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Entanglement-enhanced quantum metrology in a noisy environment
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Quantum metrology overcomes standard precision limits and plays a central role in science and technology.
Practically, it is vulnerable to imperfections such as decoherence. Here we demonstrate quantum metrology
for noisy channels such that entanglement with ancillary qubits enhances the quantum Fisher information
for phase estimation but not otherwise. Our photonic experiment covers a range of noise for various types of
channels, including for two randomly alternating channels such that assisted entanglement fails for each noisy
channel individually. We simulate noisy channels by implementing space-multiplexed dual interferometers with
quantum photonic inputs. We demonstrate the advantage of entanglement-assisted protocols in a phase estimation
experiment run with either a single-probe or multiprobe approach. These results establish that entanglement with
ancillae is a valuable approach for delivering quantum-enhanced metrology. Our approach to entanglement-
assisted quantum metrology via a simple linear-optical interferometric network with easy-to-prepare photonic
inputs provides a path towards practical quantum metrology.
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I. INTRODUCTION

Parameter estimation [1–3] is one important class of quan-
tum metrology [4–10]. Quantum metrological enhancement is
achieved by employing quantum probes for detecting physical
properties with resolution beyond the reach of classical ap-
proaches [11–14]. Without noise, entangling the measurement
system with ancillary quantum degrees of freedom provides
no advantage to scaling of measurement precision with the
number of particles [15,16]. Contrariwise, in the presence
of noise, which deleteriously affects measurement precision,
entangling with ancillae is suggested to deliver higher precision
than not using entanglement with ancillae [17–20].

We demonstrate experimentally that entangling probes with
ancillae significantly enhances the performance of noisy quan-
tum metrology as quantified by the quantum Fisher information
(QFI) for parameter estimation (Fig. 1). Through entanglement
with ancillae, the probe state is less sensitive to noise. Informa-
tion from probes is limited by the Holevo bound [21], whereas
enlarging the Hilbert space by entangling with ancillae allows
more information to be accessed by measurements that exploit
the larger dimension of Hilbert space. The QFI is obtained
by tracing over the auxiliary space, which maximizes over
all mixed states. That might make the QFI larger than that
without ancillae (see Appendix A for details). The enlargement
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enhances the precision only for certain noisy channels, for
which the input states entangled between the space of probes
and ancillae are optimal [7,22–24].

Based on these theoretical proposals, we investigate ex-
perimentally whether entangled ancillae can deliver enhanced
metrological precision in the presence of noise [25,26] realized
as simulated decohering quantum channels [27–29], and herein
establish that indeed entangling with ancillae is advantageous
for efficiently inferring the unknown parameter measuring for
a wide range of noise values. We develop space-multiplexed
noisy channels via a dual interferometric network [27] and
inject hyperentangled photonic states entangled in their polar-
izations and spatial modes [30,31].

II. THEORY

First, we use a single-probe scheme as an example.
Entanglement-assisted parameter estimation comprises three
stages: preparation, in which a probe (a photonic qubit in our
case) shares entanglement with an ancilla; parametrization,
where the probe evolves in a channel and the parameter to be
estimated is encoded in the probe whereas the ancilla does not
participate; and measurement, in which a joint measurement is
performed on both the probe and ancilla to yield a precise
estimate of the parameter. We focus on a two-level probe
detecting a phase shift modeled by the unitary map

Uφ(ρ) = UφρU
†
φ, Uφ = |0〉〈0| + eiφ|1〉〈1| (1)
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FIG. 1. Concept of the comparison between the parallel scheme
of quantum metrology with and without assisted entanglement.
(a) Parallel scheme. Probes go through maps �φ in parallel. (b)
Parallel scheme with assisted entanglement. Introducing noiseless
ancillae sharing entanglement with probes and implementing joint
measurements after the evolution give estimation with an enhanced
precision.

for ρ the initial state. The noise map E acts after Uφ ; φ is
encoded into the probe state ρφ = �φρ for �(φ) = E ◦ Uφ .

We use QFI [32]

J (ρ(φ)) = Tr[ρ(φ)A2],
∂ρ(φ)

∂φ
= Aρ(φ) + ρ(φ)A

2
(2)

to quantify the metrological precision, with A the symmetric
logarithmic-derivative operator. Quantum Fisher information
is an appropriate measure as it serves as an asymptotic measure
of the amount of information inherent in how much the system
parameters can be acquired by measurement. The quantum
Cramér-Rao bound [33] is a lower bound for the precision �φ

of the estimate of φ: �φ � 1/
√

νJ (ρ(φ)) for ν, the number of
repetitions of the phase-estimate procedure. The best bound is
found by maximizing the QFI, which depends on both ρ and φ.

For a single-probe instance, noise diminishes the measure-
ment precision evident through reducing the output-state QFI
after passing through E . Entangling with an ancilla enhances
precision for noisy channels and the state transformation is
(�φ ⊗ 1)ρ̃ with the ancilla unchanged. Here ρ̃ denotes the
probe plus ancilla state, whereas ρ denotes the single-probe
state.

