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Controllability in tunable chains of coupled harmonic oscillators
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We prove that temporal control of the strengths of springs connecting N harmonic oscillators in a chain provides
complete access to all Gaussian states of N − 1 collective modes. The proof relies on the construction of a suitable
basis of cradle modes for the system. An iterative algorithm to reach any desired Gaussian state requires at most
3N (N − 1)/2 operations. We illustrate this capability by engineering squeezed pseudo-phonon states—highly
nonlocal, strongly correlated states that may result from various nonlinear processes. Tunable chains of coupled
harmonic oscillators can be implemented by a number of current state-of-the-art experimental platforms, including
cold atoms in lattice potentials, arrays of mechanical micro-oscillators, and coupled optical waveguides.
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I. INTRODUCTION

Chains of coupled harmonic oscillators are simple, yet
nontrivial systems that can be used to study complex physical
phenomena. Their use goes back to at least Schrödinger,
who derived thermodynamic properties of solids in 1914
[1], and continues to this day, with investigations including
statistical and mathematical physics [2,3], transport properties
in nanowires [4], and nonclassical effects in open quantum
systems [5]. Many novel experimental platforms implement
harmonic-oscillator chains in the quantum regime, including
ion crystals [6,7], nanomechanical arrays [8], coupled waveg-
uides [9], and ultracold atoms trapped in optical lattices [10].
These implementations can cover a wide range of parameters
to simulate and study nonequilibrium phenomena [11] and to
employ harmonic-oscillator chains for various quantum infor-
mation applications. Extensive research of, e.g., the dynamics
of entanglement [12–18] and quantum state transfer in chains
[19–22] have led to several quantum information applica-
tions of Gaussian states [23,24], including universal quantum
computation [25], quantum secret sharing [26], cloning, and
teleportation [27].

It is often assumed that the couplings between neighboring
oscillators in the chain are uniform or follow a certain pattern
suitable for the desired application. Yet, in many realizations
of oscillator chains, such as atoms in arrays of microtraps
[28–31], sequentially coupled optomechanical cavities [8] or
ions in Coulomb crystals [6], one can tune the strength and
time-dependence of individual couplings.

Whether or not a tunable chain of harmonic oscillators is
suitable for universal quantum computation with continuous
variables [25], is capable of quantum teleportation [27] or
can serve as a sensor of spatially extended weak fields or
surfaces [32,33] depends critically upon the controllabil-
ity of the system, which determines the set of states that
can be prepared by manipulating individual springs. Conse-
quently, the controllability of harmonic-oscillator chains has
received careful attention from the theoretical community.
The circumstances under which the rank criterion may be
used on such systems has been established [34] and the set

of reachable states under parametric interactions has been
characterized [35].

Here we consider a chain of harmonic oscillators and
assume that each oscillator consists of the same physical
system and each spring coupling neighboring oscillators is
realized by the same underlying mechanism, e.g., switchable
interatomic forces or fiber coupling between optomechanical
cavities. Hence, if one of the couplings can be tuned in strength
and time, so can all the others. In this sense, our conditions are
minimal, because any less control would imply an oscillator
that is not coupled to the remaining chain. We prove that
the control of the time-dependent springs between any two
neighboring sites of a chain of N oscillators gives complete
access to all pure Gaussian states of N − 1 modes of the
system. We present an explicit algorithm for constructing
any desired state and demonstrate it with the engineering of
an N -body squeezed state of a “pseudo-phonon” mode. To
streamline the analytic treatment, we introduce cradle modes
of the finite system that permit an inductive proof and aid in
the construction of a recursive scheme to reach a given target
state.

