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Geometric effects resulting from square and circular confinements for a particle
constrained to a space curve
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Investigating the geometric effects resulting from the detailed behaviors of the confining potential, we consider
square and circular confinements to constrain a particle to a space curve. We find a torsion-induced geometric
potential and a curvature-induced geometric momentum just in the square case, while a geometric gauge potential
solely in the circular case. In the presence of electromagnetic field, a geometrically induced magnetic moment
couples with magnetic field as an induced Zeeman coupling only for the circular confinement also. As spin-orbit
interaction is considered, we find some additional terms for the spin-orbit coupling, which are induced not only
by torsion, but also curvature. Moreover, in the circular case, the spin also couples with an intrinsic angular
momentum, which describes the azimuthal motions mapped on the space curve. As an important conclusion for
the thin-layer quantization approach, some substantial geometric effects result from the confinement boundaries.
Finally, these results are proved on a helical wire.
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I. INTRODUCTION

The development of preparing the spatially curved
nanowires (for example [1,2]) has boosted the interest in the
quantum physics on a space curve. To study the effective
quantum dynamics, a much suitable scheme is the confining
potential formalism (CPF) given by Jensen, Koppe, and da
Costa [3–5]. In the formalism, a confining potential (CP) is
introduced to reduce the dimension. Compensating the reduced
motion, a curvature-induced geometric potential (GP) appears
in the effective quantum dynamics [3,4]. The GP can lead to a
topological band structure for periodically minimal surfaces
[6], winding-generated bound states for spirally rolled-up
nanotubes [7], reflectionless geometries for bent waveguides
[8], the transmission gaps for periodically corrugated thin
layers [9], and so on. In addition, a geometric momentum
(GM) and a geometric angular momentum [10,11] are defined
by curvature. As empirical evidences for the validity of the
CPF, the GP [12] has been realized by an optical analog in
a topological crystal, and the GM [13] by the propagation of
surface plasmon polaritons on metallic wires.

Further, the CPF has been well discussed in the presence
of an external electromagnetic field [14–16], and extended
to a particle with spin [17]. At the same time, the CPF was
used to derive the effective quantum dynamics for spinless
particles in a twisted quantum ring [25], a Möbius ladder
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[18], and a space curve [19], where the effect of torsion is
encoded in an effective magnetic moment, which can cause an
effective Zeeman-like coupling [18,19], persistent current [25],
and anomalous phase shift [20]. As spin-orbit coupling (SOC)
is considered, the geometric effects become richer [10,21,24],
and can generate topological insulating phases [22]. Moreover,
pure gauge SOCs appear in the effective quantum dynamics on
a ring [23].

Confining a particle on a space curve embedded in three-
dimensional (3D) Euclidean space, Ortix employed double
confining potentials [24] to freeze the motions in two reduced
dimensions, while Taira and Shima adapted a radial form
[25] to reduce two dimensions, but just freeze one [26], the
azimuthal motion is preserved. They obtained an additional
torsion-induced GP [24] and a geometrically induced gauge
potential [5], respectively. The torsion-induced GP results from
the finite contributions of perturbations, but it does not depend
on the specific form of the confining potential and its relative
strength [24,27]. The geometric gauge potential is from the
nontriviality of a particle constrained in a twisted tube [28],
and from the geometry of a quantum waveguide [29].

Inspired by those discussions, in this paper we mainly dis-
cuss the geometric effects dependent on the detailed behaviors
of the CP (its equipotentials around the curve can be squares
or circles), for a particle confined to a space curve. We show
the torsion-induced GP and the curvature-induced GM just in
the square case, and the geometric gauge potential solely in the
circular one. With a circular confinement, we obtain an induced
Zeeman coupling for the presence of electromagnetic field,
and novel terms added to the SOCs by curvature and torsion,
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and find the remained motions in the effective dynamics as an
induced gauge potential and an intrinsic angular momentum.
Finally, we consider a concrete example, a helical wire.