We consider three decoherence processes encountered in
quantum-enhanced metrology: amplitude-damping (sponta-
neous emission and photon scattering inside the interfer-
ometer), general Pauli (most general lossless channel), and
depolarizing (most symmetric Pauli channel assuming uncor-
related noise) channels [22], which are typically utilized when
accounting for decoherence in optical interferometry [29].

We start with the amplitude-damping channel [18]

1∑
ı=0

AıρA†
ı , A0 =

(
1 0

0
√

1 − η

)
, A1 =

(
0

√
η

0 0

)
, (3)

with η the probability of decay |1〉 �→ |0〉. For a single-probe
input state, the optimized QFI is 1 − η and the optimal
state is |+〉 := (|0〉 + |1〉)/√2. For the entanglement-assisted
approach, the QFI is 2(1 − η)/(2 − η) for an entangled state of

the probe and ancilla |	〉 := (|00〉 + |11〉)/√2 and is always
greater than that of the case without assisted entanglement for
arbitrary η ∈ (0,1) [18].

For � = (1,X,Y,Z) the Pauli matrices, the general Pauli
channel is the map

EGPC(ρ) =
3∑

i=0

pi
iρ
i,
∑

i

pi = 1, 0 � pi � 1, (4)

and the depolarizing channel p1 = p2 = p3 = p/4 is a special
case. For a single-qubit probe, |+〉 is the optimal state and the
optimal QFI is (1 − p)2 [18]. If the joint-probe ancilla state
is |	〉, the QFI is 2(1 − p)2/(2 − p). For arbitrary p ∈ (0,1),
the QFI is always greater than that of the case without assisted
entanglement [18].

The depolarizing channel can be regarded as a time-sharing
combination of a noiseless channel and a noisy channel in
which the state will evolve to a maximally mixed state [34–36].
For either of the two channels, the entanglement-assisted
approach does not provide any advantage. However, somewhat
surprisingly, assisted entanglement improves QFI for the de-
polarizing channel. We can test for the general Pauli channel
which can be implemented in a time-sharing way [34–38].
Each Pauli operator is applied over a specific activation time,
respectively, and the total decoherence process lasts over
an activation cycle, achieving a time-sharing general Pauli
channel. To explain the advantages of entanglement-assisted
quantum metrology, we implement a different type of general
Pauli channel, namely, a space-multiplexed Pauli channel.

Our method can be extended to a more complicated case:
an N -probe approach. In the absence of noise, an N -probe
approach with an optimal N -qubit input state (e.g., a NOON
state) achieves the Heisenberg limit scaling, which provides
improvement over classical limits. However, the advantages
are destroyed by noise. Our entanglement-assisted approach in
which N probes are entangled with noiseless ancillae protects
against noise and the effect caused by noise can be eliminated
by assisted entanglement. Even in the presence of noise, the
entanglement-assisted approach beats the shot-noise limit and
even maintains the Heisenberg limit scaling for some special
noisy channel.

We use a two-probe approach as an example. A two-qubit
NOON state |	+〉 = (|00〉 + |11〉)/√2 with both qubits being
probes is optimal only in the noiseless case. The phase φ to be
estimated is obtained via the unitary map applied in parallel

U2
φ(�) = Uφ ⊗ Uφ�U

†
φ ⊗ U

†
φ, (5)

with � = |	+〉〈	+|. Through a collective noisy channel in
parallel, the probe state becomes �φ = �⊗2

φ �.
A four-qubit entangled state �̃ = (|0000〉 +

|1111〉)(〈0000| + 〈1111|)/2 of two probes and two ancillae
beats the optimal state of two probes � in the presence of
noise. Taking the collective damping channel as an example,
its QFI is

8(η − 1)2{2(η − 1)2 cos 8φ + (η − 2)η[(η − 2)η + 2] + 2}
[(η − 2)η + 2]3

(6)

and is larger than that of �, even though this particular four-
qubit entangled state is not necessarily optimal.
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FIG. 2. Experimental scheme. (a) Setup for entanglement-assisted single-probe approach. Heralded single photons are used to prepare
polarization-spatial hyperentangled states for the entanglement-assisted quantum metrology approach. Space-multiplexed noisy channels are
realized by the dual interferometric network setup, in which spatial coherence is reduced, and the optical path delay enables the arrival time
of the photons passing through different optical paths on the BD (for the amplitude-damping channel) or NBS (for the depolarizing channel)
to be different. Random phases are added between photons in different optical paths before recombining them on the BD or NBS. Quantum
process tomography is performed via waveplates (WPs), BD, and PBS and enables reconstruction of the process matrices for the channels. (b)
Setup for entanglement-assisted two-probe approach. Polarization-entangled photon pairs are used to prepare the four-qubit hyperentangled
state. Projective measurements are realized via BDs, WPs, NBSs, and a PBS. Coincidences between paired photons are detected by APDs.

III. REALIZATION OF NOISY CHANNELS

The experimental setup in Fig. 2 involves the three
stages of state preparation, parametrization, and measure-
ment. In the preparation stage, we prepare single pho-
tons in polarization-spatial hyperentangled states for the
entanglement-assisted single-probe approach [30,31]. In con-
trast, for the entanglement-assisted two-probe approach,
polarization-entangled photon pairs are used to prepare the
four-qubit hyperentangled state (see Appendix D).

