of MLR by defining δ-scopic
local realism (δ-LR). The δ-LR premise is defined in the
Introduction. The model of δ-scopic LR is falsified where the
separation between the binary (dead and alive) outcomes for
the measurements M̂A

θ ,M̂A
θ ′ and M̂φ′,M̂B

φ is greater than or
equal to 2δ (Fig. 1). We next examine scenarios where it is
possible to falsify δ-scopic local realism for some quantifiable
δ that can be made large by an amplification that occurs as part

FIG. 2. Two entangled cat systems are created as part of a
measurement process: The modes a1 and b1 are prepared in an
microscopic entangled state |ψ〉. The modes a2 and b2 are independent
intense coherent states |α〉. The fields a1,a2 and b1,b2 are combined
at each location A and B to create mode pairs a± and b±. For
α → ∞, these form two cat systems at A and B. Final measurements
of the number differences n,m given by J A

θ = (N+ − N−)/2 and
J B

φ = (N+ − N−)/2 are made using a polarizer beam splitter at each
detector. This gives an amplified readout of the quadrature phase
amplitudes xθ and xφ of the fields a1 and b1. Whether the cat systems
are considered dead or alive is determined by the sign of JA

θ and
J B

φ . For a fixed δ, we define the outcomes J
A/B

θ,φ to be dead if

J
A/B

θ,φ < −δ and alive if J
A/B

θ,φ > δ. As α → ∞, the probability P0

of a result −δ � J
A/B

θ,φ � δ becomes zero (Fig. 1). This is true for any
large δ, provided α � δ. Thus, the dead and alive outcomes become
macroscopically distinguishable as α → ∞.

of a measurement process, in analogy to a Schrödinger-cat
gedanken experiment.

III. AMPLIFICATION OF NONLOCAL CORRELATIONS

A. Amplification of the quantum noise

We now consider in detail proposals for violating δ-scopic
local realism using field quadrature phase amplitude observ-
ables. Here, the measurement of the field amplitudes takes
place via an amplification process that involves a second field,
so that the final measurement is of a Schwinger spin [30,31].
The relevant uncertainty principle for spin is

�ĴA
X �ĴA

Y �
∣∣〈Ĵ A

Z

〉∣∣/2. (3.1)

It is possible to create a situation where the quantum noise
level given by |〈Ĵ A

Z 〉|/2 corresponds to a very large photon
number difference (field intensity). This allows consideration
of changes of order δ where δ is large in the absolute sense of
particle number (intensity), but small compared to the quantum
noise level |〈Ĵ A

Z 〉|/2. The highly nonclassical mesoscopic
effects that are predicted can then be understood as a property
of amplified quantum fluctuations.

The system we consider comprises two spatially separated
modes at A and B (Fig. 2). We denote the modes initially
prepared at A and B by the symbols a1 and b1, and define the
boson operators â1 and b̂1, respectively. A second mode pair a2

and b2 is defined similarly. The modes a1 and b1 are prepared
in an entangled state (see next section). At each location, the
mode a1 (or b1) is combined with the second mode a2 (or b2),
respectively, the second modes being prepared in independent
intense coherent states |α〉 (where α → ∞). The combination
can occur through a 50:50 beam splitter (or equivalent).
The outputs at each location are rotated modes with boson
operators â+ = (â1 + â2)

√
2 and â− = (−â1 + â2)/

√
2 for A,

and b̂+ = (b̂1 + b̂2)/
√

2 and b̂− = (−b̂1 + b̂2)/
√

2 for B. This
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amplification procedure is similar to the homodyne detection
procedure used in experiments that measure a squeezing of the
quantum fluctuations of modes a1 and b1 [33].