II. MATHEMATICAL FORMULATION

Consider a chain of N degenerate harmonic oscillators with
frequency ω. Any two neighboring oscillators n and n + 1
are connected by a spring with tunable strength �n(t). The
Hamiltonian reads (h̄ = 1)

H = ω

N∑
n=1

(
p̂2

n

2
+ x̂2

n

2

)
+

N−1∑
n=1

�n(t)(x̂n − x̂n+1)2, (1)

where x̂n and p̂n are the dimensionless position and momentum
operators for the nth oscillator, satisfying [x̂n,p̂m] = iδnm. We
neglect the effects of dissipation, assuming that relaxations
occur on timescales much longer than the maximal �−1

n .
Since the Hamiltonian is quadratic in position and momentum
operators, their first- and second-order moments decouple.
We are interested in the mechanical quantum fluctuations of
the system and disregard the first moments. The dynamics
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governed by Hamiltonian (1) preserves the Gaussian character
of states and the system is completely characterized by a
vector of Heisenberg operators q̂ = (x̂1,p̂1, . . . ,x̂N ,p̂N )�. The
evolution is described by matrices acting on q̂, the only
restriction being the conservation of commutation relations.
These matrices form the symplectic group over the reals
Sp(2N,R). Below we prove that by appropriate manipulation
of the time dependence of couplings �n we can access all
matrices in Sp(2(N − 1),R).

A. Proof of controlability

To simplify the proof, we assume that no two neighboring
springs are turned on at the same time. When a particular spring
�n is turned on, it couples the motion of oscillators n and n + 1.
If, in addition, the strength of the spring is modulated at twice
the bare-oscillator frequency, �n = �̄n(t)[1 + A(t) cos(2ωt +
φ)], the interaction is parametric [31]. The two oscillators
with the relative position and momentum coordinates r̂−

n =
1√
2
(x̂n − x̂n+1,p̂n − p̂n+1)� are then driven into an entangled

state. In the phase space spanned by these relative coordinates,
parametric coupling results in a squeezed ellipse for the
quasiprobability distribution of the state. The orientation of this
ellipse, i.e., the squeezing angle, is determined by the phase φ

of modulation. The squeezing magnitude and angle completely
characterize the state of the oscillator corresponding to r̂−

n .
Thus tuning �n(t) gives access to all Gaussian states of the
relative motion of oscillators n and n + 1. Formally, this is
described by the ability to create an arbitrary symplectic matrix
S acting on the relative coordinates,

r̂−
n → exp (αs1 + βs2 + γ s3)r̂−

n ≡ Sr̂−
n , (2)

where α,β,γ are real numbers and

s1 =
(

1 0
0 −1

)
, s2 =

(
0 1
1 0

)
, s3 =

(
0 −1
1 0

)
(3)

are the generators of the symplectic group of order 2. In
contrast, the phase-space distribution of the sum coordinate
r̂+
n = 1√

2
(x̂n + x̂n+1,p̂n + p̂n+1)� is not changed by �n. More

generally, for any combination of couplings �n, the Hamilto-
nian (1) commutes with the total displacement x̂s = 1√

N

∑N
n x̂n

and its conjugate momentum, which limits the controllability
in the system [31].

To describe the total system, we introduce a basis that
keeps the matrices for coupled pairs of oscillators simple,
conserves the canonical commutation relations between the
distinct modes, and separates the invariant x̂s . A physically
intuitive basis is given by the “cradle” coordinates

x̂c
j =

√
j

j + 1

(
1

j

j∑
n=1

x̂n − x̂j+1

)
, (4)

and analogously for p̂c
j , with j taking values 1, . . . ,N − 1.

Each cradle mode j describes the motion involving only the
first j + 1 oscillators, with the first j oscillators moving in
phase with the same amplitude 1/

√
j (j + 1), and oscillator

j + 1 moving out of phase with amplitude
√

j/(j + 1), as
illustrated in Fig. 1. The cradle modes are orthogonal and
obey the commutation relations [x̂c

i ,p̂
c
j ] = iδij . Since the last

mode x̂c
N ≡ x̂s , corresponding to the total displacement, is

FIG. 1. Sketches of the cradle modes and total displacement of
the system for N = 4.

not affected by the interactions, we may exclude it from
our analysis. We can then characterize the entire chain by
the vector of Ñ ≡ N − 1 pairs of Heisenberg operators q̂c =
(x̂c

1,p̂
c
1, . . . ,x̂

c

Ñ
,p̂c

Ñ
)�.

