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Raising the PT -transition threshold by strong coupling to neutral chains
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The PT -symmetry-breaking threshold in discrete realizations of systems with balanced gain and loss is
determined by the effective coupling between the gain and loss sites. In one-dimensional chains, this threshold
is maximum when the two sites are closest to each other or the farthest. We investigate the fate of this threshold
in the presence of parallel, strongly coupled, Hermitian (neutral) chains and find that it is increased by a
factor proportional to the number of neutral chains. We present numerical results and analytical arguments
for this enhancement. We then consider the effects of adding neutral sites to PT -symmetric dimer and trimer
configurations and show that the threshold is more than doubled, or tripled by their presence. Our results provide
a surprising way to engineer the PT threshold in experimentally accessible samples.
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I. INTRODUCTION

Over the past five years, parity-time- (PT -) symmetric
systems have been extensively investigated with experimental
realizations in classical optics, electrical circuits, flying atoms
[1,2], quantum photonics [3], and ultracold atoms [4]. A
parity-time-symmetric system is described by a non-Hermitian
Hamiltonian that is invariant under the combined operations of
parity (P) and time reversal (T ); physically, it represents an
open system with balanced, spatially separated gain and loss
[5].

First discovered by Bender and Boettcher for continuum
models on an infinite line [6], a PT -symmetric Hamiltonian
typically consists of a kinetic term H0 = H

†
0 and a gain-loss po-

tential term � = −�†, such that the total Hamiltonian HPT =
H0 + � commutes with the antilinear PT operator. When
the non-Hermiticity is small, the spectrum of HPT is purely
real, and its eigenfunctions are simultaneous eigenfunctions
of the PT operator with eigenvalue 1. As the non-Hermiticity
increases, two (or more) real eigenvalues become degenerate as
do the corresponding eigenvectors. This exceptional point [7]
is called the PT -symmetry-breaking threshold. At this point,
because the algebraic multiplicity of the relevant eigenvalue is
larger than its geometric multiplicity [8], the geometric eigen-
functions of HPT at the threshold do not span the entire space,
and one can use the algebraic eigenfunctions to supplement
them to form a basis [9]. When the non-Hermiticity exceeds the
PT -symmetry-breaking threshold, the spectrum is rendered
into complex conjugate pairs. Thus, increasing the gain-loss
strength drives the open system from a quasiequilibrium state
(PT -symmetric phase) to a state far removed from equilibrium
(PT -symmetry-broken phase).

Although a wide variety of lattice [10–19] and continuum
[20,21] linear and nonlinear [22] PT -symmetric models have
been theoretically investigated, the experiments are limited to
dimer (two sites) [23–25] or trimer (three sites) [26] realiza-
tions with balanced gain and loss. In these models, the PT -
symmetry-breaking threshold is proportional to the tunneling
amplitude and is determined by the overlap of evanescent fields

between the two sites. Therefore, sweeping the threshold, say,
over a decade is difficult. In principle, increasing the distance
between the gain and loss sites reduces the PT -symmetry-
breaking threshold exponentially; in practice, disorder effects
become important when the tunneling amplitude becomes very
small. The threshold can be reduced at will by using a time-
periodic gain and loss with the right modulation frequency
[27,28]. But engineering a balanced, Floquet gain and loss
is a challenging task. In the same vein, the PT -transition
threshold is, in principle, increased by making the gain and
loss sites closer to each other. In practice, the different physical
mechanisms necessary to implement loss in one and gain in
the other put serious constraints on the minimum separation
between the two sites.

