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Considering the system of three interacting qubits, we analyze four families of states from the point of view of
bipartite correlations appearing in two-qubit subsystems of a three-qubit model, such as Einstein-Podolsky-Rosen
steering, entanglement, and coherence. We reveal mutual relations among the steering parameter, concurrence,
and three measures of coherence (degree of coherence, first-, and second-order correlation functions). Analyzing
in parallel the steerable and unsteerable states, we derive analytical formulas giving the maximal and minimal
values of coherence measures as concurrence varies.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering, or just quantum
steering, plays an essential role in the behavior of quantum
physics systems. The steering as one type of nonlocal behavior
gives the ability of one system to steer the states of others
via a local measurement. The concept of steering exploiting
the EPR correlations was described first by Schrödinger [1]
in 1935. Only many years later, the steering was understood
sufficiently deeply to allow Ried to introduce the necessary
criteria for demonstrating EPR steering [2]. The Ried criteria,
that are based upon the uncertainty relation, were used by Ou
et al. [3] to experimentally realize steering in the system of
spatially separated and correlated light modes. Subsequently,
other steering criteria were formulated. For instance, Walborn
et al. [4,5] introduced the entropic steering inequality. Or, in
2014, Chowdhury et al. [6] showed that the Ried criteria are
not successfully applicable to the states exhibiting higher-order
correlations. For such states, we need to use the entropic
steering inequality.

The EPR steering represents only one, though one of the
most interesting, possible form of correlations observed in
quantum systems. Various types of quantum correlations were
extensively studied in various physical systems, including two
neighboring atoms [7], multimode twin beams [8], two ionized
electrons [9], and two strongly coupled bosonic modes [10],
to name the few. On the other hand, internal coherence of
physical systems was addressed for the first time by Zernike
[11] in 1938 in the area of classical field propagation where he
introduced the concept of the degree of coherence. Later in the
1950s, Hanbury Brown and Twiss investigated the higher-order
coherence (intensity correlations) [12–14]. Finally in 1963,
Glauber [15,16] and Sudarshan [17] and later Metha and Sudar-
shan [18] formulated the quantum coherence theory. Compre-
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hensive presentation of the classical and quantum coherence
theory can be found in [19] and [20,21], respectively. These
well-established theories have recently been successfully
applied in other areas of physics, including condensed-matter
physics, field of quantum algorithms, etc. [22–24]. Only in
the past years, mutual relation between the coherence and
entanglement has come into attention and has been investigated
in various quantum systems [25]. For example, atomic ensem-
bles in high-Q cavities [26], optomechanical systems [27],
and three coupled nonlinear oscillators [28] were addressed
recently from the point of view of this relation.

EPR steerability as one type of nonlocality has been
addressed, together with Bell-type nonlocality, by Wiseman
et al. in 2007 [29,30]. They showed that the steerable states
form a subset in the set of nonseparable states. On the other
hand, the Bell nonlocal states form a subset in the set of
steerable states. In other words, the steering means stronger
correlations than those known as the entanglement, but weaker
correlations than those found in the Bell nonlocal states. All
these types of quantum correlations and their mutual relations
were widely investigated for various systems, to understand
these relations in detail. Small Bose-Hubbard chains [31],
nondegenerate optical parametric oscillators [32], or a system
containing an atomic ensemble inside a cavity comprising an
oscillating mirror [33] serve just as typical examples.

Recently, the steering has been intensively studied not only
in two-partite systems but also in more general, N-partite
systems by He and Reid [34]. They derived inequalities which
allow one to demonstrate a multipartite EPR steering for
the Greenberger-Horne-Zeilinger and Gaussian continuous
variable states. Special attention was paid to the significance
of tripartite steering for secure quantum communications. In
2014, Teh and Reid proposed the criteria to quantify a genuine
three-partite EPR paradox. The experimental observations of
the multipartite EPR steering in the three intense optical
beams system have been performed by Armstrong et al. [35].
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What is important is that the steering is such type of the
nonlocality which is less sensitive to the noise and decoherence
effects than the Bell nonlocality. In this sense, the steerable
states are more useful to quantum communication protocols.
Additionally, the confirmation of steering between subsystems
certifies entanglement between them [29,30,36]. This is a very
important feature in a quantum cryptography scenario, when
not all parties are trusted [37]. In 2017, Máttar et al. [38]
showed that W state could be implemented in asymmetric
cryptographic protocols. They have shown that all kinds of
entanglement of W state can be verified by each party in
the tripartite steering scenario, even if other parties are not
trusted. Recently, nonclassical correlations of a single object
at different times were introduced and they are referred to as
temporal steering [39–41]. It was proposed that such kind of
correlations could be applied to test the security of quantum
key distribution protocols [42].

The reason for these numerous investigations of quantum
correlations lies in the fact that they play the crucial role in
future development of quantum computation and quantum in-
formation processing. That is why revealing and understanding
the relations among various types of quantum correlations
represents a very important task with many implications.
Whereas a lot of work has been done in characterizing these
correlations in bipartite systems that can be treated relatively
easily, quantum correlations in more complex systems con-
sisting of more than two subsystems have not been understood
well up to now and so they require future extensive studies. The
purpose of this article is to contribute to these studies by ad-
dressing the relationship among EPR steering, entanglement,
and coherence in several families of three-qubit states.