The probe state is transformed according to the noisy chan-
nel, whereas the ancilla qubit is not evolving. The efficiency of
the optimal estimation is shown to outperform quantum process
tomography (QPT).

We now present the experimental implementation of a
single-qubit amplitude-damping channel. As the noisy channel
is only applied to the probe state, i.e., the polarization degree
of freedom of the photons, the longitudinal spatial modes of
the photons (|U 〉 and |D〉) are not affected. The photons on
either of the modes encounter the same noisy channel. In the
polarization basis, the amplitude-damping map is realized by
the dual interferometer setup implemented by splitting the two
polarization components and putting independent polarization
controls inside a beam displacer (BD) interferometer [28].

First a BD whose optical axis is perpendicular to that of the
one which is used for preparing hyperentangled states in the
state preparation stage splits the two polarization components
by directly transmitting the vertically polarized photons and
shifting the horizontally polarized photons by a lateral dis-
placement. A half-wave plate (HWP) at 45◦ rotates |H 〉 to |V 〉
and another HWP (HA) at θA with cos 2θA = −√

1 − η applies
a rotation (−

√
1 − η

√
η√

η
√

1 − η) on the polarization of photons. The
following BD splits and combines the photons due to their

polarizations, and the HWPs with certain setting angles are
used to rotate the polarization of the photons.

A quartz crystal (QC) with thickness of 28.77 mm [39] is
inserted to reduce the spatial coherence of the photons with
different polarizations. The sandwich-type HWP-BD-HWP
setup works as a 50:50 beam splitter recombining the photons.
Accordingly, with probability 1/2, the state emerging from the
output port is the desired output state.

Furthermore, we can also create a single-qubit space-
multiplexed general Pauli channel (4) with five BDs and twelve
HWPs. Six HWPs (Hl at θl , l = 1, . . . ,6) control the ratio of
photons in different lateral spatial modes and three of them
at 45◦ (in front of the fifth BD) flip the polarizations and
then change the spatial modes of the corresponding photons.
Therefore, after the fifth BD, the photons are distributed into
four lateral spatial modes according to the parameters pi . For
a given desired channel the setting angles θl of the HWPs (Hl)
are chosen to satisfy the relations√

p0 = cos 2θ1 sin 2θ3 = cos 2θ2 cos 2θ4 sin 2θ6,√
p1 = sin 2θ1 = − cos 2θ2 cos 2θ4 cos 2θ6,√
p2 = cos 2θ1 cos 2θ3 cos 2θ5 = sin 2θ2,√
p3 = cos 2θ1 cos 2θ3 sin 2θ5 = − cos 2θ2 sin 2θ4.

Then the last three HWPs at 0◦ and 45◦, respectively, are
inserted into different spatial modes and act as Pauli operators
� on the probe qubit.

Two nonpolarizing beam splitters (NBSs) recombine the
photons in the four lateral spatial modes. To reduce the spatial
coherence of the photons, the optical distance ς between the
photons in the different lateral spatial modes should satisfy
Lcoh < ς < c�t = 0.9 m. In our experiment, max ς ≈ 0.6 m.
Hence, we realize the space-multiplexed general Pauli channel.
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FIG. 3. Experimental results of the reconstructed noisy channels. For the entanglement-assisted approach, the reconstructed process matrices
are shown for (a) the amplitude-damping channel with η = 0.5 and (d) the depolarizing channel with p = 0.4 compared with their theoretical
predictions in (b) and (e), respectively. Also shown are the fidelities F of the reconstructed process matrices for (c) the amplitude-damping
and (f) depolarizing channels as a function of the noise parameters. The red (filled) bars indicate the fidelities for the entanglement-assisted
approach and the gray (hatched) ones indicate those for the optimized single-probe approach. Error bars indicate the statistical uncertainty,
obtained from Monte Carlo simulations assuming Poissonian photon-counting statistics.

To compare the approaches with and without assisted entan-
glement, we realize noisy channels on the probe qubit, which
does not share entanglement with an ancilla. In our experiment,
in both the state preparation and process tomography stages,
the BDs and some WPs are removed from the setup in Fig. 2
as no ancillary spatial mode is needed. In the parametrization
stage, the photons are not distributed into different longitudinal
spatial modes.

IV. EXPERIMENTAL RESULTS OF QFI

We present our experimental results for noisy channels
and compared the QFI for the single-probe approach with
and without assisted entanglement. Our experimental process
matrices χexpt are reconstructed using process fidelity [40,41]

F = Tr(χ †
theorχexpt)√

Tr(χ †
exptχexpt)Tr(χ †

theorχtheor)
(7)

to characterize the experimental realization of the noisy chan-
nels (see Appendix E). Figure 3 shows the experimentally
reconstructed χexpt for the amplitude-damping channel with
η = 0.5 and the depolarizing channel with p = 0.4. Our results
exhibit F ≈ 1. Without assisted entanglement, all the fidelities
of the amplitude-damping channel with various parameters are
greater than 0.9949 ± 0.0007 and those of the depolarizing
channel are greater than 0.9700 ± 0.0041. In contrast, with
entanglement sharing between the probe and ancilla, all the
fidelities of the amplitude-damping channel are greater than
0.9647 ± 0.0003 and those of the depolarizing channel are
greater than 0.9593 ± 0.0016.