The mode pairs that are created at A and B have a large
total occupation number, because of the large coherent fields
α. In Fig. 2, these systems are called “cat A” and “cat B.”
At each location an experimentalist makes a measurement
of a number difference N̂+ − N̂− that defines a Schwinger
spin measurement. These measurements are made on the cat
systems, and (as we will see) enable a distinction to be made
between appropriate “dead” and “alive” states of the mode
pairs. At location A, we define the outcome of the measurement
ŜA

θ to be ±1 according to the sign of the outcome JA
θ (ϕ) of the

measurement Ĵ A
θ (ϕ), where

Ĵ A
θ (ϕ) = (N̂+ − N̂−)/2 = (ĉ†+ĉ+ − ĉ

†
−ĉ−)/2. (3.2)

Here, ĉ+ = â+ cos θ + eiϕâ− sin θ and ĉ− = −â+ sin θ +
eiϕâ− cos θ . This measurement Ĵ A

θ (ϕ) could be carried out
using a phase shift ϕ and polarizing beam splitters rotated to θ

with the modes a+ and a− as inputs. With a suitable choice of θ

and ϕ, the measurement (3.2) corresponds to a measurement of
a Schwinger spin observable for the operators â1 and â2. These
are defined Ĵ A

X = (â†
2â1 + â

†
1â2)/2, JA

Y = (â†
2â1 − â

†
1â2)/(2i),

and ĴZ = (â†
2â2 − â

†
1â1)/2. We see that Ĵ A

X = Ĵ A
0 (π/2), JA

Y =
Ĵπ/4(π/2), and Ĵ A

Z = Ĵ A
π/4(0). The outcome of a measurement

ŜB
φ on cat B is defined to be ±1 according to the sign of the

spin observable

Ĵ B
φ (γ ) = (d̂†

+d̂+ − d̂
†
−d̂−)/2, (3.3)

where d̂+ = b̂+ cos φ + eiγ b̂− sin φ and d̂− = −b̂+ sin ϕ +
eiγ b̂− cos ϕ. With a suitable choice of φ and γ (as above),
this measurement corresponds to a Schwinger observable at B,
defined as Ĵ B

X = (b̂†2b̂1 + b̂
†
1b̂2)/2, Ĵ B

Y = (b̂†2b̂1 − b̂
†
1b̂2)/(2i),

and Ĵ B
Z = (b̂†2b̂2 − b̂

†
1b̂1)/2.

It is well known that in the limit of α → ∞, the mea-
surements Ĵ A

θ (ϕ) and Ĵ B
φ (γ ) are also measurements of the

quadrature phase amplitudes x̂,p̂ of the original modes a1

and b1 [30]. This is because the fields a2 and b2 are (to
a good approximation) intense classical fields of amplitude
α (which we take to be real) [33,41]. In that limit, we can
simplify Ĵ A

X = α
√

2x̂A, Ĵ A
Y = α

√
2p̂A, 〈ĴZ〉 → α2/2, where

x̂A = (â†
1 + â1)/

√
2 and p̂A = i(a†

1 − a1)/
√

2 are the quadra-
ture phase amplitudes of a1. The Heisenberg uncertainty
relation (3.1) reduces to �x̂A�p̂A � 1/2 for the quadratures.
In fact, more generally, defining Ĵ A

θ = Ĵ A
θ (π/2), we see that

Ĵ A
θ = α

√
2x̂A

2θ , (3.4)

where x̂θ = x̂ cos θ + p̂ sin θ . The Ĵ A
θ (π/2) is thus a measure-

ment of the amplified quadrature phase amplitude α
√

2x̂A
2θ . A

similar result holds for the quadrature phase amplitudes x̂B =
(b̂†1 + b̂1)/

√
2 and p̂B = i(b̂†1 − b̂1)/

√
2 defined at B. Ĵ B

φ =
Ĵ B

φ (π/2) gives the amplified quadrature amplitude α
√

2x̂B
2φ .

The increase in α also amplifies the total number of particles
at each site. The nature of the amplification is evident by the
uncertainty relation (3.1) for the spin measurements which
reduces to

�ĴA
X �ĴA

Y � |α|2/4, (3.5)

since α is taken to be very large. The amplification that is
crucial to creating the macroscopic states at the locations A

and B is also an amplification of the quantum noise level, and
there is no amplification relative to this level [29–31].