The quantum coherence plays a crucial role in quantum
optics research [15,16]. As the EPR steering can be applied
to secure quantum communication [43,44], the studies of
the relations among the steering, entanglement, and quantum
coherence are relevant in the context of their applications
in the quantum cryptography and quantum communication
protocols. Such correlations certify the entanglement between
two subsystems when one of the measurements is untrusted
[29]. The relationships discussed here can also be useful in
the secret sharing procedure [45,46], when in the three-partite
system we send the quantum encryption key separately to the
two parties. We assume there that Alice, Bob, and Charlie
participate in the distribution quantum key and that Alice’s
measurement device is trusted but that belonging to Bob is not.
When Charlie confirms EPR steering between Alice and Bob,
Charlie can deduce the level of security of the correlations
between Alice and Bob [47]. It should be emphasized that
quantum protocols based on the steering are less secure than
those based on the Bell nonlocality. Obviously, they are more
secure than the standard protocols. The implementations of
the steering-based protocols are also playing a significant role.
One-device-independent protocols are easier to implement
than the device-independent scenarios [48]. Application of
the steering and coherence at the same time seems to be
also promising, due to the recent research. Mondal et al.
[49] derived complementarity relations for the measures of
coherence and then they obtained conditions that allow one to
generate steerable states.

The paper is organized as follows. In Sec. II, we describe two
families of states in a three-qubit system. In particular, we de-
rive formulas giving the steering parameters for the single and
double excited system. For both cases, we analyze the degree
of coherence in Sec. III. In this section, we also study the
relationship between steering and coherence in the case of a
qubit-qubit subsystem and we find limitations to the strength of
coherence both for steerable and unsteerable states. First-order
and second-order correlation functions are analyzed in Secs.
IV and V for the double excited system, respectively. Their re-
lation to steerable and unsteerable mixed states is also revealed.

II. DIFFERENT FAMILIES OF THREE-QUBIT STATES

In our study, we concentrate on the steering properties of
states belonging to a general three-qubit system. In particular,
we are interested in a mutual relation between quantum
steering and coherence characterizing two-qubit subsystems.
The general the three-qubit system that is analyzed here can
represent, e.g., three interacting two-level atoms [50] or three
interacting two-state spin systems [51]. In our investigations
we restrict our attention to the states whose evolution is closed
within two basis states—the ground |0〉 and excited |1〉 states.

Four different groups of states can be identified in the ana-
lyzed three-qubit system. Two of them contain the states with
one and two excitations. The remaining two cases are reserved
for the limiting trivial situations: when we have no excitation
in the system and when all three qubits are excited. For all four
groups of states, we discuss the relation between the degree
of coherence, expressed by the first- and second-order corre-
lation functions, and the concurrence considering separately
steerable and unsteerable mixed states of two “glued” qubits.

In this paper, we consider the bipartite steering effect
appearing in two-qubit subsystems of the system containing
three qubits. In such a three-qubit system the bipartite steering
is shared among two subsystems—we are not dealing with
genuine three-partite steering which is shared among all three
qubits simultaneously. One should mention that, when the
bipartite steering is generated, we do not observe genuine
tripartite steering [34].

To distinguish steerable states from those which do not
exhibit steering effect, we apply here the inequality introduced
by Cavalcanti et al. [52]. For the cases when two subsystems
are taken into account, it takes the following form:

|〈âi â
†
j 〉|2 � 〈â†

i âi(â
†
j âj + 1/2)〉, (1)

where â† and â are the boson creation and annihilation
operators, respectively, and the indices i and j label the
qubits. As the steering appears in the system, the inequality
(1) is violated. For such a case, the qubit j steers qubit i. In
practice, we use the steering parameter Sij which bases on the
inequality (1)

Sij = 〈âi â
†
j 〉〈â†

i âj 〉 − 〈â†
i âi(â

†
j âj + 1/2)〉. (2)

When the parameter Sij takes positive values, the qubit j

steers that labeled by i. As the indices i and j exchange their
position (i ↔ j ), the parameter Sji quantifies the steering in
the opposite direction.
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However, if we are dealing with the opposite situation,
i.e., Sij � 0, we cannot answer whether the steering effect
appears or not. It should be emphasized that the steering
parameter used here is only a witness of the steering, not its
measure. Therefore, in the further parts of the paper, when
we use the term “unsteerable states,” it means that the dis-
cussed states are nonsteerable with respect to the criterion (1).

Labeling the qubits with 1, 2, and 3, the condition 〈n̂〉 ≡
〈n̂1〉 + 〈n̂2〉 + 〈n̂3〉 = 1 identifies the states with one excitation
whose wave function can be written in the form

|ψ (I )〉 = C001|001〉 + C010|010〉 + C100|100〉 (3)

using the complex probability amplitudes Cijk . The corre-
sponding density matrix is then expressed as

ρ(I ) = |ψ (I )〉〈ψ (I )| =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 P001 C∗
001C010 0 C∗

001C100 0 0 0

0 C∗
010C001 P010 0 C∗

010C100 0 0 0

0 0 0 0 0 0 0 0

0 C∗
100C001 C∗

100C010 0 P100 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

and the symbols Pijk ≡ |Cijk|2 stand for the corresponding probabilities. Superscript (I ) in the density matrix ρ(I ) indicates the
presence of one excitation in the system. Considering different pairs of qubits described by the partially reduced density matrix
ρ(I ) in Eq. (4), the appropriate steering parameters are expressed in terms of probabilities Pijk as follows:

S
(I )
12 = P010P100 − P100/2,

S
(I )
21 = P010P100 − P010/2,

S
(I )
13 = P001P100 − P100/2,

S
(I )
31 = P001P100 − P001/2,

S
(I )
23 = P001P010 − P010/2,

S
(I )
32 = P001P010 − P001/2. (5)

According to the relations (5), qubit j steers qubit i, i.e., S
(I )
ij > 0, if the corresponding probability is greater than 1/2. For

example, if P010 > 1/2, S12 is positive and thus qubit 2 steers qubit 1. Different configurations of the steering relations among
three qubits were discussed in detail in [53–55].

Now, let us analyze steering in the next group involving the states with two excitations, i.e., 〈n̂〉 = 2. In this case, the system
is described by the wave function |ψ (II )〉,

|ψ (II )〉 = C011|011〉 + C101|101〉 + C110|110〉, (6)

or the corresponding density matrix ρ(II ),

ρ(II ) = |ψ (II )〉〈ψ (II )| =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 P011 0 C∗
011C101 C∗

011C110 0

0 0 0 0 0 0 0 0

0 0 0 C∗
101C011 0 P101 C∗

101C110 0

0 0 0 C∗
110C011 0 C∗

110C101 P110 0

0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

The steering parameters Sij appropriate for different pairs of
qubits i and j attain the form

S
(II )
12 = P011P101 + 3P011/2 + P101 − 3/2,

S
(II )
21 = P011P101 + 3P101/2 + P011 − 3/2,

S
(II )
13 = P011P110 + 3P011/2 + P110 − 3/2,

S
(II )
31 = P011P110 + 3P110/2 + P011 − 3/2,

S
(II )
23 = P101P110 + 3P101/2 + P110 − 3/2,

S
(II )
32 = P101P110 + 3P110/2 + P101 − 3/2. (8)
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The conditions determining the occurrence of steering effects
can be deduced from Eqs. (8), but they take more complicated
forms compared to those derived for the system with single
excitation. For example, the inequality P011P101 + 3P011/2 +
P101 > 3/2 guarantees steering of qubit 1 by qubit 2.

In the last two cases, no steering occurs. If all three qubits
are in their ground states, i.e., |ψ (0)〉 = |000〉, all six steering
parameters are equal to zero. Similarly, when all three qubits
are observed in their excited states, so that |ψ (III )〉 = |111〉, all
steering parameters are negative. But even more importantly,
both states |000〉 and |111〉 are the product states. Independent
of the steering criteria, the reduced states of such three-qubit
states clearly allow for a “local hidden state model” and they
can be confirmed as being unsteerable.

III. DEGREE OF COHERENCE AND STEERABILITY

We need to quantify coherence in a bipartite system to
understand its relation to quantum entanglement and steering
effects. The simplest way for quantifying this coherence is
based on the determination of the degrees Di and Dj of
first-order coherence in qubits i and j along the formula [21]

Dk =
√

2 Tr
(
ρ2

k

) − 1, k = i,j, (9)

that relies on the reduced density matrix ρk of qubit k and
subsequent application of the definition of the degree D2

ij of
coherence in the whole bipartite system [21,25]:

D2
ij = (

D2
i + D2

j

)
/2. (10)

The parameter D2
ij defined in Eq. (10) takes on values from

zero (no coherence) to unity (maximal, full coherence).
For a bipartite system, concurrence Cij defined in [56,57]

is a suitable measure of bipartite entanglement:

Cij = max(
√

λI −
√

λII −
√

λIII −
√

λIV ,0). (11)

Parameters λl appearing in Eq. (11) stand for the eigenvalues
of matrix R = ρij ρ̃ij where ρ̃ij is defined as ρ̃ij = σy ⊗
σyρ

∗
ij σy ⊗ σy and σy is the usual 2 × 2 Pauli matrix.

In our analysis, we first pay attention to the relation between
entanglement and coherence for two distinct groups of states:
steerable and unsteerable states with single excitation de-
scribed by the density matrix ρ

(I )
ijk given in Eq. (4). The diagram

depicting mutual relations between the degree of coherence
and the concurrence is plotted in Fig. 1: steerable states are
found in the green area, whereas unsteerable states form the
blue area. The diagrams in Fig. 1 were obtained by analyzing
an ensemble of ∼106 randomly generated three-qubit states
containing single excitation.

To reveal the boundary conditions for the steerable states as
plotted by solid and dashed-dotted curves in Fig. 1(a), we have
to start with expressing the degree D2

ij of coherence in terms
of probabilities P :

D2
12 = 1 + 2

(
P 2

100 − P100 + P 2
010 − P010

)
,

D2
13 = 1 + 2

(
P 2

100 − P100 + P 2
001 − P001

)
,

D2
23 = 1 + 2

(
P 2

010 − P010 + P 2
001 − P001

)
. (12)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
(a)

(b)

C
ij

D
ij2 steerable states

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
ij

D
ij2

unsteerable states

FIG. 1. Degree of coherence D2
ij versus concurrence Cij for

steerable (a) and unsteerable (b) two-qubit states derived from the
density matrix ρ

(I )
ijk given in Eq. (4). Steerable (unsteerable) states are

found in green (blue) areas. Black border curves are drawn according
to the corresponding analytical formulas.