To calculate the QFI, we use the diagonal form of the output
state ρexpt(φ) = ∑

i λi |ψi〉〈ψi | + ρnoise, where λi and |ψi〉 are
the eigenvalues and eigenstates and ρnoise is the irrelevant part

of the density matrix and is independent of φ [32]. With this
formula, we calculate the matrix elements of A in the basis
{|ψi〉}.

We use the amplitude-damping and depolarizing channels
as examples as usual for decoherence in optical interferometry.
For the amplitude-damping channel, the optimized QFI of the

output state is
[2ρ12

expt(φ)]2

ρ11
expt(φ)+ρ22

expt(φ)
and

[2ρ̃14
expt(φ)]2

ρ̃11
expt(φ)+ρ̃44

expt(φ)
for a single-probe

input state and for the entanglement-assisted approach, respec-
tively, with ρ

ij
expt a matrix element of ρexpt. For the depolarizing

channel, without assisted entanglement, the optimized QFI for

a single probe is
[2ρ12

expt(φ)]2

ρ11
expt(φ)+ρ22

expt(φ)
. With assisted entanglement, the

QFI of the output state of the probe plus ancilla system is then
[2ρ̃14

expt(φ)]2

ρ̃11
expt(φ)+ρ̃44

expt(φ)
+ [2ρ̃23

expt(φ)]2

ρ̃22
expt(φ)+ρ̃33

expt(φ)
.

As we reconstruct all noisy-channel information via QPT
[42,43], the output state for each case is reconstructed. By
setting φ = 0, we calculate experimental QFI values of the
output states. In Fig. 4, experimental values of the QFI for the
amplitude-damping and depolarizing channels either with or
without the assisted entanglement are shown. Our experimental
results agree well with theoretical calculations.

Evidently, for a single probe, in the presence of amplitude-
damping noise and depolarizing noise, an entanglement-
assisted scheme improves the QFI compared to the unentangled
case for all ranges of noise regimes. To illustrate this, we also
realize the general Pauli channel with p0 = p2 = 0.5 and p1 =
p3 = 0. The experimental value for QFI for the entanglement-
assisted approach is 0.984 ± 0.045, which agrees with the
theoretical prediction of 1, whereas the optimized QFI for a
single probe is 0. This represents the case of orthogonal noise
when the ancilla approach recovers almost the full information
on the phase even in the presence of noise.
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FIG. 4. Experimental values of QFI. The QFI vs η (p) is shown for
(a) amplitude-damping and (b) depolarizing channels. Dashed curves
show theoretical predictions of QFI for the entanglement-assisted
approach, whereas solid curves are for the optimized single-probe
approach. Data points are experimental results.

V. PHASE ESTIMATION

For the single-probe approach, the phase φ to be esti-
mated has been obtained via a unitary map via an additional
HWP inserted in the interferometer, which causes the optical
path difference between photons with different polarizations.
The optimal measurement strategy around φ ∼ 0 consists in
projecting in the polarization-spatial hyperentangled states
(|HU〉 ± i|V D〉)/√2. Since no information on φ is carried on
the other bases, for convenience, we choose |HD〉 and |V U 〉.
The projective measurements are realized via a BD, a quarter-
wave plate (QWP) at 0, HWPs at 45◦ and 22.5◦, respectively,
and a polarizing beam splitter (PBS). Coincidences between
the outputs and the trigger are detected by single photon
avalanche photodiodes (APDs) (see Appendix F).

For the amplitude-damping channel, the outcome prob-
abilities of the projective measurements are P [(|HU〉 ±
i|V D〉)/√2] = [2 − η ± 2v

√
1 − η sin φ]/4, P (|HD〉) =

η/2, and P (|V U 〉) = 0, where v is the visibility of the interfer-
ometer. The optimal measurement is identified by optimizing
the highest QFI 2v2(1 − η)/(2 − η), which proves that the
measurement achieves the quantum Cramér-Rao bound for
the input state. In contrast, for the depolarizing channel, the

outcome probabilities are P [(|HU〉 ± i|V D〉)/√2] = [2 −
p ± 2v(1 − p) sin φ]/4, P (|HD〉) = p/4, and P (|V U 〉) =
p/4 and the corresponding QFI is 2v2(1 − p)2/(2 − p), which
is always above the single-probe QFI.