II. EFFECTIVE DYNAMICS FOR A PARTICLE CONFINED
TO A SPACE CURVE

We will restudy the CPF for a quantum particle confined
to a space curve by introducing a CP. The study begins with a
space curve C that is parametrized by �r depending only on s, s
is the arc length. The portion of the immediate neighborhood
of C can be described by

�R(s,q2,q3) = �r + q2�n + q3 �b, (1)

where �n and �b are two unit vectors normal and binormal to C,
q2 and q3 are the coordinate variables with respect to �n and �b.
The unit vector �t tangent to C is defined by �t = ∂s�r , where ∂s =
∂

∂qs
, which is used throughout the paper. With the definition

Gij = ∂i
�R · ∂j

�R (i,j = s,2,3), the calculation of Gij needs
the expression for ∂s�t , ∂s �n and ∂s

�b. The three unit vectors �t , �n,
and �b obey the Frenet-Serret-type equation of motion as they
propagate along s,

⎛
⎝∂s�t

∂s �n
∂s

�b

⎞
⎠ =

⎛
⎝ 0 κ 0

−κ 0 τ

0 −τ 0

⎞
⎠

⎛
⎝�t

�n
�b

⎞
⎠, (2)

where κ and τ are the curvature and torsion of C, respectively,
they may be functions of s. Subsequently, Gij can be calculated
as follows:

G11 = (1 − κq2)2 + τ 2
(
q2

2 + q2
3

)
,

G12 = G21 = −τq3, G13 = G31 = τq2,

G22 = G33 = 1, G23 = G32 = 0,

(3)

and its determinant is G = (1 − κq2)2. The reduced metric
on C is gss = ∂s�r · ∂s�r = 1 and its determinant is g = 1.
Obviously, G and g satisfy G = f 2g where f is a rescaled
factor, f = 1 − κq2. In terms of Eq. (3), the contravariant
components of the inverse metric Gij can be derived

G11 = 1/f 2, G22 = 1 + τ 2q2
3

/
f 2,

G33 = 1 + τ 2q2
2

/
f 2, G12 = G21 = τq3/f

2,

G13 = G31 = −τq2/f
2, G23 = G32 = −τ 2q2q3/f

2.

(4)

For a particle confined to C, one can employ the CPF
to derive the effective Hamiltonian (EH) [3,4]. In the CPF,
the starting point is a quantum dynamics defined in a 3D
space, the final aim is an effective quantum dynamics on the
one-dimensional (1D) space curve C. Therefore, the motions
defined in the plane normal to C are reduced by introducing
a CP. In the spirit of the CPF, for a physical operator F̂,
which does depend purely on derivatives in a 3D Euclidean
space, its effective result for a particle confined to C can be

determined by

F̂eff = lim
qN →0

(
F̂f

1
2
) − F̂N

= lim
qN →0

(
1F̂f

1
2
) − F̂N (5)

= lim
qN →0

(
f − 1

2 F̂f
1
2
) − F̂N,

where F̂ is originally defined in an adapted 3D curvilinear coor-
dinate system, F̂N stands for the component operator defined in
the normal plane of C, f

1
2 is from the normalization condition∫

dsdq2dq3
√

g|f 1
2 ψ |2 = 1, the third line equality is proved by

limqN →0 f − 1
2 = 1 and qN stand for two coordinate variables

in the normal plane. With the definition Eq. (5), the curvature-
induced GP [3,4] and GM [10,11] can be well obtained. As
da Costa said, the GP is independent of the detailed behavior
of the CP (its equipotentials around C can be circles, squares,
elipses, etc.) [4]. The independence is confirmed by limiting
qN → 0 in Eq. (5). It is essentially important in separating the
tangent component from the normal ones analytically that the
limitation accomplishes the disappearance of the mixed terms
of tangent dimension and normal ones.