Then, applying formula (11) we arrive at the expressions for
concurrence for different pairs of qubits:

C12 =
√

4P100P010,

C13 =
√

4P100P001,

C23 =
√

4P010P001. (13)

We first analyze the boundary formed by steerable states with
the lowest possible coherence assuming the fixed concurrence
Cij . Numerical analysis reveals that the steering parameter
Sij equals zero for these states. Substitution of Eq. (12) for
the degree of coherence and Eq. (13) for the concurrence into
Eq. (5) for the steering parameter leaves us with the looked-for
formula:

D2
ij = (

C2
ij − 1

)2
/2. (14)

On the other hand, the boundary giving the maximal attainable
coherence for the fixed concurrence Cij of steerable states
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TABLE I. Occurrence of steerable and unsteerable states in the plane (D2
ij ,Cij ) spanned by the degree of coherence and concurrence.

Concurrence Degree of coherence Generated states

(Cij − 1)2 < D2
ij � 1 − C2

ij Only steerable states

Cij <
√

2 − 1
(
C2

ij − 1
)2

/2 < D2
ij � (Cij − 1)2 Steerable or unsteerable states

1/2 − C2
ij � D2

ij �
(
C2

ij − 1
)2

/2 Only unsteerable states

(Cij − 1)2 < D2
ij � 1 − C2

ij Only steerable states√
2 − 1 � Cij � 1/2

1/2 − C2
ij � D2

ij �
(
C2

ij − 1
)2

/2 Only unsteerable states

(Cij − 1)2 < D2
ij � 1 − C2

ij Only steerable states
Cij � 1/2

(Cij − 1)2 � D2
ij �

(
C2

ij − 1
)2

/2 Only unsteerable states

contains pure states, whose degree D2
ij of coherence takes the

following form:

D2
12 = 2P 2

100 + 2P 2
010 − 1,

D2
13 = 2P 2

100 + 2P 2
001 − 1,

D2
23 = 2P 2

010 + 2P 2
001 − 1. (15)

Applying now Eq. (15) instead of Eq. (12) for the degree
of coherence, we reveal, instead of Eq. (14), the following
formula:

D2
ij = 1 − C2

ij . (16)

Combining Eqs. (14) and (16) together, we see that the degree
Cij of coherence of steerable states lies in the interval D2

ij ∈
([C2

ij − 1]2/2,1 − C2
ij ). This means that, with the increasing

value of concurrence Cij , decrease of the degree D2
ij of

coherence is expected on average. We even have for pure
states D2

ij + C2
ij = 1. We note that this condition is analogous

to that proposed by Svozilik et al. [25] for the parameter
describing maximal violation of the Clauser-Horne-Shimony-
Holt (CHSH) inequality and the coherence.

Now, we address the boundaries for unsteerable states
drawn in Fig. 1(b). For Cij >

√
2 − 1 the maximal attainable

degree D2
ij of coherence of unsteerable states is given by for-

mula D2
ij = (C2

ij − 1)2/2 already derived for steerable states.
On the other hand, simultaneous analysis of Eqs. (12) and
(13) for the degree of coherence and concurrence, respectively,
gives us the minimal achievable degree D2

ij of coherence in the
region Cij > 1/2:

D2
ij = (Cij − 1)2. (17)

The relation (17) corresponds to the family of mixed Werner
states in a two-qubit system that are defined as mixtures of
the Bell states and separable states. The corresponding density
matrix is written as

ρ
(I )
W =

⎡
⎢⎢⎢⎣

1 − α 0 0 0

0 α/2 α/2 0

0 α/2 α/2 0

0 0 0 0

⎤
⎥⎥⎥⎦ (18)

and the introduced parameter α directly gives the concurrence:

C
(
ρ

(I )
W

) = α. (19)

Detailed analysis reveals that Eq. (17) also determines the
maximal degree D2

ij of coherence for Cij <
√

2 − 1. The

last boundary in Fig. 1(b) giving the minimal degree D2
ij of

coherence for Cij � 1/2 is parametrized as

D2
ij = 1/2 − C2

ij , (20)

and the underlying states have the following density matrix
ρij :

ρij =

⎡
⎢⎢⎢⎣

1/2 0 0 0

0 1/2 − α
√

(1/2 − α)α 0

0
√

(1/2 − α)α α 0

0 0 0 0

⎤
⎥⎥⎥⎦. (21)

We note that for fixed qubits i and j fulfilling Eq. (21), the
steering parameters Sik and Sjk involving the remaining third
qubit k are zero.