For the two-probe approach, we use the amplitude-damping
channel as an example. The input state is prepared in a
two-photon NOON state (|HH 〉 + |V V 〉)/√2. Each probe is
affected by an individual amplitude-damping channel with the
noise parameter η. With ancillary degree-of-freedom–spatial
modes of two photons, the entanglement-assisted state
becomes (|HUHU〉 + |V DV D〉)/√2. The optimal
measurement strategy around φ ∼ 0 consists in projecting in
the polarization-spatial hyperentangled states (|HUHU〉 ±
i|V DV D〉)/√2. No information on φ is carried on the
other 14 bases. The outcome probabilities of the projective
measurements are P [(|HUHU〉 ± i|V DV D〉)/√2] =
[2 − 2η + η2 ∓ 2v(1 − η) sin 2φ]/4, P (|HDHD〉 = η2/2),
P (|HDV D〉) = η(1 − η)/2, P (|V DHD〉) = η(1 − η)/2,
and zero. The optimal measurement is identified by optimizing
the highest QFI 8v2(1 − η)2/[1 + (1 − η)2], which is always
above the two-probe approach without assisted entanglement
4v2(1 − η)2/[1 − η + η2].

To realize the entanglement-assisted single-probe approach,
for each of the various noise parameters, data are accumulated
for a collection time of 10 s, corresponding to a coincidence
count rate of about 20 000 events per acquisition. In contrast,
for the entanglement-assisted two-probe approach, the coinci-
dence count rate is about 2000 events per acquisition. In total,
100 values of the phase φ are collected. The standard deviation
of the sample δφ is expected to converge to the ultimate limit
established by the quantum Cramér-Rao bound in the limit of
a large number of repetitions. We use the standard deviation of
the sample multiplied by

√
ν (here ν is the average number of

events) to indicate the error
√

νδφ.
Figure 5 shows the experimental results of the error

√
νδφ

as a function of the noise parameters for different approaches in
different noisy channels. For the single-probe approach, due to
experimental imperfections such as imperfect interferometric
visibility of the setup, it is difficult to observe the advantages
of the entanglement-assisted approach at low noise. With the

FIG. 5. Experimental values of the error
√

νδφ. The error is shown as a function of the channel noise for the single-probe approach in (a)
amplitude-damping and (b) depolarizing channels. (c) Result for the two-probe approach in the amplitude-damping channel. Dashed curves
show theoretical predictions of the error for the entanglement-assisted approach, whereas solid curves are for approaches without assisted
entanglement. The gray shadow denotes the shot-noise limit. Data points are experimental results. Error bars are calculated with the bootstrap
method. Interferometric visibilities of the setups are (a) 0.9969 ± 0.0006, (b) 0.9928 ± 0.0008, and (c) 0.9699 ± 0.0055.
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noise parameter increasing, the advantages are more obvious.
For the two-probe case, the approach of a two-qubit NOON
state beats the shot-noise limit both in the noiseless case and at
low noise level. The advantage over the classical metrology is
affected by noise. Assisted entanglement protects against the
noise, especially at a high noise level.

VI. DISCUSSION

We experimentally realized entangled-assisted quantum
metrology and demonstrated its efficacy through the QFI
for single-qubit amplitude-damping, depolarizing, and general
Pauli noisy channels. Compared to the approach without
assisted entanglement, we observed an enhancement over
the noisy cases. Our achievement relies on replacing time-
sharing noisy channels by space-multiplexed noisy channels
using a practical linear-optical interferometric network. Our
demonstration serves as a foundation for future experimental
simulations employing networks of multiqubit channel sim-
ulations. We used polarization-spatial hyperentangled states
encoded in photons, which are easier to create and control.
Our approach to entanglement-assisted quantum metrology
via a simple linear-optical interferometric network with easy-
to-prepare photonic inputs provides a path towards practical
quantum metrology.

Note added. Recently, we learned of related work by
Sbroscia et al. [44].
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APPENDIX A: EXTENDED-CHANNEL QUANTUM
FISHER INFORMATION

The action of a quantum channel �φ = E ◦ Uφ can
always be expressed as its operator-sum representation
�φρ = ∑

i Ki(φ)ρK
†
i (φ) with Kraus operator Ki(φ) satisfy-

ing
∑

i Ki(φ)K†
i (φ) = 1. Evidently, this representation is not

unique; different sets of linearly independent Kraus operators
can be related by unitary transformations [7]

K̃i(φ) =
∑

j

uij (φ)Ki(φ), (A1)

where uij is the element of a unitary matrix u(φ) possibly
depending on φ. The single-channel quantum Fisher infor-
mation is equal to the smallest quantum Fisher information
of its purifications �φρ = TrE(|�φ〉〈�φ|), with |�φ〉 the state
of input plus environment and the subscript E for tracing out

environment [23]

J (�φρ) = min
|�φ〉

J (|�φ〉) (A2)

by minimizing over the state of input plus environment |�φ〉.
For a pure input state (not an unreasonable constraint as the

optimal input state is always pure [24]), different purifications
correspond to different Kraus representations of the channel.
Moreover, it is enough to parametrize equivalent Kraus rep-
resentations in Eq. (A1) with a Hermitian matrix h, which is
the generator of infinitesimal rotations; i.e., u(φ) = e−ih(φ−φ0),
in the vicinity of the real value φ0. This formulation simplifies
the optimization problem (A2) by revising it as a minimization
problem over h. Therefore, we obtain the maximal quantum
Fisher information after performing the input optimization as
[22]

max
ρ

J (�φρ) = 4 max
ρ

min
h

Tr

(
ρ

∑
i

˙̃K†
i (φ) ˙̃Ki(φ)