In this article, we present a counterintuitive method to
increase the PT -symmetry-breaking threshold. By strongly
coupling the gain-loss chain to a large number of neutral
chains, we show that the resultant threshold is increased by
a factor equal to half the total number of coupled chains.
The plan of the paper is as follows. In Sec. II, we introduce
the tight-binding model used to describe the two-dimensional
system under consideration, and recall the results for a PT -
symmetry-breaking threshold in a single chain [29]. Section III
starts with numerically obtained PT phase diagrams as a
function of the number of coupled chains, the location of the
PT -symmetric chain, and the location of gain potential within
a chain. Then we present a heuristic, analytical method for
estimating the PT -symmetry-breaking threshold, and derive
the threshold scaling law. In Sec. IV we consider the effect
of surrounding PT -symmetric dimers and trimers by neutral
sites, and show that the threshold can be tuned from zero to
triple its value in experimentally realistic systems. We conclude
with a brief discussion in Sec. V.

II. TIGHT-BINDING MODEL

Consider a two-dimensional, finite, tight-binding lattice
with Nx sites along the x direction, Ny sites along the
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FIG. 1. Schematic of a PT -symmetric chain with Nx sites,
strongly coupled to Ny − 1 Hermitian chains of the same length.
The gain site (blue) has a potential +iγ and its parity-symmetric
site (red) has the loss potential −iγ . The coupling within a chain is
Jx (thin black lines) and the strong, interchain coupling is Jy � Jx

(thick black lines). The sites in this Nx × Ny lattice are labeled by
coordinates (m,n) with 1 � m � Nx and 1 � n � Ny .

y direction, and open boundary conditions (Fig. 1). Jx and
Jy denote the nearest-neighbor couplings along the two di-
rections, respectively. One of the horizontal chains has a
gain potential +iγ , shown in blue, at location (m0,n0) and
a loss potential −iγ , shown in red, at its reflection-symmetric
location (m̄0,n0) with m̄0 = Nx + 1 − m0. The Hamiltonian
for this system is HPT = H0 + �, where the Hermitian tight-
binding part and the anti-Hermitian gain-loss part are given
by

H0 = −Jx

∑
m,n

(|m,n〉 〈m + 1,n| + H.c.),

− Jy

∑
m,n

(|m,n〉 〈m,n + 1| + H.c.), (1)

� = +iγ (|m0,n0〉 〈m0,n0| − |m̄0,n0〉 〈m̄0,n0|), (2)

where |m,n〉 denotes a state localized at lattice site (m,n)
and H.c. denotes the Hermitian conjugate. The Hamiltonian
HPT commutes with the PT operator where the action of the
parity operator is given by P : (m,n) → (m̄,n) and T = ∗ is
complex conjugation. The PT -symmetry-breaking threshold
γth(m0,n0) of the Hamiltonian depends upon the eigenvalues
and eigenvectors of H0(Jx,Jy). These are given by

�p,q(m,n) ≡ 〈m,n|kp,kq〉 = A sin(kpm) sin(kqn), (3)

Ep,q = −2Jx cos kp − 2Jy cos kq, (4)

where kp = pπ/(Nx + 1) and kq = qπ/(Ny + 1) are the di-
mensionless quasimomenta consistent with open boundary
conditions, 1 � p � Nx , 1 � q � Ny , and the normalization
constant is given by A = 2/

√
(Nx + 1)(Ny + 1).

When the horizontal chains are weakly coupled, Jy/Jx →
0, the spectrum Ep,q has Nx energy levels each with a
degeneracy of Ny . In this case, thePT threshold γth(m0) shows
a U-shaped behavior [29]. For even lattices, thePT -symmetric
phase is robust with γth = Jx when the gain and loss sites are
the farthest, i.e., m0 = 1, or the closest, i.e., m0 = Nx/2. For
intermediate gain locations, the PT threshold algebraically

goes to zero as the lattice size Nx is increased [30,31]. For odd
lattices, the same behavior is true, except γth → Jx/2 when the
distance between the gain and loss potentials is the smallest,
i.e., m0 = (Nx − 1)/2 [29].