The analysis of attainable values of the degree D2
ij of

coherence and concurrence Cij as plotted in the diagrams
of Fig. 1 allows us to identify different regions in the plane
(D2

ij ,Cij ) from the point of view of steerability. Results of
this analysis are summarized in Table I. According to this
analysis, only steerable states occur in certain areas of the plane
(D2

ij ,Cij ).
According to the diagram for steerable states shown in

Fig. 1(a), the degree D2
ij of coherence “statistically” increases

at the expense of concurrence Cij . Moreover, steering is
observed only for entangled states with sufficiently strong
quantum correlations. As a consequence, increase of the degree
D2

ij of coherence should be accompanied by the decrease of the
steering parameter Sij . This behavior has really been observed
for steerable states being in the analyzed randomly generated
ensemble of states, as documented in the diagram in Fig. 2
drawn in the plane (Sij ,D

2
ij ). The maximal value of steering

parameter Sij for the fixed degree D2
ij of coherence is reached

for pure states that give

Sij = (
Dij − D4

ij

)
/4. (22)

The absolute maximal value of steering parameter Sij is
reached for D2

ij = 1/4 and it characterizes the states with the
following density matrix:

ρS max
ij =

⎡
⎢⎢⎢⎣

0 0 0 0

0 α
√

α(1 − α) 0

0
√

α(1 − α) 1 − α 0

0 0 0 0

⎤
⎥⎥⎥⎦ (23)
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FIG. 2. Steering parameter Sij versus the degree of coherence D2
ij

for steerable states.

and α equal to 1/4 or 3/4 (for more details, see the discussion
in [53]). We note that the same relation between the degree D2

ij

of coherence and steering parameter Sij , as plotted in Fig. 2,
is obtained for the three-qubit states with double excitation.

Now, we move to the second group of states of the system
of three interacting qubits that contain the double excitation.
They are described by the density matrix ρ(II ) written in Eq. (7)
and some of them allow for steering. Similarly, as in the
case of states with a single excitation, it is useful to analyze
the relationship between the degree D2

ij of coherence and
concurrence Cij independently for steerable and unsteerable
states. Numerical analysis, performed for a large number of
randomly generated states with doubled excitation, provided
the corresponding diagrams shown in Fig. 3. Comparison of
these diagrams reveals that steerable and unsteerable states

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
ij

D
ij2

steerable states

unsteerable states

FIG. 3. Degree of coherence D2
ij versus concurrence Cij for

steerable (green) and unsteerable (blue) two-qubit states described
by the numerically calculated density matrix ρ

(II )
ij and observed in

three-qubit system with double excitation. Black border curves are
drawn following the corresponding analytical formulas.

occupy different areas in the plane (D2
ij ,Cij ), but these areas

have a common border.
To determine the boundaries in the diagrams in Fig. 3,

we first express the degree D2
ij of coherence as a function of

probabilities P :

D2
12 = 1 + 2

(
P 2

101 − P101 + P 2
011 − P011

)
,

D2
13 = 1 + 2

(
P 2

011 − P011 + P 2
110 − P110

)
,

D2
23 = 1 + 2

(
P 2

101 − P101 + P 2
110 − P110

)
. (24)

Also the concurrence Cij defined in Eq. (11) can be determined
in terms of probabilities P :

C12 =
√

4P011P101,

C13 =
√

4P011P110, (25)

C23 =
√

4P101P110.

The boundary between the steerable and unsteerable states
is characterized by the condition Sij = 0. Thus, combining
Eq. (24) for the degree of coherence D2

ij and Eq. (25) for
the concurrence Cij , we get the formula which defines the
boundary:

D2
ij = 1

144

[
13C4

ij − 18
(−14 +

√
36 − 36C2

ij + C4
ij

)

+C2
ij

(−252 + 5
√

36 − 36C2
ij + C4

ij

)]
. (26)

For the region closed to the border defined by Eq. (26),
steerable states with the minimal value of D2

ij for the fixed
concurrence Cij occur. On the other hand, pure steerable states
attain their maximal possible values of the degree D2

ij of
coherence when the concurrence Cij is fixed. The following
relations valid for pure states

D2
12 = 2P 2

011 + 2P 2
101 − 1,

D2
13 = 2P 2

011 + 2P 2
110 − 1,

D2
23 = 2P 2

101 + 2P 2
110 − 1 (27)

allow us, together with the consideration of Eq. (25) for
concurrence Cij , to write down the formula for the maximal
degree D2

ij of coherence of steerable states:

D2
ij = 1 − C2

ij . (28)

We note that the maximal attainable degree D2
ij of coherence

observed for the fixed concurrence Cij is the same for the
states with single and double excitation [compare Eqs. (28)
and (16)]. Contrary to this fact, the minimal attainable values
of the parameter D2

ij describing the degree of coherence for
the fixed concurrence Cij are reached by unsteerable states,
as apparent from the diagram in Fig. 3. The boundary in the
diagram shown in Fig. 3, given by these values, is parametrized
by two analytical curves. For Cij � 1/2, at the boundary there
occur the Werner states characterized by the two-qubit density
matrices parametrized by α

ρ
(II )
W =

⎡
⎢⎢⎢⎣

0 0 0 0

0 α/2 α/2 0

0 α/2 α/2 0

0 0 0 1 − α

⎤
⎥⎥⎥⎦ (29)
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and the corresponding concurrence C given as

C
(
ρ

(II )
W

) = α. (30)

In this case, the formula determining the boundary becomes

D2
ij = (Cij − 1)2. (31)

For the remaining values of concurrence Cij fulfilling Cij <

1/2, the density matrix ρij ,

ρij =

⎡
⎢⎢⎢⎣

0 0 0 0

0 1/2 − α
√

(1/2 − α)α 0

0
√

(1/2 − α)α α 0

0 0 0 1/2

⎤
⎥⎥⎥⎦ , (32)

describes the states at the boundary. The following relation
between the degree D2

ij of coherence and concurrence Cij is
derived for the density matrix ρij in Eq. (32):

D2
ij = 1/2 − C2

ij . (33)

Comparing in parallel Eqs. (17) and (20) and Eqs. (31) and
(33) that give the minimal achievable value of the degree of
coherence D2

ij for the fixed concurrence Cij for unsteerable
states for the single and double excitation cases, we observe
equivalence (similar to the case of the maximal attainable
value of the degree of coherence D2

ij reached for the fixed
concurrence Cij by the steerable states). Finally, we note that
the “fluctuation” of D2

ij for the fixed concurrence Cij is quite
low for steerable states, as evidenced in the diagram in Fig. 3.