Acting on oscillators n and n + 1 with matrix S, r̂−
n →

Sr̂−
n , changes the state of the system to q̂c → Dn(S)q̂c, where

the symplectic 2Ñ × 2Ñ matrices Dn(S) are found from the
transformations between the cradle and single-oscillator bases.
The matrix Dn=1(S) is given by S in the upper left 2 × 2 corner,
unity on the diagonal and zeros everywhere else. For n > 1,
Dn(S) remain block diagonal,

Dn(S) =
⎛
⎝ 12n−4 0 0

0 Pn(S) 0
0 0 12Ñ−2n

⎞
⎠, (5)

with 1j being the identity matrix of dimension j and

Pn(S) =
(

n+1
2n

12 + n−1
2n

S
√

n2−1
2n

(12 − S)√
n2−1
2n

(12 − S) n−1
2n

12 + n+1
2n

S

)
. (6)

The Lie algebra spanned by the matrix logarithms dn(s) ≡
ln[Dn(es)] determines the states that can be created by
sequential applications of symplectic operations on the relative
coordinates of neighboring oscillators. The simple form of the
transformation matrices makes it easy to explicitly calculate
the matrix logarithms. In particular, the generator d1(s) corre-
sponding to D1(S) is simply the matrix logarithm of S in the
upper-left corner and zeros everywhere else. For other modes
n > 1, the only nonvanishing entries in the generator dn(s) is
a 4 × 4 block on the diagonal,

pn(s) = 1

2n

(
(n − 1)s −√

n2 − 1s

−√
n2 − 1s (n + 1)s

)
. (7)

For n = 2, the generators d1(si) and d2(si) provide
six linearly independent generators. Their commutator
[d1(si),d2(sj )], which can be obtained from[(

si 0
0 0

)
,pn(sj )

]
=

(
(n+1)

2n
[si,sj ] −

√
n2−1
2n

sisj√
n2−1
2n

sj si 0

)
, (8)
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yields one more linearly independent matrix for i = j and
three additional ones for i �= j . We thus obtain 10 linearly
independent generators for the first two cradle modes. Since
the dimension of the Lie algebra for the symplectic group of
order 2n is dim(sp(2n,R)) = n(2n + 1), all symplectic trans-
formations involving the first two cradle modes can be accessed
with 10 generators [36]. Considering the next oscillator in
the chain, we have three linearly independent generators from
the control of the previous modes, three additional ones from
the added mode, and four generators from their commutator
in Eq. (8). Hence, we have all the necessary generators for
complete control of the additional oscillator and its neighbor.
The full controllability of the total system now follows by
induction in the number of oscillators.

B. Constructive algorithm

The above arguments prove the controllability of the system
but do not specify how to create desired transformations. Our
aim is to drive the chain of oscillators from their ground state
to a state specified by a symplectic transformation matrix T .
We now describe a simple algorithm to obtain any symplectic
matrix T by a sequence of couplings that amounts to factor-
ization T = ∏

i Dni
(Sni

).

Our strategy is to express the target matrix as T = ∏Ñ
l=1 Ul .

The rightmost matrix UÑ in this product decorrelates the last
cradle mode from T . We construct UÑ such that its two last
rows are identical to those of T . Since these rows determine
the effect of T on the last cradle mode, the product T U−1

Ñ
will have the last mode decorrelated.1 The block-diagonal
form of matrices Dn makes the construction of UÑ simple,
as each 2 × 2 block can be created by a product of the form
Dn(S1)Dn−1(S2)Dn(S3). This product contains all linearly
independent generators coupling modes n and n − 1 and has
nine degrees of freedom (three for each Sn). The decorrelation
of mode n requires seven degrees of freedom (three for mode
n and four for the correlations between mode n − 1 and n).
This guarantees the existence of a solution to the appearing
equations. The equations can then easily be solved by computer
algebra to determine the corresponding sequence {�ni