We notice that the torsion-induced GP given by Ortix [24]
and the geometrically induced magnetic moment by Brandt
and Sánchez-Monroy [19] are both from the first-order per-
turbations. Those results cannot be obtained through Eq. (5).
Inspired by the extents of perturbation theories carried out in
Refs. [19,24], we investigate the geometric effects resulting
from the confinement boundaries of the GP. In the case, the
calculation procedure of CPF has to be reconsidered. The
particle is initially proposed to occur in a quantum state that
is |χs〉 ⊗ |χN 〉 (|χs〉 denotes an eigenstate in the s dimension
and |χN 〉 stands for that in the normal plane of C). Because
the particle is initially described by a 3D quantum equation,
and the ultimate aim of CPF is the analytical separation of the
s-dimensional quantum dynamics and the normal component.
The CP increases the excited energies of confined degree of
freedom far beyond those of unconfined one. As a result, the
motion in confined dimension is frozen so that the particle
solely exists in its ground state. Therefore, the formula Eq. (5)
should be reexpressed as

F̂eff = lim
εc→0

〈χ0c
|f − 1

2 F̂f
1
2 − F̂N |χ0c

〉

= 〈χ0c
|f − 1

2 F̂f
1
2 − F̂N |χ0c

〉0, (6)

where εc describes the scale size of the confined degree of
freedom, |χ0c

〉 denotes the confined ground state and the
subscript 0 in 〈· · · 〉0 stands for the limit εc → 0. The validity
of the formula (6) is protected by the two aims of the CPF [30]:
to separate the quantum equation tangent to C from the normal
components analytically, to preserve the normal motions in the
EH as much as possible. It is worthwhile to notice that |χ0c

〉 is
the ground state of confined dimension, not the reduced one.
Compared to Eq. (5), Eq. (6) adds one step to bring the finite
contributions of the original operator defined in the ground
state |χ0c

〉 back into the effective result. The specific form of
|χ0c

〉 is eventually determined by the confinement boundaries,
and the added contributions result from them naturally.
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FIG. 1. Sketches of the square case. (a) A twisted tube with square
cross section. (b) A cross section with squeezing forces sketched. (c)
The double confining potential vs (q2,q3). (d) The confining potential
vs q2. The confining potential is regarded as a dimensionless quantity
because its unit is being taken as the excited energy in s dimension.

A. Spinless particle

A free spinless particle can be described by the Hamiltonian
Ĥ0

Ĥ0 = − h̄2

2m
∇2, (7)

where h̄ is the Plank constant divided by 2π and m is
the effective mass of the particle. Once a CP denoted as
Vc is introduced to confine the particle to C, Ĥ0 would be
replaced by

ĤV = Ĥ0 + Vc. (8)

Originally, da Costa gave Vc [4] in the following form:

Vc(q2,3) =
{

0, q2 = 0,q3 = 0,

∞, q2 
= 0,q3 
= 0.
(9)

The considered realization Vc should be reexpressed as

Vc(q2,3) = lim
ε2,3→0

{
0, |q2| � ε2, |q3| � ε3,

∞, |q2| > ε2, |q3| > ε3,
(10)

where ε2 and ε3 describe the scale sizes of the plane normal to
C. More specifically, double CPs can be chosen as

Vc(q2) = lim
w→∞

1
2mw2q2

2 ,

Vc(q3) = lim
w→∞

1
2mw2q2

3 ,
(11)

where w denotes a harmonic frequency, where the indepen-
dence of Eq. (6) on the specific form of the CP and its relative
strength is considered [24,27].

By virtue of the analytical separation of the tangent motion
and that in the normal plane, and the CP Eq. (11), one can
directly give the Hamiltonian in the plane normal to C as ĤN =
Ĥn + Ĥb. Introduced as a square confinement as sketched in
Fig. 1, the normal component Ĥn and binormal one Ĥb can be

written as

Ĥn = − h̄2

2m
∂2

2 + 1

2
mw2q2

2 , (12)

and

Ĥb = − h̄2

2m
∂2

3 + 1

2
mw2q2

3 , (13)

respectively. The simplicity of Eqs. (12) and (13) is eventually
determined by the extreme strength of the CP, w → ∞. All
the other terms depending on q2,3 or ∂2,3 can be taken as
perturbations. The quantum mechanical problem, 1D harmonic
oscillator, is exactly solvable and does not involve complicated
calculation. The normal and binormal ground states are

|χ0n
〉 = α1/2π−1/4e−(αq2)2/2, (14)

and

|χ0b
〉 = α1/2π−1/4e−(αq3)2/2, (15)