IV. FIRST-ORDER CROSS-CORRELATION FUNCTION
AND STEERING

Coherence in a system is an important attribute of not only
the constituting subsystems but also of the relationship among
the subsystems. In this case, the coherence theory introduces
cross-correlation functions of different orders to quantify
coherence. The first- and second-order cross-correlation func-
tions that quantify the coherence between fields’ amplitudes
and intensities, respectively, are the most important from the
practical point of view. In this section, we study in detail the
relation between steering and the first-order cross-correlation
function g

(1)
ij defined for subsystems i and j (mutual coherence)

[58,59] as

g
(1)
ij = |〈â†

i âj 〉|√
〈â†

i âi〉〈â†
j âj 〉

. (34)

The maximal reachable value of function g
(1)
ij equals 1 and

it corresponds to the maximally coherent field. When no
coherence between subsystems i and j exists g

(1)
ij = 0.

The application of definition (34) to the above-considered
states with single excitation gives us g

(1)
ij = 1, i.e., these

states are maximally coherent independently whether they
are steerable or unsteerable. On the other hand, the values
of function g

(1)
ij reached for the states with double excitation

range from 0 to 1 and so the relationship between first-order
coherence and steering needs a detailed analysis.

Numerical investigation of the ensemble of randomly gen-
erated states with double excitation as described by the density

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C
ij

g
(1

)
ij

steerable states

unsteerable states

FIG. 4. First-order correlation function g
(1)
ij versus concurrence

Cij for steerable (green area) and unsteerable states (blue area). Black
border curves are drawn according to the corresponding analytical
formulas.

matrix ρ(II ) given in Eq. (7) reveals that the steerable and
unsteerable states occupy neighboring areas in the diagram
in the plane spanned by the first-order correlation function
g

(1)
ij and concurrence Cij , as shown in Fig. 4. We can see in

Fig. 4 that steerable states, contrary to the unsteerable ones, are
endowed with high values of the first-order correlation function
g

(1)
ij more or less independently on the value of concurrence Cij .

Also, greater values of concurrence Cij naturally imply greater
values of the first-order correlation functiong

(1)
ij , independently

on steerability of the analyzed state.
To reveal the formula for the boundary between steerable

and unsteerable states in Fig. 4 we need the expression for the
first-order correlation function g

(1)
ij in terms of the parameters

of the states with double excitation:

g
(1)
12 = C∗

011C101√
(P101 + P110)(P011 + P110)

,

g
(1)
13 = C∗

011C110√
(P110 + P101)(P011 + P101)

,

g
(1)
23 = C∗

101C110√
(P110 + P011)(P101 + P011)

. (35)

Considering real probability amplitudes C∗
ijk = Cijk of the

analyzed states and using relations for first-order correlation
function (35), concurrence (25), and steering parameter (8)
equal to zero, we arrive at the formula giving the maximal
achievable value of the first-order correlation function g

(1)
ij for

the fixed concurrence Cij of unsteerable states:

g
(1)
ij = 1

2

√√√√√6 − 11C2
ij +

√
36 − 36C2

ij + C4
ij

4 − 5C2
ij

. (36)

For any value of concurrence Cij , there exist steerable states
with the maximal first-order correlation function g

(1)
ij , i.e.,

g
(1)
ij = 1. It can be shown that such states are the pure ones.
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FIG. 5. Steering parameter Sij versus the first-order correlation
function g

(1)
ij for steerable states occupying the green area. Black

border curves are plotted following the corresponding analytical
formulas.

On the other hand, the states with the minimal first-order
correlation function g

(1)
ij for the fixed concurrence Cij are the

Werner states described by the density matrix ρ
(II )
W in Eq. (29)

and having their concurrence in Eq. (30). Using Eqs. (8) and
(35) we reveal the lower boundary for the first-order correlation
function g

(1)
ij in the diagram of Fig. 4:

g
(1)
ij = Cij√

4 − 4Cij + C2
ij

. (37)

According to the diagram in Fig. 4, steerable states are
endowed with great first-order correlation functions g

(1)
ij and

so there is a question of which values of the steering parameter
Sij are compatible with the given value of first-order correlation
function g

(1)
ij . The diagram in Fig. 5 answers this question

showing that, for the fixed value of the first-order correlation
function g

(1)
ij , the steering parameter Sij extends from zero to

certain maximal value. The greater the first-order correlation
function g

(1)
ij , the greater the achievable maximal value of

steering parameter Sij .
This maximal steering parameter Sij is determined along

the formula

Smax
ij = 1

2
(
g

(1)2

ij − 1
)2

(−3 + 3g
(1)2

ij + 4g
(1)4

ij

−2
√

6g
(1)2

ij − 22g
(1)4

ij + 20g
(1)6

ij

)
(38)

assuming g
(1)
ij ∈ (

√
3

2 ,1). For lower values of the first-order

correlation function g
(1)
ij , no steerable states exist. As our anal-

ysis revealed, the steerable states with the maximal steering

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g
ij
(1)