When Jy = Jx , the threshold is suppressed to zero when
the gain-loss Hamiltonian � connects states that are degenerate
due to the fourfold symmetry of the resultant square lattice [32].
In this article, we focus on the strongly coupled chains, i.e.,
Jy/Jx � 1. In this limit, the spectrum in Eq. (4) has Ny energy
bands, with each band comprising Nx eigenvalues spread over
a width ∼ 4Jx . Therefore, in the following, we use the label p

to denote the level index within a band and q to denote the band
index. This separation of the spectrum into bands and levels
within a band is valid when the bands do not overlap, and we
consider chains where this criterion is satisfied.

III. PT -SYMMETRY-BREAKING THRESHOLD RESULTS

In this section we present numerical results for the PT
phase diagrams of coupled chains, followed by analytical
derivation of the salient results.

A. Numerical results

We start with numerically obtained results for the PT -
symmetry-breaking threshold γth(m0,n0) as a function of the
number of strongly coupled chains. Figure 2 shows the behav-
ior of γth as a function of the relative gain position μ = 2m0/Nx

when the gain site is on the top chain, i.e., n0 = 1. These
results are for Jy/Jx = 20. Figure 2(a) shows the results for
an even chain with Nx = 26 sites. When the number of chains
is Ny = 1, the threshold shows the characteristic U-shaped
pattern as a function of location of the gain site [29]. When
the number of chains increases to Ny = {6,13}, the maximum
value of the threshold increases monotonically with it. We
remind the reader that this maximum occurs when the gain-loss
potentials are farthest apart, i.e., m0 = 1, or nearest neighbors,
i.e., m0 = Nx/2. The inset shows that the maximum threshold
γth(m0 = 1)/Jx scales linearly with the number of horizontal
chains, Ny , up to a point, Ny � 15. These results are valid for
all strongly coupled chains with an even number of lattice sites.

Figure 2(b) shows the results for an odd, Nx = 27 lattice
with Jy/Jx = 20 and relative gain position μ = 2m0/(Nx −
1). For a single chain, the threshold γth(m0) shows the charac-
teristic U shape where the threshold for the nearest gain-loss
location, m0 = (Nx − 1)/2, is half of that for the farthest
gain and loss, m0 = 1 [29]. As the number of chains, Ny , is
increased, the threshold γth(m0) increases in a proportionate
manner. The inset shows the linear dependence of the largest
threshold γth(m0 = 1)/Jx on the number of chains. When
Ny � 14 this linear relationship breaks down, as it does in
Fig. 2(a). These results are valid for all strongly coupled chains
with an odd number of lattice sites.

The results presented in Fig. 2 are for a configuration when
all the neutral chains are on one side of the PT -symmetric
chain. How do they change when the PT -symmetric chain is
embedded within the parallel neutral chains? Figure 3 shows
that when its location is changed from the top (n0 = 1) to
halfway down [n0 = (Ny + 1)/2 or n0 = Ny/2], the threshold
remains roughly constant.
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FIG. 2. Dependence of the PT -breaking threshold γth(m0)/Jx on the relative gain position μ = 2m0/Nx [or μ = 2m0/(Nx − 1)] and the
number of horizontal chains Ny for (a) even lattice with Nx = 26 and (b) odd lattice with Nx = 27. The couplings are Jy/Jx = 20. For a single
chain, γth(m0) shows the characteristic U shape. As Ny is increased, the PT -breaking threshold increases as well. The insets in (a) and (b) show
that the maximum value of the threshold, found for m0 = 1, increases linearly with the number of chains.