)
, (A3)

with ˙̃Ki(φ) = ∂φK̃i(φ).
By considering an ancillary system with extended input

states involving probe and ancilla, we acquire full information
available about φ imprinted by the map �φ on the extended
output state. Then quantum Fisher information of the extended
channel is calculated in a similar way. The map becomes
ρ̃(φ) = �φ ⊗ 1ρ̃, where ρ̃ denotes the initial pure state of the
probe plus ancilla system. The quantum Fisher information is

max
ρ̃

J (�φ ⊗ 1ρ̃) = 4 max
ρA

min
h

Tr

(
ρA

∑
i

˙̃K†
i (φ) ˙̃Ki(φ)

)
,

(A4)

where ρA = TrA(ρ̃) is obtained by tracing over the auxiliary
space, which leads to the maximization over all mixed states
ρA. Equation (A4) is exactly Eq. (A3) with the pure input state
replaced by a general mixed one. By maximizing over all mixed
states, the extended channel quantum Fisher information can
be larger than the unextended one. If and only if the optimal
ρA is a pure state, assisted entanglement does not help.

APPENDIX B: OPTIMAL PROBE STATES UNDER THE
DYNAMICS WITH DEPOLARIZATION

The depolarizing channel is described by Kraus operators

K0 =
√

1 − 3p

4

0, K1,2,3 =

√
p

4

1,2,3, (B1)

where 
 = (1,X,Y,Z) are the Pauli matrices. Using the
method of semidefinite programming [7], we find the optimal
generator

h = 1

2

⎛
⎜⎝

0 0 0 ξ

0 0 −i 0
0 i 0 0
ξ 0 0 0

⎞
⎟⎠, ξ =

√
(4 − 3p)

2 − p
. (B2)

For the single-probe approach, the optimal input state is ρ =
|+〉〈+|, where |±〉 = (|0〉 ± |1〉)/√2. Substituting the optimal
state and generator into Eq. (A3), we obtain the maximal
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FIG. 6. (a) Circuit for the single-probe approach. Here E is a de-
polarizing channel. (b) Circuit for the entanglement-assisted protocol.
(c) Different form of the circuit for the entanglement-assisted protocol
for an intuitive understanding of why assisted entanglement helps
against noise. Here F is a specific two-qubit operation. The lower
wire in (b) and (c) is for the probe qubit and the upper wire in (b) and
(c) is for the ancilla. The double wire on the right corresponds to a bit
from a classical measurement.

quantum Fisher information of the single probe

max
ρ

J (�φρ) = (1 − p)2. (B3)

For the entanglement-assisted approach, the optimal re-
duced state is the maximally mixed state ρA = (|0〉〈0| +
|1〉〈1|)/2. The optimal entangled input state in this case is
any pure state ρ̃ with the reduced state equal to ρA. The
simplest choice of the optimal input state is the maximally
entangled state ρ̃ = (|00〉 + |11〉)(〈00| + 〈11|)/2 [18], and the
corresponding maximal quantum Fisher information is

max
ρ̃

J (�φ ⊗ 1ρ̃) = 2(1 − p)2

(2 − p)
, (B4)

which is always greater than that of the single-probe approach
for arbitrary p ∈ (0,1).

APPENDIX C: INTUITIVE UNDERSTANDING OF WHY
ASSISTED ENTANGLEMENT HELPS AGAINST NOISE

The intuitive understanding of how and why the ancilla
qubit helps is crucial to making progress on entanglement-
assisted metrology. Here we provide it for the case of a
depolarizing channel.

Figure 6(a) shows the single-probe approach. A Hadamard
operator creates the state of the probe qubit |+〉. With Uφ =
e−iZφ/2, the depolarizing channel is

E =
(

1 − 3p

4

)
1  1 + p

4
(Z  Z + X  X + Y  Y ),

(C1)

where  is a placeholder for the operator which the quantum
operation acts on and the measurement is in the Y basis.
Figure 6(b) shows the entanglement-assisted protocol. The
Hadamard and controlled-NOT operators together create the
entangled state |	+〉 = (|00〉 + |11〉)/√2 and the final mea-
surement is a controlled-NOT operator followed by Y ⊗ Z, i.e.,
Y on the probe qubit and Z on the ancilla qubit.

Then we use the convention that tensor products are written
in the order of lower and then upper. Figure 6(c) shows
the second form of the circuit in Fig. 6(b), in which the
first controlled-NOT operator is moved through the rotation

Uφ , then moved through the depolarizing channel, combining
the second controlled-NOT operator, and then converting the
channel to a two-qubit quantum operation

F =
(

1 − 3p

4

)
1 ⊗ 1  1 ⊗ 1 + p

4
(Z ⊗ 1  Z ⊗ 1

+X ⊗ X  X ⊗ X + Y ⊗ X  Y ⊗ X). (C2)

The final measurement is then of Y ⊗ Z.
The effect of the single-qubit circuit on the state |+〉 is

E ◦ Uφ(|+〉〈+|) = (1 − p)Uφ|+〉〈+|U †
φ + p

2
1; (C3)

i.e., the rotation is applied with probability 1 − p, and the qubit
is mapped to the maximally mixed state with probability p. The
effect of the ancilla-assisted circuit on the state |+〉|0〉 is