We envisage an experiment similar to the optical and
atomic polarization entanglement experiments reported in
Refs. [33–35,41]. In those experiments, at site A, the experi-
mentalist can measure a particular Ĵ A

θ . Each Ĵ A
θ is a measure-

ment of a particle number difference according to (3.3), and is
also a measurement of quadrature phase amplitude according
to (3.4). Similar measurements are made atB. Different to other
experiments that measure quadrature fluctuations, however, the
choice of measurement angle θ is made after the combination
of the mode a1 with the strong field a2. With the definition of the
dead and alive outcomes given in Fig. 2 (see next section), the
binned measurements ŜA

θ and ŜB
φ of Ĵ A

θ and Ĵ B
φ defined above

are analogous to the measurements M̂A and M̂B defined in the
Introduction. The measurements Ĵ A

θ and Ĵ B
φ are macroscopic,

in the sense that if one considers a change δθ in the quadrature
phase amplitude x̂θ , then one can define an amplified change
δ = α

√
2δθ for the particle number difference measured by

Ĵθ . We will see in the next section that this allows us to
define dead and alive outcomes for the cat system that in the
limit of α → ∞ are, in an absolute sense, mesoscopically or
macroscopically distinguishable (Figs. 1 and 2).

B. Violation of continuous variable Bell inequalities

We now discuss experiments to falsify a δ-scopic local
realism. For some states, the correlations obtained for the
quadrature phase amplitude measurements x̂A

θ and x̂B
φ at each

site are predicted to violate a Bell inequality [36–38]. The
outcome of the measurement x̂θ at each site can be binned
into regions of non-negative and negative values. We define
an observable ŜA

θ whose value is +1 if xA
θ � 0 and −1

otherwise. A similar observable ŜB
φ is defined at B, based on

the quadrature phase amplitude x̂B
φ . It has been shown that for

certain states |ψ〉 and for certain angles φ, φ′, θ ′, and θ , the
following Bell inequality is violated [37,38],

E ≡ 〈
SA

θ SB
φ

〉 − 〈
SA

θ SB
φ′

〉 + 〈
SA

θ ′S
B
φ

〉 + 〈
SA

θ ′S
B
φ′

〉
� 2, (3.6)

thus negating the possibility of an LHV model describing the
results of those measurements.

Since we can write Ĵ A
θ = α

√
2x̂A

2θ and Ĵ B
φ = α

√
2x̂B

2φ ,

the inequality (3.6) is also violated if we redefine ŜA
θ as

the observable with value +1 if JA
θ � 0 and −1 otherwise;

and ŜB
φ as the observable with value +1 if JB

φ � 0 and −1
otherwise. The violation implies that there is no predetermined
(local) hidden variable description for the sign of the number
differences JA

θ ,J B
φ [30]. Because we can increase α, this gives a

situation where one can falsify local hidden variables for noisy
measurements of particle number difference. An example of
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FIG. 3. Signature of the cat state created by the apparatus of Fig. 2:
The number differences J

A/B

θ/φ = (N+ − N−)/2 at the sites A and B are

denoted n and m, respectively, and are binned to the values S
A/B

θ,φ = 1
or −1 according to sign as described in the text. Left: The expectation
values E = 〈SA

θ SB
φ 〉 − 〈SA

θ SB
φ′ 〉 + 〈SA

θ ′SB
φ 〉 + 〈SA

θ ′SB
φ′ 〉 generated when

modes a1 and b1 are prepared in the state |ψ〉 given by Eq. (3.7) will
violate the Bell inequality (3.6) for all α → ∞. Right: A contour
graph of the probability for joint outputs n and m (here, θ = φ).
The absolute values of the number difference outputs n,m increase
with α.

|ψ〉 is the pair coherent state or “circle” state

|ψ〉 = er2
0

2π

√
I0

(
2r2

0

)
∫ 2π

0
|r0e

iζ 〉|r0e
−iζ 〉dζ (3.7)

(I0 is the modified Bessel function, r0 = 1.1) that is generated
near the threshold of nondegenerate parametric oscillation
[37,38,42]. The predictions for the violation of the Bell
inequality (3.6) for this state are given in Fig. 3.

