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Stabilizing effect of driving and dissipation on quantum metastable states
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We investigate how the combined effects of strong Ohmic dissipation and monochromatic driving affect the
stability of a quantum system with a metastable state. We find that, by increasing the coupling with the environment,
the escape time makes a transition from a regime in which it is substantially controlled by the driving, displaying
resonant peaks and dips, to a regime of frequency-independent escape time with a peak followed by a steep
falloff. The escape time from the metastable state has a nonmonotonic behavior as a function of the thermal-bath
coupling, the temperature, and the frequency of the driving. The quantum noise-enhanced stability phenomenon
is observed in the investigated system.
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I. INTRODUCTION

The study of the decay of metastable states has a long-
standing tradition in classical and quantum physics [1–3].
In the quantum regime, calculations have been performed
based on the imaginary-time path-integral technique [2,4,5]
considering a quantum particle initially in a thermal state inside
the metastable well. The decay from the metastable state occurs
on a time scale that depends on the friction and temperature,
and, in the quantum regime, this time scale is essentially
determined by tunneling through the potential barrier [5].

Path-integral calculations were initiated from the seminal
work by Caldeira and Leggett on the tunneling rate in supercon-
ducting devices [6]. There, the authors use imaginary-time path
integrals for solving the dissipative quantum decay problem.
Real-time path integrals for tunneling problems were used
later by Ueda, Bruinsma, and Bak [7]. The real-time approach
allows for capturing the dynamics of the particle in terms of
populations of spatially localized states in bistable potentials,
also in the presence of driving [8–10].

At present, there is significant interest in analyzing metasta-
bility and the role of dissipation in open quantum systems
[11–14]. Specifically, very recent investigations are aimed
at understanding the fundamental aspects of metastability in
open quantum systems [15], the metastability in the driven-
dissipative Rabi model [16], the energy exchange in a driven
open quantum system strongly coupled to a heat bath [17], the
high-frequency behavior of periodically driven systems [18],
the dissipative stabilization of entanglement in superconduct-
ing qubits [19], and the resonant activation phenomenon in a
quantum dissipative symmetric two-state system [20].

In Ref. [13], the escape dynamics starting from a nonequi-
librium initial condition was investigated for a static potential
using the techniques introduced in Ref. [9]. Specifically, in
that work it was found that, upon varying the strength γ of
the coupling between the particle and an Ohmic environment,
the escape time from a quantum metastable state exhibits a

nonmonotonic behavior, where the presence of a maximum
constitutes a quantum version of the noise-enhanced stability
(NES) phenomenon, theoretically and experimentally well
investigated in Refs. [21–27], called quantum noise-enhanced
stability [13]. The results obtained there rely on an initial
condition substantially different from the quasiequilibrium
state inside the metastable well. The preparation was indeed
assumed to be such that the particle is initially in a nonequilib-
rium position between the top of the barrier and the so-called
exit point of the potential (see Fig. 1 and Refs. [10,23]).

In the present investigation, we analyze the role of driving
in the escape from quantum metastable states in the presence
of dissipation. We find that the escape time, as a function of the
frequency of monochromatic driving with suitable amplitude,
displays resonant peaks and dips in the lower part of the range
of γ considered. At stronger coupling, the escape time has a
maximum, followed by a steep reduction at a critical value
of the coupling. This marks the transition to a frequency-
independent behavior that essentially resembles that of the
static case.

II. MODEL

The archetype of a quantum dissipative system is provided
by the Caldeira-Leggett model [28], where a central system
(S) of generalized coordinate x̂ is coupled to a dissipative
environment, a heat bath of quantum harmonic oscillators
of frequencies ωj and coordinates x̂j , according to the
Hamiltonian

Ĥ (t) = ĤS(t) + 1

2

N∑
j=1

⎡
⎣ p̂2

j

mj

+ mjω
2
j

(
x̂j − cj

mjω
2
j

x̂

)2
⎤
⎦.