D
ij2

unsteerable states

steerable states

FIG. 6. Degree of coherence D2
ij versus the first-order correlation

function g
(1)
ij for steerable (green area) and unsteerable (blue area)

states. Black border curves are plotted using the corresponding
analytical formulas.

parameter Sij are characterized by a density matrix ρij ,

ρij =

⎡
⎢⎢⎢⎣

0 0 0 0

0 α
√

αβ 0

0
√

αβ β 0

0 0 0 1 − α − β

⎤
⎥⎥⎥⎦, (39)

and one of the probabilities α and β has to be equal to

α,β = 1

2
(
1 − 3g

(1)2

ij + 2g
(1)4

ij

)
( − 2g

(1)2

ij + 4g
(1)2

ij

−
√

6g
(1)2

ij − 22g
(1)4

ij + 20g
(1)6

ij

)
(40)

for g
(1)
ij >

√
3/2. As we already mentioned, the states with the

greatest steerable parameter Sij for g
(1)
ij = 1 are pure with the

density matrix written in Eq. (23) and α equal to 1/4 or 3/4.
Up to now, we discussed the relationship between coherence

on one side and concurrence and steering on the other side by
considering independently two manifestations of coherence,
internal coherence of subsystems as quantified by the degree
D2

ij of coherence and mutual coherence as quantified by the

first-order correlation function g
(1)
ij . Numerical analysis of

states with double excitation and different degrees of internal as
well as mutual coherence as contained in the diagram in Fig. 6
shows that great values of the first-order correlation function
g

(1)
ij are necessary to have a steerable state. On the other hand,

the greater the degree D2
ij of coherence the better the change

to have a steerable state. However, even large degrees D2
ij of

coherence close to 1 do not guarantee steerability of a state as
mutual coherence is critical for steering. At the boundary in
the plane (D2

ij ,g
(1)
ij ) between steerable and unsteerable states,

unsteerable states with Sij = 0 occur and their analysis leaves
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us with the following formula:

D2
ij =

(−1 + g
(1)2

ij

)2(
45 − 156g

(1)2

ij + 136g
(1)4

ij

)

2
(
3 − 11g

(1)2

ij + 10g
(1)4

ij

)2 . (41)

According to Eq. (41), steerable states require the first-order
correlation function g

(1)
ij >

√
3/2. It is worth noting that the

analyzed states with double excitation exhibit at least a certain
level of coherence, as evidenced in the diagram in Fig. 6. This
minimal level of coherence is observed for unsteerable states
with minimal achievable values of the steering parameter Sij

for which we can derive the following expressions for the
minimal degree D2

ij of coherence:

D2
ij = 1 − 6g

(1)2

ij + g
(1)4

ij

2
(
g

(1)2

ij − 1
)2 for g

(1)
ij � 2 −

√
3, (42)

D2
ij =

(
g

(1)
ij − 1

)2

(
g

(1)
ij + 1

)2 for g
(1)
ij � 2 −

√
3. (43)

The unsteerable states giving the boundaries in Eqs. (42) and
(43) are described by the density matrix ρij in Eq. (39) with
one of the probabilities α and β equal to

α,β = 1

2
(
2 − 4g

(1)2

ij + 2g
(1)4

ij

)
(
1 − 4g

(1)2

ij + 3g
(1)4

ij

±(
g

(1)2

ij − 1
)√

1 − 14g
(1)2

ij + g
(1)4

ij

)

for g
(1)
ij � 2 −

√
3,

α,β = g
(1)
ij

1 + g
(1)
ij

for g
(1)
ij � 2 −

√
3. (44)

V. SECOND-ORDER CORRELATION
FUNCTION AND STEERING

Similarly as for the first-order coherence, we elucidate the
relationship between the second-order coherence and steering.
As we demonstrate below the role of second-order coherence
in observing steering is somehow complementary to that of
the first-order coherence. Whereas a high level of first-order
coherence is needed for steering, only the states with low level
of second-order coherence can lead to the steering effects.
Second-order coherence is quantified by the second-order
correlation function g

(2)
ij defined as [58,59]

g
(2)
ij = 〈â†

i â
†
j âi âj 〉

〈â†
i âi〉〈â†

j âj 〉
. (45)

As the states with single excitation cannot possess second-
order coherence (g(2)

ij = 0) we further analyze only the states
with double excitation.