As α increases, it is argued that the +1 and −1 outcomes for
ŜA

θ ultimately become “macroscopically” distinct (in the ab-
solute sense discussed above). Similarly, the +1,−1 outcomes
for ŜB

φ become macroscopically distinct. The measurements
ŜA

θ and ŜB
φ are then examples of macroscopic measurements

M̂A
θ and M̂B

φ , and the violation of (3.6) is a violation of (2.1).
In this limit we would violate “macroscopic local realism.”

To understand the argument, we define a region of mea-
surement outcome x for Ĵ A

θ where the result falls between
−δ and +δ for some δ �= 0 (see Fig. 1). We call this region
0, and also define the region of outcomes x � δ as region
2, and the region of outcomes x � −δ as region 1. For any
(arbitrarily large) fixed δ, the probability P0 of a result in the
region 0 becomes zero as α → ∞. Yet the violation of the Bell
inequality is unchanged with α (Fig. 3, left). Hence, violation
of the inequality (2.1) is possible for the two outcomes +1 and
−1 that for sufficiently large α can be justified as separated
by a region of width 2δ, with P0 → 0. Hence, by taking δ

large, there is a prediction for a violation of mesoscopic and/or
macroscopic local realism.

For a realization of the experiment, however, δ and α are
finite, and there will be a small nonzero probability P0 �= 0 for a
result in region 0. We would prefer in an experiment to quantify
precisely by number the level δ for which local realism is
violated, since the labeling of “macroscopic” or “mesoscopic”
is subjective. This is explained in the next section.

n

P
0

δ

dead

P
0

P (n)
region 2

alive

region 1

δ 0

region 0

FIG. 4. Practical method for testing δ-scopic LR using a Bell
inequality: The outcomes of each measurement Ĵ A

θ ,Ĵ B
φ indicated in

Fig. 2 are binned into one of the regions 1,0,2. As α → ∞, P0 → 0.
A method for testing δ-scopic LR where P0 �= 0 is given in Sec. IV.
This involves considering that the system is probabilistically in one of
two states, that have overlapping outcomes. The first state is defined
as producing an outcome in the combined regions 1 or 0; the second
state is defined as producing an outcome in regions 0 or 2.

IV. PRACTICAL QUANTIFIABLE δ-SCOPIC LOCAL
REALISM TESTS

A. The modified Bell-CHSH inequalities

We now consider the case where there is a continuum of
outcomes for the number differences Ĵ A

θ and Ĵ B
φ , meaning

that P0 �= 0, as defined in Figs. 1 and 4. The meaning of
macroscopic realism per se (MRPS) for the more general case
where P0 �= 0 is explained in the paper of Leggett and Garg
[9] and in Refs. [24,25,43]. The macroscopic local realism
(MLR) premise for this generalized case asserts that the system
(at any time) can be described as being in one or other of
two overlapping states: The first gives outcomes in regions
1 or 0; the second gives outcomes in regions 0 or 2. This is
depicted in Fig. 4 (assuming δ is large). The MRPS assumption
excludes the possibility that the system is simultaneously
predetermined to be in two states, one that gives outcomes
in region 1 and the other that gives outcomes in region 2. It
does not, however, exclude indeterminacies of outcome of up
to δ, such as might be expected from quantum superpositions
of states with outcomes separated by δ. Where δ is finite and
not necessarily macroscopic, we use the term δ-scopic realism
(per se) to describe the premise that is used.

We follow the approach of Refs. [24,25,43], and denote the
hidden variable state associated with the outcomes in regions 1
or 0 for the system at A by the hidden variable value S̃A = −1.
Similarly, the hidden variable state that generates outcomes in
regions 0 or 2 is denoted by the hidden variable value S̃A =
1. We define the variable S̃B similarly. The δ-scopic locality
assumption asserts that the measurement at one location cannot
instantaneously change the system at the other location, in such
a way that the system (necessarily) changes value of S̃ from +1
to −1, or vice versa. This assumption rules out large changes
due to the measurement, but does not rule out that there may
be small changes. Small changes of order ±δ/2 might occur,
but such changes can be interpreted using a model where there
is no change of the value of the hidden variable S̃. We define
P+ and P− as the ensemble probabilities, described within the
model, that the system is in the state with S̃ = +1 or S̃ = −1,
respectively. Then we note that the δ-LR assumptions (which
are δ-scopic realism per se and δ-scopic locality combined)
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predict the Bell inequality〈
S̃A