This insensitivity of the PT -symmetry-breaking threshold
γth(m0,n0) to the location of the gain-loss chain is also borne
out by the phase diagrams for a system with periodic boundary
conditions along the y direction. When the system is periodic in
Ny , the threshold γth will be independent of the index n0 of the
gain-loss chain. Figure 4(a) shows the results for an Nx = 26
site chain with Jy/Jx = 20 as a function of gain location m0

for increasing numbers of coupled chains. The inset shows
that the threshold for m0 = 1 scales linearly with Ny for
periodic boundary conditions along the y direction. Figure 4(b)
shows that the scaling law remains valid for odd-sized chains
(Nx = 27) as well. We remind the reader that when periodic
boundary conditions are imposed along the x direction, due
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FIG. 3. Minor variations of the PT -symmetry-breaking thresh-
old γth(m0 = 1)/Jx as a function of the chain index n0 for a system
with Ny = 13 (solid blue) and Ny = 14 (dashed red) chains, each
with Nx = 26 sites. The coupling strength is Jy/Jx = 30.

to the resultant degeneracies in the spectrum of the Hermitian
Hamiltonian H0, the threshold is reduced to zero irrespective
of the gain-loss distance, i.e., γth(m0) = 0 for all m0 [33].

Note that in Figs. 2 and 4, the inset shows that the linear-in-
Ny scaling of thePT threshold breaks down as Ny is increased.
This breakdown is due to the finite values of Jy/Jx used in the
calculations. We show in the next section that the scaling is
only valid in the “strong-coupling” regime that is defined by
Eq. (6). Thus, for a fixed value of Jy/Jx as the number of
coupled chains is increased, the system ceases to be in the
strongly coupled regime.

The salient finding from Figs. 2 and 4 is that for a large
number of chains, Ny � 1, in the strong-coupling limit, the
PT -symmetry-breaking threshold for Ny coupled chains is
strongly renormalized. For open boundary conditions, Fig. 2,
we get

lim
Ny�1

γth(m0,Ny) =
(

Ny + 1

2

)
γth(m0,Ny = 1), (5)

whereas for periodic boundary conditions along they direction,
the scaling factor is Ny/2 instead of (Ny + 1)/2. Since the
threshold γth(m0) is algebraically fragile [29–31] for all gain
locations except m0 = 1 or m0 = Nx/2, we have chosen m0 =
1 for the results shown in Figs. 2 and 3. A similar scaling
behavior is also obtained when the gain-loss potentials are
closest to each other. In the following paragraphs, we present
a heuristic, analytical derivation of this result.

B. Derivation of the threshold scaling law

ThePT -symmetry-breaking threshold is determined by the
γ flow of two (or more) energy eigenvalues that develop level
attraction and become degenerate as the gain-loss strength
approaches the threshold value. In a large lattice with strong
anisotropy, i.e., Nx,Ny � 1 and Jy/Jx � 1, the eigenvalues
Ep,q , Eq. (4), of the Hermitian Hamiltonian H0 are divided
into Ny subbands, each of which has Nx energy levels. The
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FIG. 4. Dependence of the PT -symmetry-breaking threshold γth(m0)/Jx on the number of horizontal chains Ny with periodic boundary
conditions along the y direction for (a) an even, Nx = 26 lattice and (b) an odd, Nx = 27 lattice. As Ny is increased, the PT -symmetry-breaking
threshold increases while maintaining a characteristic U-shaped profile. The insets in (a) and (b) show that the threshold γth(m0) increases linearly
with Ny .

ground-state energy is E1,1 ∼ −2Jy − 2Jx , the first subband
is characterized by energy levels Ep,1 with 1 � p � Nx , and
it ends at ENx,1 ∼ −2Jy + 2Jx . The second subband starts at
E1,2 and goes up to ENx,2. These bands are well separated from
each other provided the lowest level in the (q + 1)th band, i.e.,
E1,q+1, is higher than the highest level of the qth band, i.e.,
ENx,q , for all q ∈ {1, . . . ,Ny}. The cosine-band structure has
the highest density of states at the bottom of the band, and
thus, the smallest gap between adjacent subbands occurs when
q = 1. As a result, the criterion for well-separated bands is
given by ENx,1 < E1,2 and reduces to

Jy

Jx

>

[
cos

(
π

Nx+1

) − cos
(

Nxπ

Nx+1

)
cos

(
π

Ny+1

) − cos
(

2π
Ny+1

)
]
. (6)

The right-hand side in Eq. (6) reduces to 4N2
y /3π2 in the

limit Nx,Ny � 1. Thus, the results we obtain in the follow-
ing paragraphs are valid in the limit Nx � 1, Ny � 1, and
Jy/Jx � N2

y . On the other hand, when these criteria are not
met, we expect that the scaling law, Eq. (5), will break down
(as seen in Figs. 2 and 4).