respectively, where α = √
mw/h̄. The corresponding zero-

point energies are E0n
= E0b

= h̄w/2.
In terms of Eqs. (6), (8), (14), and (15), the EH can be

calculated,

Ĥeff = 〈
χ0n,0b

∣∣f − 1
2 ĤV f

1
2 − ĤN

∣∣χ0n,0b

〉
0

= lim
w→∞〈χ0n,0b

|f − 1
2 ĤV f

1
2 − ĤN

∣∣χ0n,0b

〉

= 1

2m
p̂2

s − h̄2

8m
κ2 − h̄2

4m
τ 2, (16)

where |χ0n,0b
〉 = |χ0n

〉 ⊗ |χ0b
〉, p̂s = −ih̄∂s is a kinematic

momentum operator, − h̄2

8m
κ2 is the well-known GP induced by

curvature and − h̄2

4m
τ 2 is an additional GP induced by torsion.

This result is in full agreement with that in Ref. [24] without
spin. It is easy to prove that the curvature-induced GP can be
also obtained by Eq. (5), but the torsion-induced GP can not,
which results from the finite expectations of the expression,
that is

h̄2

2m
τ 2

〈
χ0n,0b

∣∣(q2∂2 + q3∂3 + 2q2q3∂2∂3)
∣∣χ0n,0b

〉
0.

In the previous calculation process, the limit ε → 0 is fully
equivalent to w → ∞. The reason is the ground state width
being ε = √

h̄/(mw).
In the circular case sketched in Fig. 2, the CP (11) can be

rewritten as

Vc(ρ) = lim
w→∞

1
2mw2ρ2, (17)

where w is a harmonic frequency. It is a striking difference
that the square confinement freezes two degrees of freedom,
but only one in the circular case, in which the azimuthal
motion is remained. It is obvious that Vc(ρ) possesses a SO(2)
symmetry. The angular momentum L̂s , therefore, commutes
with the Hamiltonian ĤN . L̂s can be expressed by

L̂s = ih̄(q3∂2 − q2∂3) = −ih̄∂θ , (18)

where ∂2 = ∂/∂q2, ∂3 = ∂/∂q3 and θ denotes the azimuthal
variable in the normal plane of C. In a local polar coordinate
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FIG. 2. Sketches of the circular case. (a) A twisted tube. (b) A
cross section with squeezing forces sketched. (c) The radial confining
potential vs the variables (ρ,θ ) sketched. (d) The radial confining
potential vs ρ sketched. The confining potential is regarded as a
dimensionless quantity because its unit is being taken as the excited
energy in s dimension.

system, ĤN reads

ĤN = − h̄2

2m

1

ρ
∂ρρ∂ρ + 1

2mρ2
L̂2

s + 1

2
mw2ρ2. (19)

Since [ĤN,L̂s] = 0, there are a set of states which are common
eigenstates of ĤN and L̂s . Their eigenequations are

ĤN |χn,l〉 = En,l|χn,l〉, (20)

and

L̂s |χn,l〉 = lh̄|χn,l〉, (21)

respectively, where En,l is the eigenvalue of ĤN , lh̄ is the
eigenvalue of L̂s and |χn,l〉 denotes a common eigenstate,
wherein n is a radial quantum number and l is an azimuthal
quantum number. The CP (17) freezes the radial degree of
freedom so that n has a sole value n = 0. l without difference
still has 0,±1,±2, . . .. Fortunately, the ground state |χ0,l〉 can
be solved in the exact form

|χ0,l〉 = Aeilθ (βρ)|l|e−β2ρ2/2, (22)

where A is a normalized constant with A =
√

2|l|+1β√
π(2|l|−1)!! and

β = √
mw
h̄

, wherein “!!” denotes a double factorial. This result
may open an access to discuss electrons with an intrinsic orbital
angular momentum in a 1D system [31,32].

According to Eqs. (6), (8), (20), and (22), the EH can be
deduced

Ĥeff = 〈χ0,l|f − 1
2 ĤV f

1
2 − ĤN |χ0,l〉0

= 1

2m
(p̂s − lh̄τ )2 − h̄2

8m
κ2.