θ S̃B
φ

〉 − 〈
S̃A

θ S̃B
φ′

〉 + 〈
S̃A

θ ′ S̃
B
φ

〉 + 〈
S̃A

θ ′ S̃
B
φ′

〉
� 2. (4.1)

However, the moments Kθφ = 〈S̃A
θ S̃B

φ 〉 are no longer directly
measurable, because an outcome between −δ and +δ could
arise from either state, S̃ = −1 or +1. Nonetheless, following
a method similar to that given in Refs. [25,43], we conclude
that

P1 � P− � P1 + P0 (4.2)

and

P2 � P+ � P2 + P0, (4.3)

where P1, P2, and P0 are the probabilities of obtaining a result
in regions 1, 2, and 0, respectively. These probabilities are
experimentally measurable. The relations (4.2) and (4.3) are
made clear on examining the depiction of the regions as given
in Fig. 4. From the relations, we establish bounds on the cor-
relations assuming δ-LR, where P0 �= 0. It is straightforward
to see that δ-scopic local realism will imply

K lower
θ,φ − K

upper
θφ′ + K lower

θ ′φ + K lower
θ ′φ′ � 2, (4.4)

where K lower
θφ and K

upper
θφ are lower and upper bounds to Kθφ ,

i.e.,

K lower
θφ � Kθφ � K

upper
θφ . (4.5)

Correct upper and lower bounds are given by

K lower
θφ = P2,2(θ,φ) + P1,1(θ,φ)

−P10,20(θ,φ) − P20,10(θ,φ) (4.6)

and

K
upper
θφ = P20,20(θ,φ) + P10,10(θ,φ)

−P1,2(θ,φ) − P2,1(θ,φ). (4.7)

Here, we have introduced the notation that PIJ,LM is the joint
probability of an outcome for Ĵ A

θ in regions I or J and an
outcome for Ĵ B

φ in regions L or M (see Fig. 4). Accordingly,
PI,L is the joint probability of an outcome for Ĵ A

θ in region I

and an outcome for Ĵ B
φ in region L.

To emphasize the dependence on δ, the modified CHSH
Bell inequality (4.4) that follows from the assumption of δ-LR
can be rewritten as Eδ � 2, where

Eδ = K lower
θ,φ − K

upper
θφ′ + K lower

θ ′φ + K lower
θ ′φ′ . (4.8)

Each term is measurable experimentally by dividing the re-
gions of outcome into three binned regions as sketched in
Fig. 4, where the size of the middle region is determined by δ.
The probabilities for obtaining outcomes in each region enable
evaluation of the Eδ . Violation of the inequality Eδ � 2 is
sufficient to confirm a violation of δ-LR. This gives a practical
means to demonstrate a violation of an δ-scopic local realism
for a finite δ where there is a nonzero probability P0 of
an outcome in the region defined by −δ < x < δ. A similar
inequality has been derived for Leggett-Garg experiments [25].

Rigorous Bell tests for continuous variable measurements
are likely to be carried out in the future. The method we
describe could be applied to any such experiment. For realistic
tests based on current experiments, the shifts δ may not

be macroscopic, but nonetheless offer a route to test local
realism beyond the single-particle level considered in most
experimental tests of Bell nonlocality so far.

B. Analysis of feasibility

For an indication of what might be feasible in practice, let us
assume the value of E = 2.2 given in Fig. 3 could be achieved
as predicted by quantum mechanics, with a coherent field value
α0. Calculations given in Ref. [30] show that violations of the
quadrature phase amplitude Bell inequality (3.6) are obtained
with Gaussian noise added to the outcomes n, provided the
noise standard deviation σ satisfies σ � 0.3α0. This suggests
that a full calculation of Eδ might give violations (Eδ > 2) for
δ ∼ 0.1α0. The noise effectively adds a coarse graining to the
measurements.