(1)

The time dependence in HS accounts for the presence of a
time-varying potential which drives the particle. The second
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FIG. 1. Potential V [Eq. (3), with �U = 1.4h̄ω0 and ε =
0.27

√
Mh̄ω3

0] and the first six energy levels (horizontal lines). In the
lower part, the probability densities |qi(x)|2 = |〈x|qi〉|2 associated
with the DVR eigenfunctions are shown, the initial state |q3〉 being
highlighted by a solid line. Vertical lines indicate the position
eigenvalues in the DVR. The metastable region of the potential is
to the left of the so-called exit point c.

term on the right-hand side of Eq. (1) contains the free bath
Hamiltonian, the (bilinear) interaction term between S and the
oscillators, and a renormalization term, dependent on x̂2, which
gives a purely dissipative bath, i.e., a coordinate-independent
dissipation for the central system.

The open system S in the present work is a quantum particle
of effective mass M subject to a static double-well potential and
driven by a monochromatic field of amplitude A and angular
frequency �. The resulting time-dependent Hamiltonian for S

reads

ĤS(t) = p̂2

2M
+ V (x̂) − x̂A sin(�t)

= Ĥ0 − x̂A sin(�t). (2)

The static potential is parametrized by the quartic function of
the particle’s coordinate x̂,

V (x̂) = M2ω4
0

64�U
x̂4 − Mω2

0

4
x̂2 − εx̂. (3)

Here ω0 is the oscillation frequency around the potential
minima, ε is a static bias, and �U is the barrier height at zero
bias. Throughout the present work, we scale all the physical
quantities with ω0, which is of the same order of magnitude of
the frequency spacing between the ground state and the first
excited energy level. We choose ε sufficiently large to get a
configuration that, in the transient dynamics, is suitable for
modeling the decay in a metastable potential, starting from a
nonequilibrium condition. In the upper part of Fig. 1, V (x) is
shown for �U = 1.4h̄ω0 and ε = 0.27

√
Mh̄ω3

0.
By considering a thermal equilibrium bath, its influence

on the quantum bistable system is fully characterized by the
spectral density, whose general expression is [10,29]

J (ω) = π

2

N∑
j=1

c2
j

mjωj

δ(ω − ωj ). (4)

For a set of discrete modes, the spectral density consists of a
sequence of δ peaks. To work with a genuine heat bath, we
assume that the eigenfrequencies ωj are so dense as to form a
continuous spectrum. In the continuum limit, J (ω) becomes a
smooth function of ω, and the sum in Eq. (4) is replaced by an
integral. In particular, if the j th coupling coefficient is given
by

cj =
(

γ
2Mmj

πj
ω3

j

)1/2

, (5)

then, substituting Eq. (5) in Eq. (4), with ωj/j = �ωj , we get

J (ω) = Mγ

N∑
j=1

�ωjωjδ(ω − ωj )

N�1−−→ Mγ

∫ ∞

0
dω′ω′δ(ω − ω′) = Mγω, (6)

obtaining the Ohmic spectral density in the continuous limit.
Equations (5) and (6) show that, if the environment is a
large collection of oscillators, one can have strong dissipation,
quantified by γ , and still a weak coupling with the individual
oscillators [10,29].

However, allowing this linear behavior [Eq. (6)] to persist
for an arbitrarily high frequency gives nonphysical results such
as, for example, the divergence of the renormalization term in
the Hamiltonian (1) (see Refs. [10,28,29]). We then consider,
for the dissipative environment, the Ohmic spectral density
function J with a high-frequency cutoff. In the continuum
limit, we have then [10,13,29]

J (ω) = Mγωe−ω/ωc , (7)

where ωc is the cutoff frequency of the environment. This
cutoff frequency is chosen in such a way as to be much larger
than all the other frequencies involved in the dynamics, that
is, ω0 and the frequencies corresponding to jumps between
different energy levels of the static potential (see Fig. 1). We set
this cutoff frequency to the value ωc = 10ω0. The generalized
Langevin equation for the system described by Hamiltonian
(1) for an Ohmic bath has a memoryless friction kernel with
friction coefficient γ [10]. This coefficient, which has the
dimension of a frequency, provides a measure of the overall
coupling between S and the heat bath, whereas the couplings
with the individual bath oscillators are given by the coefficients
cj (5) in Eq. (1).