(23)

In the calculation process, the equivalence between ε → 0 and
w → ∞ is also considered. Compared to Eq. (16), we find
a striking distinction that an additional term −lh̄τ appears

in Eq. (23), while the torsion-induced GP vanishes. Further,
the difference results from the confinement boundaries. The
square confinement breaks the SO(2) symmetry that leads to
the presence of the torsion-induced GP. The circle CP, however,
holds the SO(2) symmetry to provide an additional term −lh̄τ

to the s momentum. As an important conclusion, the geometric
effects can be induced by the geometry of curve, and can be
contributed to by the confinement boundaries.

To learn the gauge structure of the EH (23), we reconsider
the appearance −lh̄τ . Here τ is the torsion of C and it can
be given by the normal fundamental form A23

s = −A32
s = τ ,

which is defined by Aab
s = �na · ∂s �nb (a,b = 2,3). And lh̄ can

be given by

lh̄ = 〈χ0,l|L̂s |χ0,l〉0 = 〈χ0,l|L̂23|χ0,l〉0, (24)

where L̂23 = ih̄(q3∂2 − q2∂3).
Under a point-dependent rotationR [5], �n2 and �n3 transform

as (�n′
2�n′
3

)
= R

(�n2

�n3

)
, (25)

whereR = eiθabL̂ab , Aab
s transforms as an SO(2) gauge connec-

tion

Aab
s → RacAcd

s Rdb + Rac∂sRcb, (26)

and then |χs〉 and As transform as

|χs〉 → V|χs〉,
As → VAsVT + V∂sVT ,

(27)

where As = Aab
s lab,V = 〈R〉0 = eiθablab with lab = 〈L̂ab〉0 and

the s independence of |χ0,l〉 is considered. It is apparent that As

is only present when |χ0,l〉 is the nontrivial representation of
SO(2) with lab 
= 0. For the CP with abelian SO(2) ∼= U(1)
invariance the U(1)-induced gauge potential As cannot be
transformed away [5]. Therefore it is physical and measurable,
not a pure mathematical connection [33,34]. In other words,
the geometrical torsion provides a platform to measure the
induced gauge potential.

Due to As being induced by the torsion τ , it can be named
as the geometric gauge potential [5], and denoted by Ag , Ag =
lh̄τ . Thus the EH (23) can be rewritten as

Ĥeff = 1

2m
(p̂s − Ag)2 − h̄2

8m
κ2. (28)

The appearance of Ag preserves the U(1) gauge invariance
of the EH. This result would provide a way to generate an
artificial gauge field by designing the geometry of nanodevice.
It is worthwhile to notice that the gauge potential is global for
the torsion τ being a constant, local for a function of s.

A momentum operator �p in the (�t,�n,�b) coordinate system is

�p = −ih̄

(
�t 1√

G11
∂s + �n∂2 + �b∂3

)
, (29)

where G22 = G33 = 1 is considered. Using Eq. (6), the effec-
tive momentum for the square confinement can be deduced

�peff = 〈
χ0n,0b

∣∣f − 1
2 �pf

1
2 − �pN

∣∣χ0n,0b

〉
0

= �ps + �pg = −ih̄
(�t∂s − 1

2κ �n)
, (30)
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where �ps is the s momentum operator vector, �ps = −ih̄�t∂s ,
and �pg is a term induced by curvature that is named a GM,
�pg = ih̄ κ

2 �n.
In the circular case, the momentum operator can be written

�p = −ih̄

(
�t 1√

G11
∂s + �eθ

1

ρ
∂θ + �eρ∂ρ

)
, (31)

where G11 = (1 − κρ cos θ )2 + τ 2ρ2, ρ =
√

q2
2 + q2

3 , and
θ = arctan(q3/q2). With the circular confinement, we obtain a
trivial effective momentum �peff, that is

�peff = 〈χ0,l|f − 1
2 �pf

1
2 − �pN |χ0,l〉0 = �ps , (32)

where f = 1 − κρ cos θ . Here the GM is not displayed.