The papers of Kofler and Brukner explain how ultimately
macroscopic realism will be obtained through the coarse-
grained measurements [16]. In the current paper, the violations
of macroscopic local realism tolerate a “macroscopic” level of
noise as α0 → ∞, but the noise remains of order 1/α0 relative
to the overall system size given by |α0|2.

We establish a conservative estimate for the value δ at which
δ-LR might be falsifiable by deriving a less sensitive version
of the modified CHSH Bell inequality (4.4), given by Eδ � 2.
Suppose P u

0 is an upper bound on the value of P0, for either
site and for any of the relevant angle values. Then it is true that
(I,L = 1 or 2)

PI,L � PI0,L0 � PI,L + 2P u
0 . (4.9)

Here we use that P0 is a marginal probability found by
summing over the joint probabilities. Hence

K lower
θφ �

〈
SA

θ SB
φ

〉 − 4P u
0 ,

K
upper
θφ �

〈
SA

θ SB
φ

〉 + 4P u
0 . (4.10)

A modified CHSH Bell inequality based on the premise of
δ-scopic local realism is then seen to be〈

SA
θ SB

φ

〉 − 〈
SA

θ SB
φ′

〉 + 〈
SA

θ ′S
B
φ

〉 + 〈
SA

θ ′S
B
φ′

〉
� 2 + 16P u

0 . (4.11)

This may be compared with Eq. (3.6). Let us assume the value
of E = 2.2 given in Fig. 3 is achieved in the experiment. Then,
from this inequality, we see that we will certainly obtain a
violation of the δ-scopic realism for regions of width 2δ about
the origin that correspond to a total probability of occupation
of P u

0 < 0.01. One such region derived on the basis of the
distributions for the current example (see Fig. 3) has a width
δ ∼ 0.01α0.

The value of α0 is determined by the amplitude of the field
modes indicated by a2 and b2 in Fig. 2. These are sometimes
referred to as the local oscillator fields. The treatment of these
fields as well-defined modes is, however, simplistic. Examina-
tion of the experiments detecting polarization and continuous
variable entanglement reveals that the local oscillators are
either the intense pulsed or continuous-wave output of a laser.
Pulsed experiments are more in keeping with nonlocality tests.
The experiment of Julsgaard et al. [41] quotes 1013 photons
in the 0.45-ms, 5-mW pulse used to entangle two atomic
ensembles. The fiber squeezing and Einstein-Podolsky-Rosen
(EPR) entanglement experiments cited in the review [44] use
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local oscillator pulses of a similar intensity. These figures
suggest α0 ∼ 106 to be possible, indicating values of δ ∼
104 photons.

We stress that while the value of δ is amplified in absolute
terms by this factor α0, in this proposal the value δ is always
small relative to the magnitude |α0| which determines the
quantum noise level in Eq. (3.5), and to |α0|2 which determines
the overall size of the system. In fact, the ratio δ/|α0|2 decreases
with increasing α0. The argument can therefore be made
that the value of δ be considered microscopic, in this sense.
Certainly this is the viewpoint taken in standard squeezing
and EPR entanglement experiments, where the local oscillator
phase and hence choice of measurement angle (whether θ or
θ ′, or φ or φ′) is selected prior to the amplification of the
system size due to the coherent field α0. The interpretation is
that a measurement is made on a microscopic system, and that
the coherent field and associated amplification is part of the
measurement process.

In the experiments proposed in this paper, however, the
system is amplified prior to the selection of the angle that
determines the choice of measurement. The interpretation is
that a measurement is made on a macroscopic system. This
time order has been carried out in the optical polarization
squeezing and entanglement experiments [33], and in the
atomic experiments of Julsgaard et al. and Gross et al. [41]
where two large ensembles of atoms are entangled. Similar
interpretations may be possible in other experiments [45]. It is
these latter cases that give the arguable interpretation presented
in this paper, that the fluctuation δ be regarded as mesoscopic
(in fact δ-scopic) in an absolute sense.