F ◦ Uφ ⊗ 1(|+〉|0〉〈0|〈+|)
=

[
(1 − p)Uφ|+〉〈+|U †

φ + p

4
1
]

⊗ |0〉〈0|

+ p

4
1 ⊗ |1〉〈1| (C4)

=
(

1 − p

2

)[
(1 − q)Uφ|+〉〈+|U †

φ + q

2
1
]

⊗ |0〉〈0|

+ p

4
1 ⊗ |1〉〈1|, (C5)

where

q = p/2

1 − p/2
⇐⇒ 1 − q = 1 − p

1 − p/2
. (C6)

Evidently, the form of F shows that X and Y errors map
the main qubit to the maximally mixed state, wiping out the
information about φ. This happens just as for the single-qubit
circuit, except that a record of when an X or Y error occurs is
stored in the ancilla qubit. By monitoring the ancilla qubit, one
can discard the random data that result from X or Y errors.

The upshot is that, with probability 1 − p/2, the
entanglement-assisted quantum circuit works just like the
single-qubit circuit. Compared to the single-qubit circuit, the
entanglement-assisted quantum circuit achieves a successful
rotation with probability (1 − p/2)(1 − q) and with proba-
bility (1 − p/2)q/2 maps to the maximally mixed state and
with a record stored in the outcome 0 of the ancilla qubit. As
the single-qubit circuit achieves an estimator variance 1/(1 −
p)2, the entanglement-assisted circuit achieves an estimator
variance

1

1 − p/2

1

(1 − q)2
= 1 − p/2

(1 − p)2
, (C7)

which is smaller than 1/(1 − p)2. That means assisted en-
tanglement helps to achieve a smaller estimator variance
compared to the single-probe approach. The term 1 − p/2
in the denominator of the first expression comes from the
reduction in the number of trials when one discards the trials
that give an outcome of 1 on the ancilla qubit.

APPENDIX D: STATE PREPARATION

We prepare single photons in polarization-spatial hyper-
entangled states for entanglement-assisted single-probe ap-
proach [30,31]. The source consists of aβ barium borate (BBO)
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nonlinear crystal pumped by a cw diode laser, and polarization-
degenerate photon pairs at 801.6 nm are generated by a
type-I spontaneous parametric down-conversion (SPDC) pro-
cess [45–50]. The photon pairs have a coherence length of
Lcoh = 214.2 μm and spectral bandwidth �λ = 3 nm.

Upon detection of a trigger photon, the signal photon is
heralded in the measurement setup. This trigger-signal photon
pair is registered by a coincidence count at two single-photon
APDs with a �t = 3 ns time window. Total coincidence counts
are about 20 000 over a collection time of 10 s. The probe is
encoded in the horizontal |H 〉 and vertical |V 〉 polarizations of
the heralded single photons.

After passing through a PBS followed by a HWP and a
QWP, the single photons are prepared in an arbitrary single-
qubit state. The longitudinal spatial modes |U 〉 and |D〉
represent the basis states of the ancilla. A birefringent calcite
BD whose optical axis is cut so that horizontally polarized
light is directly transmitted and vertical light undergoes a
longitudinal displacement into a neighboring mode acts as
an effective controlled-NOT gate on the polarizations and the
spatial modes and prepare the initial state into a polarization-
spatial hyperentangled state α|HU〉 + β|V D〉 (|α|2 + |β|2 =
1 and α,β �= 0).

In contrast, for entanglement-assisted two-probe approach,
polarization-entangled photon pairs [51] are used to prepare
the four-qubit hyperentangled state. Similarly, entangled pho-
tons in (|HH 〉 + |V V 〉)/√2 are also generated via type-I
SPDC. Two β-BBO crystals and a following titled HWP
(HC) placed right after two joint α-BBO crystals are used
to compensate the walk-off between photons with horizontal
and vertical polarizations. Each photon passes through a BD
and then a four-qubit polarization-spatial hyperentangled state
(|HUHU〉 + |V DV D〉)/√2 is generated. Total coincidence
counts are about 2000 over a collection time of 10 s.

APPENDIX E: ACCURACY OF THE NOISY
CHANNEL SIMULATION

To verify accuracy of the noisy channel simulation, we
reconstruct the process matrices of the channels via two-qubit
QPT [42,43]. The action of a generic channel operating on a
probe qubit is

E(ρ̃) =
3∑

n,m,n′,m′=0

χnmn′m′(
n ⊗ 
m)ρ̃(
n′ ⊗ 
m′), (E1)

where χnmn′m′ completely characterizes the process. To deter-
mineE we first choose some fixed states {ρ̃}, which form a basis
for the set of operators acting on the state space of the probe
plus ancilla system. Each state is then subject to the process
E ⊗ 1 and quantum state tomography is used to determine the
output state (E ⊗ 1)ρ̃.