A. Discrete variable representation

At low temperatures, on the energy scale set by ω0, the time
evolution of the particle is practically confined to a reduced
Hilbert space spanned by the first M energy eigenstates |Ei〉,
provided that the particle is not initially excited to energy
levels higher than M . We assume furthermore that the time-
dependent driving does not excite further energy eigenstates
with respect to those used in the static potential. Moreover, the
energy eigenstates are the same as for the system defined by
Ĥ0 in Eq. (2). In addition, when the frequency of the periodic
external driving is of the order of the frequency associated
with the frequency spacing between the ground state and the
first excited energy level or larger, � � ω0, the averaging of
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the dynamics over a full driving period is appropriate [8,9].
After averaging, the resulting transition coefficients become
time-independent (see the next section), forming the time-
averaged rate matrix. Outside of this high-frequency driving
assumption, as an alternative theoretical technique, the Floquet
theory should be used.

In Fig. 1, the M = 6 case is explicitly shown for the strongly
asymmetric potential used throughout the present work. In this
truncated Hilbert space, we perform the unitary transformation
T , which diagonalizes the position operator x̂ according to

qDVR = TxT†

= diag{q1, . . . ,qM}, (8)

where x is the matrix representing x̂ in the energy basis. The
resulting states are

|qj 〉 =
M∑

k=1

T ∗
jk|Ek〉, (9)

where Tij = (T)ij satisfy the eigenvalue equation qDVR|qj 〉 =
qj |qj 〉.

The set {(qj ,|qj 〉), j = 1, . . . ,M} constitutes the so-called
discrete variable representation (DVR) [30,31]. We consider
the bath in the thermal state and a factorized initial condition
ρ(t0)

⊗
ρB(0) is set, with ρB(0) = e−βĤB /ZB . The particle’s

reduced density operator in the DVR is given by

ρμν(t) =
6∑

α,β=1

K(qμ,qν,t ; qα,qβ,0)ραβ(0), (10)

where ρμν(t) = 〈qμ|ρ(t)|qν〉 (μ,ν = 1, . . . ,6) and the propa-
gator K(qμ,qν,t ; qα,qβ,0) is given by the double dissipative
path integral,∫ qμ

qα

Dq(t)
∫ qν

qβ

D∗q ′(t)A[q]A∗[q ′]FFV[q,q ′]. (11)

Here A[q] is the amplitude associated with the path q(t) of the
bare system. The effect exerted by the bath on the quantum-
mechanical amplitude associated with a path (q(t),q ′(t)) is
condensed in the Feynman-Vernon (FV) influence functional
FFV[q,q ′] [32].

This approach is nonperturbative in the system-bath cou-
pling, and is thus suited for dealing with the strong-coupling
regime. The functions qj (x) = 〈x|qj 〉 are localized around the
eigenvalues qj , as can be seen in the lower part of Fig. 1: the
particle in the j th DVR state has a nonvanishing probability
of being detected only in a spatial region centered around
qj . This spatially discretized picture generalizes the localized
representation for a two-state system, given in terms of left
or right states localized around the potential minima [10].
The DVR allows for calculating the probability of finding the
particle in the region in-between the minima. In the present
work, we exploit this possibility of studying the transient
dynamics in terms of escape time towards the lower well,
starting from a nonequilibrium initial state (see the lower part of
Fig. 1). Note that spatial continuity is recovered for M → ∞,
i.e., removing the upper bound on the energies taken into
account. The existence of intermediate localized states in the
generalization of the two-state system treatment accomplished

by the DVR is reflected by the multiple time scales resulting
from the inclusion of energy levels above the first doublet and
accounts for tunneling and intrawell relaxation [9,33].