V. THE MACROSCOPIC POINTER

The cat system C of the entangled state (1.1) models the
pointer of a measurement apparatus that measures the value
“up” or “down” of the spin of system S. It is clear from (1.1)
that the outcome of the measurement M̂ on the pointer (whether
dead or alive) is correlated with the value of spin.

An interesting question that we discuss in this section is
whether falsification of the macrosopic realism (MR) test
proposed in this paper gives evidence that the pointer is
simultaneously in two “states” (locations), i.e., both “dead and
alive” [8]. By definition, the macroscopic hidden variable λM

predetermines the dead or alive outcome for the macroscopic
measurement M̂ , without further assumptions about the un-
derlying predetermined states [9]. Its direct negation could
therefore potentially suggest the macroscopic paradox of the
cat system being both dead and alive, analogous to the pointer
being in two places at once. For the models of macrorealism
considered or referenced in this paper, there is, however, a
second premise also assumed. Therefore, logically, the falsifi-
cation of these models need not suggest failure of the validity
λM , but could be explained by failure of the second premise.

The cat signature of this paper is based on the second
premise being the assumption of a δ-scopic locality. There is
thus a range of positions �m ∼ δ over which one pointer might
potentially be interpreted as paradoxically “being simultane-
ously in both places,” based also on the notion that nonlocality
cannot be excluded over this range. This value of δ is, however,
restricted to be less than |α|, the level of quantum fluctuation

given by the uncertainty relation bound, according to Eq. (3.5).
This is different from the standard realization of the entangled
state (1.1) given by [2,3,7]

|ψ〉 = 1√
2

(|α〉C |↓〉S + | − α〉C |↑〉S), (5.1)

where the dead and alive states are considered distinct by
several orders of α.

We also emphasize that the cat signature of this paper
does not imply a falsification of a macroscopic realism model
for the pointer state of (1.1). The differences are as follows:
In the experiment of Fig. 2, the two cat states at A and B

act as two “pointers” for the microscopic quadrature phase
amplitudes of the original entangled field modes denoted a1

and b1. However, the original modes are destroyed in the
formation of the pointer states. We also see from Fig. 3 (right)
[37] that the “positions” m and n of the two pointers are not
well correlated at the quantum noise level, i.e., one pointer does
not measure the position of the other to a precision beyond the
quantum noise level. Put another way, the uncertainty in any
such measurement is of order �m ∼ |α|.

If the predictions of quantum mechanics were to be verified
for the experiment proposed in this paper, the simplest inter-
pretation of the pointers is consistent with a hybrid classical
and quantum model of a macroscopic pointer discussed in
Ref. [19]. This model specifies that any lack of predetermi-
nation of the “position” of the pointer is constrained to be over
“distances” of size δ bounded by the quantum noise level.

VI. CONCLUSION

In this paper, we ask how to test macroscopic or meso-
scopic realism in a way that could not be explained by a
theory allowing some degree of microscopic nonlocality. In
this context, we define the distinction between “microscopic”
and “macroscopic” in terms of a particle or photon number
difference. To quantify the arguments, a Schwinger observable
is introduced as the difference in occupation number of two
modes. We show that tests of a δ-scopic local realism model
may be possible, where δ can be regarded as macroscopic,
provided by “macroscopically distinguishable outcomes” we
mean outcomes that have a large absolute separation δ of
the two-mode number difference. For the examples that we
consider in this paper, however, the separation δ is very small
relative to the total number of particles (or quanta) of the
system. To allow quantifiable tests, we use the word δ-scopic
and consider separations δ that allow a transition between
microscopic and macroscopic.

Using this meaning of “δ-scopic,” we outline a proposal to
test δ-scopic local realism where two cat systems are generated
using two entangled field modes. The modes are prepared
in a state that violates a continuous variable Bell inequality.
The cat systems are created using an amplification process
brought about by local coherent fields. This amplification can
be interpreted as part of a measurement process, in analogy
to Schrödinger’s original gedanken experiment. A practical
method for testing δ-scopic local realism is developed that
involves a quantifiable δ-scopic Bell inequality.
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