(t)} of
couplings. After Ñ such three-step sequences, we find the
required UÑ and thus a new target matrix T ′ = T U−1

Ñ
which

has its dimensions lowered by two. We repeat this procedure
for the subsequent modes, until all the modes are decorrelated,
each being in the ground state. With this algorithm, any
symplectic matrix T can be produced in at most 3N (N − 1)/2
steps.

This procedure is reminiscent of a triangular arrangement
of N (N − 1)/2 two-mode beam splitters to create any desired
N -mode beam splitter [37]. In conjunction with single-mode
squeezers, such an arrangement allows the construction of any
symplectic transform via a physical realization of the Bloch–
Messiah decomposition [38]. In contrast, our procedure is more
suited for a harmonic chain and does not give an equivalent

1Analogously, one may construct a matrix VÑ that has the last two
columns identical to T . Then the product V −1

Ñ
T will decorrelate the

last mode.

matrix decomposition. Nonclassical correlations are created
in every step of the transformation, as we illustrate below.

C. Engineering squeezed pseudo-phonon states

To demonstrate the possibilities of Gaussian state engineer-
ing, we now use a specific example. Consider the pseudo-
phonon modes in a finite chain of coupled harmonic oscillators,

ãk = 1√
N

N∑
n=1

ei 2πk
N

nân, (9)

where ân = 1√
2
(x̂n + ip̂n) are the single-site annihilation

operators and k ∈ {−N/2 + 1, . . . ,N/2} for even N , or k ∈
{−(N − 1)/2, . . . ,(N − 1)/2} for odd N . The excitation en-
ergy of mode ãk is uniformly distributed across the entire
chain, while the phase difference between any two neighboring
oscillators is given by the “crystal momentum” 2πk/N . The
mode ãk=0 corresponds to the total displacement which is
inaccessible to our manipulations.

Let us realize the transformation

ãk1,2 = cosh (ξ )ã(0)
k1,2

− i sinh (ξ )
(
ã

(0)
k2,1

)†
,

(10)
ãk = ã

(0)
k for k �= k1,k2,

where the superscript (0) denotes the Heisenberg operators for
the uncoupled system in the ground state. Transformation (10)
corresponds to the unitary evolution of the initial vacuum state
under the effective Hamiltonian Heff = J (ãk1 ãk2 + ã

†
k1

ã
†
k2

) for
time ξ/J . This Hamiltonian describes resonant production of
correlated phonon pairs, similar to creation of photon pairs
in optical parametric amplification [39]. Analogous processes
occur in collisions of ultracold atoms [40], photon-phonon
entanglement in optomechanical systems [41], dynamics of
driven Bose–Einstein condensates [42], and the dynamical
Casimir effect [43].

Equations (10) describe an entangled state of two pseudo-
phonon modes k1 and k2. For k1 = k2, a single phonon mode
is squeezed. Such a nonclassical, highly delocalized state is
well suited to benchmark our procedure: every oscillator is
entangled with every other oscillator in the chain, resulting
in N (N − 1)/2 entangled pairs. In addition, every single
oscillator is in a squeezed state. The magnitude of the single-
mode squeezing and pairwise entanglement is small, because
the entanglement is equally shared among all oscillators. In
Fig. 2 we show the uncertainties of the quadrature components
for the sum and difference coordinates at different sites of a
chain of length N = 7, for the case of ξ = 1. The quadrature
uncertainties of single oscillators are on the diagonal in the
left panel of Fig. 2. Every individual oscillator is in a squeezed
state. The orientation of the squeezing ellipse in phase space,
identified with the squeezing phase, is rotated by the crystal
momentum 2πk/N for any two neighboring sites, resulting in
the squeezing ellipse rotating k times across the entire system.
The sum and difference coordinates of any two oscillators n

and m are squeezed, with the squeezing phase and magnitude
modulated by the crystal momentum. If the sum coordinate of
two oscillators is squeezed weakly, their difference coordinate
exhibits strong squeezing (compare the two panels of Fig. 2).
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FIG. 2. Quadrature uncertainties in phase space (x,p) for all pairs
n,m of oscillators in a chain of length N = 7: Left panel shows the
uncertainties of the sum coordinates 1√