III. STRONG DISSIPATION AND HIGH-FREQUENCY
DRIVING: ANALYTICAL APPROACH

In the DVR representation, a path consists of a sequence
of transitions in the spatial grid defined by the set {q1, . . . ,q6}
so that the double path integral (11) turns into a sum over all
the possible discrete paths {μj ,νj = 1, . . . ,6} [9,10,29]. As
a further approximation, in addition to the use of a limited
set of DVR, in the propagator K(qμ,qν,t ; qα,qβ,0) we restrict
the sum over paths to the leading contributions. These are
given by the class of paths consisting in sojourns in diagonal
states, that is, the time intervals in which the system is in a
diagonal state of the reduced matrix, interrupted by single
off-diagonal excursions called blips. In the dissipation regimes
from intermediate to high temperature, on the scale fixed
by h̄ω0, considered here, the nonlocal-in-time interactions
among different blips can be neglected. This corresponds
to a multilevel version [9,29,33] of the noninteracting blip
approximation (NIBA) [10,34]. However, the relevant part
of the interactions, i.e., the intrablip interactions, is retained
to all orders in the coupling strength. This is the content of
the generalized noninteracting cluster approximation (gNICA)
[9], where a cluster is defined as the time interval during
which the path visits nondiagonal elements. The gNICA is
therefore the generalization to a multilevel system of the NIBA
applicable for a spin-boson system [9].

In the framework of the gNICA, the double path integral
of Eq. (11) assumes a factorized form in the Laplace space,
allowing for the derivation of a generalized master equation

ρ̇jj (t) =
∑

k

∫ t

t0

dt ′Kjk(t,t ′)ρkk(t ′). (12)

At strong damping, as in our case, the memory time of the
kernels Kjk is smaller than the characteristic time scale of
the evolution of populations. In other words, in the short-time
interval in which Kjk are substantially different from zero,
ρkk(t) are practically constant. Under the assumption called
the Markovian approximation, in which ρkk(t ′) in (12) are
practically constant on the timescales at which the kernels Kjk

are significantly different from zero, we can put ρkk(t ′) outside
the integral and bring the upper limit to ∞. Setting t0 = 0, the
time-dependent rates are thus given by


jk(t) =
∫ ∞

0
dτ Kjk(t,t − τ ), (13)

where τ = t − t ′. In the presence of a time-dependent driving,
the kernels no longer depend only on the difference τ , and con-
sequently the integration over τ leaves us with time-dependent
rates. However, if the frequency � of the monochromatic
driving is sufficiently high so that it does not match any of the
system’s frequencies (renormalized by the bath), the average
over one period T = 2π/� can be taken [8,9], which gives
the following time-independent averaged rates:


av
jk = �

2π

∫ 2π
�

0
dt

∫ ∞

0
dτ Kjk(t,t − τ ). (14)
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The populations ρjj of the DVR states |qj 〉 undergo a relaxation
towards a stationary configuration, which depends on bath
parameters and the damping strength γ . Therefore, at strong
coupling this process is well approximated by the incoherent
relaxation captured by the master equation [9,29]

ρ̇jj (t) =
∑

k


av
jkρkk(t), (15)

with 
av
jk given by Eq. (14). The kernel elements Kjk are taken

to the second order in the transition amplitudes per unit time
�jk and at all orders in the system-bath coupling. They go to
zero exponentially due to the presence of a cutoff. For j 
= k,
the kernels read

Kjk(t,t ′) = 2�2
jke

−q2
jkQ

′(t−t ′)

× cos
[
ζjk(t,t ′) + q2

jkQ
′′(t − t ′)

]
, (16)

with the diagonal elements of the kernel matrix given by

Kkk(t,t ′) = −
∑
n
=k

Knk(t,t ′), (17)

according to the conservation of probability. In Eq. (16), the
matrix elements �jk are given by

�jk ≡ 〈qj |Ĥ0|qk〉/h̄, (18)

qjk = qj − qk , and the functions ζjk(t,t ′) are defined as the
time integrals

ζjk(t,t ′) =
∫ t

t ′
dt ′′

[
(�jj − �kk) − qjk(A/h̄) sin(�t ′′)

]
.

(19)

Finally, in Eq. (16), Q′ and Q′′ are, respectively, the real
and imaginary parts of the function Q(t), related to the bath
correlation function L(t) by L(t) = h̄2d2Q(t)/dt2. In the
scaling limit set by kBT /h̄ωc � 1, we have [29]

Q(t) = Q′(t) + iQ′′(t)

= Mγ

πh̄
ln

(√
1 + ω2

c t
2

sinh(κt)

κt

)

+ i
Mγ

πh̄
arctan(ωct), (20)

where κ = πkBT /h̄.
The master equation (15), with rates given by Eq. (14),

describes the average effect of the high-frequency driving on
the time evolution of the populations ρjj of the DVR states.
The analytical solution of Eq. (15) reads

ρjj (t) =
M∑

n,k=1

Sjn(S−1)nke
�n(t−t0)ρkk(t0), (21)

where S is the transformation matrix diagonalizing the rate
matrix 
, which has eigenvalues �n. The smallest, in abso-
lute value, of the nonzero eigenvalues determines the largest
timescale of the dynamics, the quantum relaxation time
τrelax [9].