B. Charged particle without spin

A charged particle in electromagnetic field can be described
by

Ĥ = − h̄2

2m

1√
G
Dμ

√
GGμνDν − eA0, (33)

where A0 = −φ, φ is the scalar potential, e is unit charge,
Dμ = ∂μ − ie

h̄
Aμ are the gauge covariant spatial derivatives,

wherein Aμ are the components of the vector potential �A,
μ,ν = 1,2,3 denote three curvilinear coordinates, and G and
Gμν are the determinant and inverse of the metric Gμν ,
respectively.

Repeating the previous calculations, with a square CP we
can obtain the EH for a charged particle constrained to C in
electromagnetic field, that is

Ĥeff = 1

2m
(p̂s − eĀs)

2 − h̄2

8m
κ2 − h̄2

4m
τ 2 − eA0, (34)

where Ās is the s component of the electromagnetic potential
evaluated at q2,3 = 0, Ās = As(s,q2,3)|q2,3=0 [19]. The pres-
ence of electromagnetic field cannot lead any new geometric
effects except the GPs induced by curvature and torsion.

For the circular CP, the EH is also obtained,

Ĥeff = 1

2m
(p̂s − Ag − eĀs)

2 − h̄2

8m
κ2 + Bsμg − eA0, (35)

where Ag = lh̄τ is the geometric gauge potential, Ās =
As(s,0), Bs is the magnetic field tangent to C defined by
Bs = F̄23 = (∂2A3 − ∂3A2)|q2,3→0 andμg = lμ can be taken as
a geometrically induced magnetic moment, wherein μ = − h̄e

2m

and l is an quantum number of angular momentum. For a
particle confined to a space curve, the radial confinement leads
to the azimuthal motions mapped on the 1D space curve. We
notice that μg does not depend on the curvature and torsion,
and then does not depend on the position of particle on C. As
an intrinsic angular momentum that is an angular momentum
independent of the position [35,36], here μg can be taken as
an intrinsic magnetic moment.

C. Particle with SOC

As a particle is considered SOC, its Hamiltonian can be
described by

Ĥ = − h̄2

2m

1√
G

∂μ

√
GGμν∂ν − ih̄

1√
G

εμνλαμ�ν∂λ, (36)

where μ,ν,λ = s,2,3, εμνλ is the Levi-Civita symbol, αμ are
the coefficient constants of the SOC, �ν denote three induced
Pauli matrices, �ν = �ei

νσi [17,37], wherein σi (i = x,y,z) are
the usual Pauli matrices.

Following the above calculation procedure, the EH for the
square CP is obtained,

Ĥeff = p̂2
s

2m
− h̄2

8m
κ2 − h̄2

4m
τ 2 − ih̄(αsσb − αbσs)

κ

2

+αn

(
σbp̂s + ih̄σn

τ

2

)
− αb

(
σnp̂s − ih̄σb

τ

2

)
. (37)

This result shows that the additional terms to the SOC are
induced not only by τ [24], but also κ .

In the circular case, �s = σs(1 − κρ cos θ ) + σbτρ cos θ −
σnτρ sin θ , �ρ = σn cos θ + σb sin θ , and �θ = −σn sin θ +
σb cos θ in the local polar coordinates system, respectively,
the EH is reobtained,

Ĥeff = 1

2m
(p̂s − Ag)2 − h̄2

8m
κ2

+ ih̄(αbσs − 3αsσb)
κ

8
− lh̄(αsσn − 3αnσs)

κ

4

+ αn

[
σb

(
p̂s − Ag

2

)
+ ih̄σn

τ

4

]

− αb

[
σn

(
p̂s − Ag

2

)
− ih̄σb

τ

4

]
. (38)

Obviously, there appear some additional terms induced by
κ and τ added to SOCs. When τ = 0, the intrinsic angular
momentum lh̄ cannot be completely eliminated from Eq. (38).
The reason is that the azimuthal motion also couples with
spin through κ . As a consequence, the circular confinement
provides richer geometric effects for a particle constrained to
a space curve.