A total of 16 initial states ρ̃l , l = 1, . . . ,16, and 16 measure-
ments on a two-qubit state of the probe plus ancilla system are
needed. These states are generated by PBS, BD, and WPs.
The HWP (HS1) and QWP (QS1) are used to control the ratio
and relative phase between the photons in the upper and lower
modes, respectively, whereas HS2 is used to control the ratio
between the photons with different polarizations and QS2 is for

the relative phase. Measurements are performed in the bases

{
|H 〉,|V 〉, |H 〉 − i|V 〉√

2
,
|H 〉 + |V 〉√

2

}

⊗
{
|U 〉,|D〉, |U 〉 − i|D〉√

2
,
|U 〉 + |D〉√

2

}
. (E2)

After reconstructing the process matrices, we use process
fidelity in Eq. (4) to characterize the experimental realization
of the noisy channels.

APPENDIX F: PROJECTIVE MEASUREMENTS
FOR REALIZING PHASE ESTIMATION

For the entanglement-assisted single-probe approach, the
optimal measurement strategy around φ ∼ 0 is projecting the
output state into four basis states:

{
1√
2

(|HU 〉 ± i|V D〉),|HD〉,|V U 〉
}
,

respectively. The projective measurements can be realized via
a BD, a QWP, several HWPs, and a PBS. A sandwich-type
setup, i.e., HWP-BD-HWP (with both HWPs at 45◦), separate
the photons in the states |V U 〉 and |HD〉 into the uppermost

TABLE I. Corresponding relations between the projective mea-
surements and the combinations of coincidences between pairs of
APDs. Within the parentheses a solidus denotes “or” and a comma
means “and.” For example, (D5/D6,D9/D10),(D7/D8,D11/D12)
means that the outcome probability of projecting the state in the
basis (|HUHU〉 + i|V DV D〉)/√2 depends on the coincidences
between pairs of APDs such as (D5,D9), (D5,D10), (D6,D9), (D6,D10),
(D7,D11), (D7,D12), (D8,D11), and (D8,D12). The asterisk superscript
denotes that the probability of projective measurement depends on
the doubled coincidences. That is because in some case two photons
happen to be in the same port of the NBS with half of the probability,
which cannot be recorded in the experiment. Thus we need to double
the coincidences for the rest of the cases to represent the correct
outcome probability of the projective measurement.

Basis state Coincidences

(|HUHU〉 + i|V DV D〉)/√2 (D5/D6,D9/D10),(D7/D8,D11/D12)
|HUHD〉 (D9/D10/D11/D12,D4)
|HUV U〉 (D9/D10/D11/D12,D3)
|HUV D〉 (D9,D10)∗,(D11,D12)∗

|HDHU〉 (D2,D5/D6/D7/D8)
|HDHD〉 (D2,D4)
|HDV U〉 (D2,D3)
|HDV D〉 (D2,D9/D10/D11/D12)
|V UHU〉 (D1,D5/D6/D7/D8)
|V UHD〉 (D1,D4)
|V UV U〉 (D1,D3)
|V UV D〉 (D1,D9/D10/D11/D12)
(|HUHU〉 − i|V DV D〉)/√2 (D5/D6,D11/D12),(D7/D8,D9/D10)
|V DHD〉 (D5/D6/D7/D8,D4)
|V UV U〉 (D5/D6/D7/D8,D3)
|V DHU〉 (D5,D6)∗,(D7,D8)∗

042112-8



ENTANGLEMENT-ENHANCED QUANTUM METROLOGY IN A … PHYSICAL REVIEW A 97, 042112 (2018)

and lowest modes and combine the photons in the states |HU 〉
and |V D〉 into the middle mode. In the middle mode, a QWP
at 0◦ following by a HWP at 22.5◦ applies a rotation on the
polarization states, i.e.,

1√
2

(|H 〉 − i|V 〉) −→ |H 〉, 1√
2

(|H 〉 + i|V 〉) −→ |V 〉.

Finally, the PBS projects the photons in the middle mode into
two basis states (|HU〉 ± i|V D〉)/√2. Coincidences between
the outputs and the trigger are detected by APDs. The outcome
probabilities of projecting the state in the basis {(|HU〉 ±
i|V D〉)/√2,|HD〉,|V U 〉} depend on the coincidences be-
tween two of APDs (D0,DR), (D0,DL), (D0,DH), and (D0,DV),
respectively.

For the entanglement-assisted two-probe approach, the
optimal measurement strategy around φ ∼ 0 is projecting the

output state into 16 basis states:{
1√
2

(|HUHU〉 ± i|V DV D〉),|HUHD〉,|HUV U 〉,

|HUV D〉,|HDHU 〉,|HDHD〉,|HDV U〉,
|HDV D〉,|V UHU〉,|V UHD〉,|V UV U 〉,|V UV D〉,

|V DHU〉,|V DHD〉,|V DV U 〉
}
,

respectively. Similar to the entanglement-assisted single-probe
approach, the projective measurements here are realized via
BDs, WPs, NBSs, and a PBS. We use a multichannel coin-
cidence counting system that records all possible combina-
tions of two-photon detection events occurring coincidentally
across 12 APDs (D1, . . . ,D12). The outcome probabilities of
projecting the state in the bases depends on the combinations
of coincidences between pair of APDs (D1, . . . ,D12). The
corresponding relation is shown in Table I.
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