IV. ESCAPE TIME FOR THE DRIVEN SYSTEM

We analyze the transient dynamics of the driven system by
Eq. (21) with the nonequilibrium initial condition

ρ(0) = |q3〉〈q3|, (22)

that is, with the particle initially prepared in the central region
of the potential on the right side of the barrier, between the
maximum and the exit point, denoted by c in Fig. 1. Therefore,
the dynamical evolution of the populations of our asymmetric
bistable quantum system (see Fig. 1) with the initial condition
(22) is given by

ρjj (t) =
6∑

n=1

Sjn(S−1)n3e
�n(t−t0)ρ33(t0). (23)

We consider the escape time from the metastable region,
defined as the region to the left of the exit point (c in Fig. 1), ac-
cording to Ref. [35]. There, the decay rate from the metastable
region is calculated by using the probability of penetration
of the Gaussian wave packet from left to right through the
potential barrier of Fig. 1. Here, we use a discretized version
of this theoretical technique. Therefore, we calculate the
population of the lower (right side) well, that is, the cumulative
population of the three DVR states from |q4〉 to |q6〉,

Pright(t) =
6∑

j=4

ρjj (t). (24)

During the transient dynamics, the cumulative population
of the metastable well, |q1〉 and |q2〉, reaches a maximum,
and then, by tunneling through the potential barrier, decays
finally settling down to a stationary value dependent on the
temperature. We define the escape time τ from the metastable
region of the potential (the region to the left of the exit point c)
as the time the right well population takes to cross a threshold
value d. The nonmonotonic behavior of τ as a function of
γ and of the temperature T predicted in the static case was
shown in Ref. [13] to be robust against variations of the
threshold around the value 0.9.

Here we set the threshold at d = 0.95, meaning that we
consider the particle that escaped from the metastable region
when the probability to detect it in the lower (right) well is
equal to or greater than 95%. Note that, due to the incoherent
relaxation described by Eq. (21), once the threshold is crossed
no oscillatory behavior of the populations occurs (no recrossing
of the threshold in the opposite direction). Therefore, if the
particle crosses the threshold at time τ , the overall population
of the metastable region is not going to be larger than 0.05 at
later times.

At this point we note that, in the static case, the metastable
well can be thermally populated at the steady state. In this
scenario, no escape can occur if the threshold d is close to
unit [13]. As we show in what follows, the same is true in the
driven case for certain values of the frequency �, especially at
large amplitudes A, whenever the left well population, namely
the sum Pleft = ρ11 + ρ22, is kept substantially above zero at
the steady state by the presence of the driving. An example
of this effect is given in Fig. 2, where for Ā = 0.15, T̄ = 0.1,
and γ /ω0 = 0.2, the left well population is plotted against
time for different driving frequencies. Here we introduced the
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FIG. 2. Left well population Pleft = ρ11 + ρ22 as a function of
time (in log scale) for Ā = 0.15, T̄ = 0.1, γ /ω0 = 0.2, and five
driving frequency values, namely �/ω0 = 0.2,0.58,0.75,1.0,1.35.
Here we introduced the dimensionless quantities of the amplitude and
temperature, Ā = A/

√
Mh̄ω3

0 and T̄ = kBT /h̄ω0. Horizontal line:
1 − d , where d = 0.95 is the threshold value. For �/ω0 = 0.75 no
escape occurs, as Pleft remains above the value 1 − d . This is better
shown in the inset. Note the nonmonotonic behavior of the steady-state
values of Pleft as a function of �.

dimensionless quantities of the amplitude and temperature,
Ā = A/

√
Mh̄ω3

0 and T̄ = kBT /h̄ω0. The stationary value of
Pleft is above 1 − d = 0.05 for �/ω0 = 0.75, meaning that the
escape does not occur at this driving frequency.