To obtain the adjacent levels (p,p + 1) within a subband q

that will drive the PT -symmetry-breaking transition we use
the following procedure. Consider the Hamiltonian HPT in
the 2 × 2 subspace spanned by orthonormal states |p,q〉 and
|p + 1,q〉. Apart from a constant energy-shift term that we can
safely ignore, the effective Hamiltonian is given by

Heff (m0,n0) = (Ep,q − Ep+1,q )
σz

2
+ i�p,q(m0,n0)σx, (7)

where σz and σx are the Pauli matrices. The effective potential
� is obtained by taking the matrix elements of the gain-loss
potential �, Eq. (2), in the basis of the two eigenstates |p,q〉
and |p + 1,q〉:

i�p,q ≡ 〈p,q|�|p + 1,q〉,
= 2iγA2 sin(kpm0) sin(kp+1m0) sin2(kqn0). (8)

It follows from Eq. (7) that the PT threshold for the effective
2 × 2 model is determined by

|�p,q(γvar)| = 1
2 |(Ep,q − Ep+1,q)|. (9)

Depending on the level index p, this gives rise to (Nx −
1)Ny different variational numbers γvar(p,q). Since the PT
symmetry is broken when it breaks for any pair of adjacent
levels, we use the minimization of this variational threshold as
the criterion for determining the level-index pair (p0,p0 + 1)
and the band index q0.

Does this heuristic method work? Figure 5 presents the
results of such an analysis. For a single chain with Nx = 8
levels and m0 = 1, the flow of eigenvalues Ep(γ ) shows that
the two particle-hole symmetric levels at the band center drive
the PT -symmetry-breaking transition [Fig. 5(a)]. Figure 5(b)
shows that the variational threshold γvar(p) obtained from
Heff reaches a minimum at level index p = 4, matching with
the results from Fig. 5(a). Figures 5(c) and 5(d) depict the
corresponding results for an Nx = 9 site chain with shortest
distance between the gain and loss potentials. The variational
threshold γvar(p) is a minimum at p = 1 and p = 8, which
is consistent with the eigenvalue flow diagrams showing that
particle-hole-symmetric pairs of levels given by (1,2) and (8,9)
drive the PT transition in this case. These representative
results show that for one-dimensional chains, minimizing the
variational threshold γvar(p) for the 2 × 2 Hamiltonian (7)
accurately identifies the energy levels that drive the PT -
symmetry-breaking transition.

Figures 5(e)–5(g) show the results for a two-dimensional
configuration of Ny = 5 chains with Nx = 8 sites, coupling
ratio Jy/Jx = 8, and gain location (m0,n0) = (1,3). The eigen-
value flows in Fig. 5(e) show that the PT -symmetry breaking
occurs due to the central two levels of the central band at gain-
loss strength γth/Jx = 3 = (Ny + 1)/2. Figure 5(f) shows that
the variational threshold γvar(p) has a minimum at p = 4. The
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FIG. 5. Variational approach for determining the levels (p,p + 1) that break the PT symmetry in (a, b) a single Nx = 8 chain and (c, d)
an Nx = 9 chain. (a) Eigenvalue flow shows that the levels at the band center drive the PT transition when m0 = 1. (b) Variational γvar(p)/Jx

obtained from Eq. (7) predict that the PT -symmetry-breaking level is p0 = 4. (c) Eigenvalue flow for a chain with m0 = (Nx − 1)/2 shows
that the band-edge levels drive the transition. (d) Variational approach for γvar(p)/Jx gives the same result. The divergent γvar for p = {4,5}
reflects the fact that the midgap state is unaffected by γ . (e)–(g) Results for an 8 × 5 system with Jy/Jx = 8 and gain location (m0,n0) = (1,3):
(e) eigenvalue flows shows that central levels, p = 4, in the central band, q = 3 are responsible for the transition, (f) ’γvar(p) has a minimum
at p = 4, and (g) q = 3 is the optimal band index for minimizing both γvar and the scale factor κ(q).