2
(x̂n + x̂m,p̂n + p̂m) with the

single-oscillator uncertainties on the diagonal. Right panel shows
the uncertainties of the difference coordinates 1√

2
(x̂n − x̂m,p̂n − p̂m).

Solid (orange) circles are the uncertainty of the mode in its vacuum
state for scale. Ellipses (blue) are the uncertainties for the squeezed
k = 1 pseudo-phonon state with ξ = 1; see Eq. (10).

Our algorithm requires 51 sequential couplings �ni
to

create the squeezed phonon state for N = 7; see Fig. 3. The
procedure increases step by step the number of involved
cradle modes, and every subsequent mode requires larger
number of couplings for the creation of the desired correlations.
Nonclassical correlations do not grow monotonically, but occur
predominantly during the final stages of the sequence. We
note that the sequence found by our algorithm is not unique
and relaxing the requirement of nonoverlapping couplings will
result in more efficient preparation procedures of the desired
many-body states. The solution found by our algorithm may
then serve as a seed for methods from optimal control theory,
subject to a given set of constraints and implementation-
specific dissipation mechanisms [44].

III. EXPERIMENTAL CONSIDERATIONS AND
CONCLUSIONS

A chain of harmonic oscillators can be realized by an array
of coupled optomechanical resonators [8] or an ensemble of
ultracold atoms in an array of microtraps [28–30]. Controlled
couplings between the oscillators can be provided by selective
Rydberg dressing of neighboring atoms by using nonresonant,
amplitude-modulated laser fields [31,45]. The read-out of the
state requires a position measurement of each oscillator. If
the oscillator chain is implemented as an optomechanical
array, measurement schemes from entangled frequency combs
[26] can be employed. For oscillator chains consisting of

503523104
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FIG. 3. Dynamics of preparation of the squeezed phonon state of
Fig. 2. Solid line shows the number of entangled pairs of harmonic
oscillators versus the number of applied couplings. Dashed line
gives the maximal number of entangled pairs for a given number
of involved oscillators. The grid lines on the abscissa give the times
of decorrelations of the cradle modes and the grid on the ordinate
gives the number of entangled pairs 1

2 N (N − 1) for N from 1 to 7.

ultracold atoms in a quantum gas microscope, the quadratures
can be inferred by freezing the motional state of the system
after state-preparation and free evolution or via time-of-flight
measurements [46–49]. Correlation matrices of the shot-to-
shot fluctuations can be directly compared with the desired
correlations, such as those pictured in Fig. 2, to verify the
engineered state of motion.

To summarize, we have shown that temporal control of the
beam-splitter and parametric couplings between neighboring
sites of a chain of N harmonic oscillators gives complete
symplectic control over N − 1 oscillator modes. We have
introduced the cradle modes of the system which allowed
us to develop an algorithm to produce any desired state by
using at most 3N (N − 1)/2 couplings between neighboring
oscillators. We have demonstrated our algorithm by engi-
neering a highly correlated nonlocal state that appears in a
variety of physical systems. Our method may also prove useful
in the treatment of lattice models for quantum simulators
or ensembles of qubits for quantum computation. We note
before closing that symplectic controllability cannot change
the purity of the system, i.e., its effective temperature. Finite-
temperature physics can be simulated by treating half the
modes as an effective reservoir for the remaining system.
Thus symplectic controllability of N − 1 modes translates into
complete controllability in the space of mixed Gaussian states
of N/2 − 1 modes.
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