III. HELICAL WIRE

As an example, we consider a right-handed helical wire
[24,38] described by �r = (r cos θ,r sin θ,cθ ), where r and 2πc

are the radius and pitch of the helix, and θ denotes the azimuthal
angle that is defined by θ = s/L, wherein L = √

r2 + c2 and
s is the arc-length. And then we can obtain the curvature
κ = r/L2, the torsion τ = c/L2 and the tripod of orthonor-
mal vectors �t = (−κ sin θ,κ cos θ,τ ), �n = (− cos θ,− sin θ,0),
�b = (τ sin θ,−τ cos θ,κ).

In the circular case, the nontrivial ground states are all
doubly degenerate except the trivial one, l = 0. With respect
to the ground states, the eigenvalues of energy in the plane
normal to the helical wire can be described by

E0,l = 2
(
l − 1

2

)(
l + 1

2

)
h̄w, l = 0,±1,±2, . . . . (39)

And thus the effective energy spectrum can be derived as

Eeff± = 1

2m
(ps ∓ lh̄τ )2 − h̄2κ2

8m
. (40)
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In the presence of an externally applied electromagnetic
field, the eigenenergy in the normal plane should be reex-
pressed by

E0,l = 2
(
l − 1

2

)(
l + 1

2

)
h̄w + Bsμg. (41)

With the limit w → ∞, Bsμg is a perturbation, which could be
preserved in the effective dynamics. For the double degenerate
ground state with l = ±1, the effective energy spectrum can
be obtained,

Eeff± = 1

2m

(
ps ∓ h̄

c

L2
− eĀs

)2
− h̄2r2

8mL4
± Bsμg. (42)

Notice that the azimuthal motion appears in the normal com-
ponent, and also induces a gauge potential and a magnetic
moment in the effective energy.

As the SOC is considered, using a trial spinorial wave

function |χs〉 ⊗ |s〉 = χ (s)[e− 1
2 iθ ,e

1
2 iθ ]

T
, the effective energy

spectrum with l = ±1 can be obtained,

Eeff± = 1

2m

(
ps ∓ h̄

c

L2

)2
− h̄2

8m

r2

L4
± h̄αs

r

2L2

− ih̄αn

c

2L2
+ 2αb

(
ps ∓ h̄

c

2L2

)
. (43)

These results mostly do not appear in the square case,
which clearly illustrate that the preserved motion of reduced
dimension is as important as the geometry of the helical wire
in the geometric effects. The preservation is determined by the
circular confinement. In other words, the detailed behaviors of
the CP play an important role in the geometric effects.

IV. CONCLUSION AND DISCUSSION

In the spirit of the CPF, we first reconsider the funda-
mental calculation expression, the effective dynamics should
be defined by the ground state of the confined dimension.
It is worthwhile to notice that the number of the confined
dimensions may be not identical to that of the reduced ones.
To distinguish them, we deduce the effective dynamics for a
particle confined to a space curved embedded in 3D space by
using square and circular CPs. In the square case, the confined

dimensions are identical to the reduced ones. However, one
dimension is confined, but two is reduced for the circular
confinement.

We demonstrate that the curvature-induced GP does not de-
pend on the detailed behaviors of the CP [4], which as predicted
identically appears in the two cases. However, we find that the
torsion-induced GP, the geometric momentum and the geomet-
ric gauge potential do depend on the confinement boundaries.
The torsion-induced PG and the geometric momentum appear
only in the square case, the geometric gauge potential is
merely displayed in the circular case. In the presence of
electromagnetic field, we show the induced magnetic moment
solely for the circularly squeezing. As SOC is considered, the
square confinement provides the curvature and torsion induced
SOCs, the circular CP provides the action of azimuthal motion
on SOC. Distinctly, the torsion induced SOCs in the circular
case are exactly half of those in the square case.

On the basis of the discussions in the present paper, the
fundamental framework of the CPF generally consists of three
steps: (1) solve the ground state of the confined degree of
freedom, (2) calculate the rescaled operator by averaging over
the ground state, and (3) limit the scale size of confined
dimension. As evidence, the effective dynamics can be in
general defined in terms of the ground state of the confined
dimension. This definition provides us a powerful approach
to discuss the generation of an artificial gauge field and the
manipulation of spin-transport by designing the geometry of
1D nanodevice.
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