dependence of the scale factor

κ(q) = γvar(p,q)

γvar(p,q = 1)
(10)

is shown in Fig. 5(g), where the divergent values of κ at q =
{2,4} are not plotted. These results show that the “minimization
of the variational threshold” strategy also works for strongly
coupled chains in two dimensions.

It follows from the effective Hamiltonian Heff that the scale
factor κ(q) for the optimal level index p and band index q

simplifies to

κ = min
q

(Ny + 1)

2
cosec2

(
qπn0

Ny + 1

)
. (11)

This equation is obtained as follows. Equation (9) determines
the variational threshold γvar(p,q) for a single chain and Ny

strongly coupled chains. The normalization factors A2 for
the two cases, however, are different. For a single chain,
A2 = 2/(Nx + 1), while that for Ny strongly coupled chains
is A2 = 4/(Nx + 1)(Ny + 1). This (Ny + 1)/2-fold increase
for a single chain, in essence, is instrumental to linear-in-Ny

scaling behavior. The cosecant term in Eq. (11) is bounded from
below by 1, and for Ny � 1, it is always possible to choose
a q ∈ {1, . . . ,Ny} such that the argument of the cosecant term
is arbitrarily close to π/2. Therefore, the ratio of the two
thresholds scales linearly with the number of horizontal chains
as seen in Eq. (5), i.e.,

lim
qn0π

Ny+1 → π
2

κ = γth(m0,Ny)

γth(m0,Ny = 1)
→

(
Ny + 1

2

)
. (12)

If the system is periodic along the y direction, it is easy to
check that the normalization factor for the eigenfunctions of the
Hamiltonian H0 changes to A = 2/

√
(Nx + 1)Ny . Therefore,

the scaling factor κ changes to Ny/2 from (Ny + 1)/2.
Recall that the present derivation is based on the assumption

of well-separated bands, i.e., Eq. (6). Therefore, we expect
it to break down when Ny � π

√
3Jy/4Jx . Indeed, insets in

Figs. 2 and 4 show that the deviation from the linear behavior
occurs around this value. As an aside, we note that for an
odd-sized chain with the gain potential on the first site, m0 = 1,
three levels at the center of the band become degenerate at the
PT -symmetry-breaking threshold and give rise to a third-order
exceptional point [26,29]. However, since the zero-energy
level remains unchanged across the PT -symmetry-breaking
transition, we can restrict ourselves to the subspace of the other
two levels that change with the gain-loss strength.

IV. PT DIMER AND TRIMER PLAQUETTES

In the previous section, we discovered a strong growth of
the PT -symmetry-breaking threshold in the limit of many,
strongly coupled long chains, i.e., Ny � 1, Jy/Jx � N2

y , and
Nx � 1. Motivated by “the unreasonable effectiveness of
mathematics in the natural sciences” [34], we now consider the
applicability of those results to two chains, Ny = 2, with two
or three sites each, Nx = {2,3}, and small to moderate coupling
ratio Jy/Jx ∼ O(1). Such configurations are nothing but dimer
or trimer plaquettes; their symmetrical versions, Jx = Jy , have
γth = 0 due to resultant discrete rotational symmetry and their
nonlinear versions have been investigated in the past [35]. Here,
we focus on the asymmetrical cases, i.e., Jy 
= Jx , that are
experimentally realizable.
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FIG. 6. PT -transition threshold dependence on coupling to neutral sites shown by open circles; the gain site is shown in blue and the loss
site is shown in red. (a) γth/Jx for a PT -neutral dimer system is tripled from its single-dimer value when Jy/Jx = 2, and saturates to two in the
strong-coupling limit, Jy/Jx � 1. (b) For three dimers, the threshold is more than doubled near Jy/Jx ∼ 2 and saturates to two for Jy/Jx � 1.
(c) Corresponding results for a PT -neutral trimer system (top) and a three-trimer system (bottom). In all cases, the threshold is more than
doubled even at moderate values of Jy/Jx � 2.