V. RESULTS AND DISCUSSION

In the absence of external driving, A = 0, as γ increases,
both the escape time τ and the relaxation time τrelax increase
[13]. This holds until a critical value of γc, dependent on the
temperature, is reached: by further increasing γ , the escape
time steeply diminishes whereas the relaxation time continues
to increase monotonically. In Fig. 3, the behavior of the
escape time τ versus γ /ω0 for three values of frequency,
namely �/ω0 = 0,0.2,0.7, and two different temperatures,
that is, T̄ = 0.1,0.3, is shown. At the lower temperature
T̄ = 0.1, all the curves show a nonmonotonic behavior, with a
maximum, of τ as a function of the scaled coupling parameter
γ /ω0. At the higher temperature T̄ = 0.3, the same behavior
occurs for the lower values of the scaled driving frequency
�/ω0 = 0,0.2, while a monotonic behavior is observed for
the higher-frequency value of �/ω0 = 0.7. This monotonic
behavior can be ascribed to the conjunct effect of thermal bath
and driving force, which accelerates the escape process from
the metastable region by increasing the coupling parameter γ .

The maxima in the escape time imply that, at a given
temperature, there is an optimal value of the coupling γ

for which the depletion of the metastable region is delayed.
According to the well-known classical phenomenon [21–27],
we address this feature as quantum noise-enhanced stability
(qNES) [13].

Moreover, a critical value of the coupling strength γc,
dependent on the temperature, exists also in the presence of
driving. The critical values of this coupling parameter in Fig. 3

FIG. 3. Escape time vs coupling strength for three driving
settings, namely �/ω0 = 0,0.2,0.7. Upper panel: dimensionless
temperature T̄ = 0.1. At �/ω0 = 0.7, no escape occurs for γ /ω0 �
0.25. Lower panel: dimensionless temperature T̄ = 0.3. For �/ω0 =
0.2 and �/ω0 = 0.7, the escape occurs starting from γ /ω0 � 0.25
and 0.55, respectively. For both panels, the driving dimensionless
amplitude is fixed at the value Ā = 0.15. Solid lines, in both panels,
give the behavior in the absence of driving � = 0.

are found to be γc/ω0 
 0.75 at T̄ = 0.1 and γc/ω0 
 0.9 at
T̄ = 0.3.

At the higher temperature, for �/ω0 = 0.7, there is no
escape up to γ /ω0 
 0.55. At stronger dissipation the inter-
action with the heat bath forces the relaxation towards the
lower well causing the depletion of the metastable well, which
would be otherwise populated due to the combined effect of
driving and thermal excitation. We note that γc is larger at the
higher temperature, indicating that at strong coupling, and in
the presence of driving, the thermal excitations of the heat bath
contrast the relaxation induced by the bath itself.

An interesting feature, at strong coupling and independently
of the driving frequency, is the presence of a slow monotonic
increase of the escape time τ for γ /ω0 > γc/ω0, which is a
signature of the quantum Zeno effect [36].

Our main focus in this section is the investigation of the
escape time as a function of the driving frequency and coupling
strength. This is aimed at giving a systematic account for the
delay and the quench of the escape shown in Fig. 3, and at
investigating how these effects are influenced by variations of
the coupling with the environment. Toward that end, first we
fix γ at the value used in Fig. 2, the lowest value considered
here, and we plot the escape time as a function of � for three
different values of the dimensionless driving amplitudes Ā (see
Fig. 4). Then we show the escape time as a function of � and
γ for two different values of the dimensionless amplitude Ā

(see Figs. 5 and 6).
The plot τ versus �, shown in Fig. 4, is characterized

by resonant peaks and dips whose magnitude is enhanced
by increasing the driving amplitude, the escape being com-
pletely quenched for frequencies around �/ω0 
 0.75 for
A � 0.15

√
Mh̄ω3

0. The effect is easily interpreted by looking
at Fig. 2, where the case �/ω0 = 0.75 displays at the steady
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FIG. 4. Escape time vs driving frequency for three values
of the dimensionless driving amplitude Ā = A/

√
Mh̄ω3

0, namely
Ā = 0.1,0.15,0.2. Other parameters are γ /ω0 = 0.2 and T̄ = 0.1.

state a left-well population larger than 1 − d, implying that
Pright < d. The frequencies for which τ is maximized (or
no escape occurs, depending on the amplitude) correspond
roughly to the energy separations E3 − E2 ≈ 0.6h̄ω0, E4 −
E2 ≈ 0.8h̄ω0, and E5 − E2 ≈ 1.25h̄ω0, showing that a reso-
nance phenomenon between the external driving and these fre-
quencies occurs. For � ≈ ω0, a minimum of τ is visible, which
is akin to the quantum resonant activation phenomenon [20].