Similarly as in the case of first-order correlation function
g

(1)
ij , steerable and unsteerable states contained in the randomly

generated ensemble of states separate into distinct, but neigh-
boring, areas in the plane (g(2)

ij ,Cij ) spanned by the second-
order correlation function and the concurrence (see the diagram
in Fig. 7). Contrary to the situation depicted in Fig. 5 plotted in

0 0.2 0.4 0.6 0.8 1
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0.4
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ij
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ij

unsteerable states

steerable states

FIG. 7. Second-order correlation function g
(2)
ij versus concurrence

Cij for steerable (green area) and unsteerable (blue area) states. Black
border curves are drawn according to the corresponding analytical
formulas.

the plane (g(1)
ij ,Cij ) the steerable states occupy the area with low

values of the second-order correlation function g
(2)
ij . To find the

boundary values of the second-order correlation function g
(2)
ij

(as visible in the diagram of Fig. 7), we first express the function
g

(2)
ij in terms of probabilities Pijk, i,j,k = 0,1 for steerable

states:

g
(2)
12 = P110

(P101 + P110)(P011 + P110)
,

g
(2)
13 = P011

(P110 + P101)(P011 + P101)
,

g
(2)
23 = P101

(P110 + P011)(P101 + P011)
. (46)

Considering pure states in Eqs. (46) whose probabilities
P110, P011, and P101, that appear in the numerators of the
fractions in relations (46), are equal to zero, we recognize the
states that minimize the second-order correlation function g

(2)
ij

for the fixed concurrence Cij . On the other side, the maximal
achievable value of the function g

(2)
ij for steerable states fixing

concurrence Cij arises from the analysis of unsteerable states
that have the steering parameter Sij = 0 at this boundary.
This fact, together with relations (46) and (8), gives us the
appropriate formula for the boundary:

g
(2)
ij = 1

2
− 2

2 + C2
ij +

√
36 − 36C2

ij + C4
ij

. (47)

Unsteerable states with the fixed concurrence Cij are charac-
terized by the second-order correlation functions g

(2)
ij greater

or equal to that given by Eq. (47). It can be shown that the
maximal second-order correlation function g

(2)
ij is reached for

the Werner states with the density matrix ρ
(II )
W given in Eq. (29)

and concurrence Cij determined in Eq. (30). Thus we have the
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FIG. 8. Steering parameter Sij versus second-order correlation
function g

(2)
ij for steerable set found in the green area. Black border

curves are drawn following the corresponding analytical formulas.

following relation for such states, that also gives the upper
boundary for unsteerable states in the diagram in Fig. 7:

g
(2)
ij = 4(1 − Cij )

(Cij − 2)2
. (48)

As the steering is observed only for low values of the
second-order correlation function g

(2)
ij , it is interesting to

understand what is the restriction implied by a given low value
of the second-order correlation function g

(2)
ij with respect to

steering. As the diagram plotted in Fig. 8 and showing steerable
states in the plane (Sij ,g

(2)
ij ) documents, the increasing second-

order correlation function g
(2)
ij dramatically limits the maximal

attainable values of the steering parameter Sij . The smaller the
second-order correlation function g

(2)
ij is, the greater the values

of the steering parameter Sij can be reached. The maximal
achievable value of the steering parameter Sij considered as
a function of the second-order correlation function g

(2)
ij is

determined along the formula

Smax
ij = 1

2g
(2)2

ij

[
4 + g

(2)
ij

(
4g

(2)
ij − 11

)

−2
√

4 − 22g
(2)
ij + 38g

(2)2

ij − 20g
(2)3

ij

]
(49)

that is valid for the states described by the density matrix ρij

written in Eq. (39) and requiring one out of the probabilities α

and β taking the following value:

α,β = 1

4g
(2)2

ij − 2g
(2)
ij

(
2 − 6g

(2)
ij + 4g

(2)2

ij

−
√

4 − 22g
(2)
ij + 38g

(2)2

ij − 20g
(2)3

ij

)
. (50)

In accord with the formula in Eq. (50), steerable states exist
only for g

(2)
ij � 1/4. As for the limiting case of g

(2)
ij = 0 in the

diagram in Fig. 8, the analysis gives us the pure states with the
density matrix ρij given in Eq. (23) and parameter α equal to
1/4 or 3/4 as the states with the maximal steering parameter
Sij . We note that these two states also have g

(1)
ij = 1 and give

the maximal attainable steering parameter in the diagram in
Fig. 5.

VI. SUMMARY

We have discussed EPR steering occurring in a three-qubit
system in relation to entanglement and coherence. In our anal-
ysis we have considered the states of three qubits with single
and double excitations. We have paid attention to different two-
qubit states obtained by the state reduction and quantified their
entanglement by concurrence. Generating a large ensemble of
entangled states, we have analyzed coherence of each state
by determining the degree of coherence and first- and second-
order correlation function and compare these quantities with
the steering parameter. Based on this, we divided all entangled
states into the steerable and unsteerable ones. We have shown
that the steerable states with double excitation can be uniquely
distinguished from the unsteerable ones by being endowed with
a high degree of first-order mutual coherence, a low degree of
second-order mutual coherence, and having the sum of squared
degree of coherence and squared concurrence close to one. The
states with maximal steering parameter occur for the degree of
coherence around 1/2. On the other hand, all two-qubit states
derived from three-qubit states with single excitation exhibit
maximal first-order mutual coherence and no second-order
mutual coherence. Moreover, though the steerable states have
systematically greater values of the sum of squared degree of
coherence and squared concurrence than unsteerable states,
the degree of coherence does not allow one to uniquely dis-
tinguish both kinds of states. To quantify the relations among
entanglement, coherence, and steering, we have derived many
boundary (extremal) conditions for steerable and unsteerable
states and identify the states found at these boundaries. Doing
this we have elucidated the relationship between coherence and
steering for the considered entangled states of three qubits.
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