First, let us consider a gain-loss dimer (strongly) connected
to a neutral dimer [Fig. 6(a)]. The 4 × 4 Hamiltonian for such
a system is given by

H4(γ ) = (−Jxσx + iγ σz) ⊗ 12 + 12 ⊗ (−Jyσx). (13)

It is straightforward to obtain the particle-hole-symmetric
eigenvalues

λk = ±
[
J 2

x +J 2
y − γ 2

2
± 1

2

√
γ 4 + 16J 2

x J 2
y − 4γ 2J 2

y

]1/2

.

(14)

The PT -transition threshold γth/Jx can be analytically ob-
tained from Eq. (13). Depending on the ratio Jy/Jx , the pair
of eigenvalues, among the four given in Eq. (14), that drive the
PT -symmetry-breaking transition varies. This variation gives
rise to the three distinct functional forms for the threshold
function γth(Jy) seen in Fig. 6(a). In a similar spirit, we
also consider a PT dimer connected to two neutral dimers,
and a PT trimer connected to one or two neutral trimers.
Figure 6 shows the dependence of the threshold γth/Jx on
the ratio of coupling strengths, Jy/Jx , for different plaquette
configurations.

Figure 6(a) schematically shows a PT -neutral dimer sys-
tem. Starting from unity, the dimensionless threshold γth/Jx

decreases to zero for the symmetrical configuration, i.e.,
Jy = Jx , but then rises rapidly to 3 when Jy = 2Jx . As the
asymmetry increases, Jy/Jx � 1, the threshold saturates to 2.
Results for onePT dimer with two neutral dimers are shown in
Fig. 6(b). When the PT dimer is in the middle, the threshold is
first suppressed to zero, and then rises to 3 when Jy/Jx = √

2
(solid blue line). In contrast, when the PT dimer is on top,
the threshold vanishes at two different coupling strengths and
reaches a maximum near Jy/Jx = 2 (dot-dashed red line). In
both configurations, the threshold saturates to γth/Jx = 2 in
the strong-coupling limit.

Figure 6(c) shows the corresponding results for aPT trimer.
When connected to another neutral trimer (top panel), the
threshold γth/Jx first decreases down to zero, then increases,
and saturates to γth/Jx = 2

√
2 = 2γth(Jy = 0). When we have

two neutral trimers (bottom panel), the threshold shows a
qualitatively similar behavior. The results in Fig. 6 show
that the PT -transition threshold in experimentally realizable
configurations is dramatically changed by coupling the PT -
dimer or PT -trimer to neutral sites.

V. DISCUSSION

In this paper, we have studied the effects of surrounding a
PT -symmetric chain with neutral chains of the same length.
The primary effect is that the PT -transition threshold is
increased by a factor equal to half the total number of chains.
Although our analysis was carried out for many long, strongly
coupled chains, the results are also true for experimentally real-
izablePT -symmetric dimers and trimers. ThePT -symmetry-
breaking thresholds in these systems are increased by a factor
of 2 to 3.

PT -symmetric models in two dimensions have not been
extensively explored because, for most lattice or continuum
models with rotational symmetries, the transition threshold is
zero [32,36,37]. Our results show that highly asymmetrical,
two-dimensional lattice models, with a “few” balanced gain
and loss sites, give rise to a strong renormalization of the
PT -symmetry-breaking threshold. Generalizing these results
to other PT -symmetric lattice models will provide deeper
insights into these findings.
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