Peaks and dips in τ as a function of the driving frequency
are smoothed out as γ increases until τ becomes practically
constant, with respect to �, as the coupling approaches the
critical value mentioned above. This behavior is displayed in
Figs. 5 and 6, where the escape time is plotted as a function
of �/ω0 and γ /ω0 for two values of the amplitude, Ā = 0.15
and 0.20, respectively. For γ < γc, the high-frequency driving
can delay or accelerate the escape, while for coupling strengths
above the critical value γc the escape time becomes frequency-
independent and the quantum Zeno effect occurs [36].

The critical value γc marks the transition to a dynamical
regime in which the tunneling mechanism of population
transfer to the states of the metastable region is suppressed.
This is because the tunneling dynamics becomes slow on the
depletion time scale of the region where the particle is initially
prepared. As a result, the probability of detecting the particle

FIG. 5. Escape time as a function of the coupling strength and
the driving frequency for dimensionless amplitudes Ā = 0.15. The
dimensionless temperature is set to the value T̄ = 0.1.

FIG. 6. Escape time as a function of the coupling strength and
the driving frequency for dimensionless amplitudes Ā = 0.20. The
dimensionless temperature is set to the value T̄ = 0.1.

in the metastable well, starting from the initial condition (22),
is practically zero at every time instant as the population is
directly transferred from |q3〉 to the right well states. This effect
is not captured by the relaxation time (see Sec. III), which is
independent of the initial condition and grows monotonically
as γ increases.

To give an account of this transition, in Fig. 7 we plot the left
well population Pleft as a function of the time at fixed driving
frequency (in correspondence of a peak in τ ) for three values
of γ , below and above γc/ω0 
 0.75 (see the upper panel of
Fig. 3), namely γ /ω0 = 0.2,0.6,1.0. We find that above γc

almost no population transfer occurs to the left well during the
transient dynamics (red dashed-dotted curve).

VI. CONCLUSIONS

In this work, we investigated the transient dynamics of a
quantum particle subject to an asymmetric bistable potential
in the presence of strong Ohmic dissipation and high-frequency

0

1-d
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0.5

 0.01  0.1  1  10  100  1000

P
le

ft

ω0 t

γ/ω0=0.2
γ/ω0=0.6
γ/ω0=1.0

FIG. 7. Left well population Pleft = ρ11 + ρ22 as a function of
the time (in log scale), at driving frequency �/ω0 = 0.75, for
three values of the scaled coupling parameter, namely γ /ω0 = 0.2
(magenta dashed line), γ /ω0 = 0.6 (green dotted line), and γ /ω0 =
1.0 (red dashed-dotted line). Parameters are Ā = 0.15 and T̄ = 0.1.
Horizontal line: 1 − d , where d = 0.95 is the threshold value. The
critical value of the scaled coupling parameter is γc/ω0 
 0.75.
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driving. This was done by considering the escape time from
the metastable region, the region to the left of the exit point of
the potential (point c in Fig. 1), starting from a nonequilibrium
initial condition.

We found that, by tuning the frequency of a monochromatic
driving with suitable amplitude at specific values dictated by
the shape of the potential, the escape from the metastable
region can be slowed down, accelerated, or even inhibited,
provided that the coupling strength is smaller than a critical
value dependent on the temperature. This marks the transition
to a frequency-independent behavior of the escape time.

Quantum noise-enhanced stability is observed in the
system investigated. This way of controlling the escape

dynamics and the asymptotic population of the metastable
well in the strong-coupling regime may be of practical in-
terest, given the possibility of engineering dissipative en-
vironments in superconducting devices [37] and exploiting
dissipation-induced steady states for quantum computation
[38,39].
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