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Scheme for the protective measurement of a single photon using a tunable quantum Zeno effect
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This paper presents a proof-of-principle scheme for the protective measurement of a single photon. In this
scheme, the photon is looped arbitrarily many times through an optical stage that implements a weak measurement
of a polarization observable followed by a strong measurement protecting the state. The ability of this scheme to
realize a large number of such interaction-protection steps means that the uncertainty in the measurement result
can be drastically reduced while maintaining a sufficient probability for the photon to survive the measurement.
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I. INTRODUCTION

Protective measurement [1–6] is a special kind of weak
quantum measurement [7,8] that enables the measurement of
expectation values of observables on a single system while
the disturbance of the system’s initial quantum state during
the measurement can be made arbitrarily small. Applications
of protective measurement include the measurement of the
quantum state of a single system [1–5,9–12], determination
of stationary states [10], investigation of particle trajectories
[13,14], translation of ergodicity into the quantum realm
[11], studies of fundamental issues of quantum measurement
[1–4,6,15], and the complete description of two-state thermal
ensembles [11].

Recently, the first experimental realization of a protective
measurement has been reported by Piacentini et al. [16],
implementing a version of a protective measurement that is
based on the quantum Zeno effect [2,17,18]. In the experi-
ment, a single photon prepared in a polarization state |ψ〉 =
cos θ |H 〉 + sin θ |V 〉 passes through N = 7 identical optical
stages, each consisting of a birefringent crystal and a polar-
izer. The birefringent crystal imposes a small polarization-
dependent shift in the transverse direction, thus coupling a
polarization observable of the system (the polarization degree
of freedom the photon) to the apparatus pointer (the spatial
mode of the photon). The thickness of the birefringent crystal
is chosen such that the beam separation for orthogonal polar-
izations remains incomplete (weak measurement). After this
measurement interaction, a polarizer projects the photon back
onto the initial state |ψ〉, realizing the state protection. After the
photon has passed through all N interaction-protection stages,
its position is registered by a spatially resolving single-photon
detector.

The experiment demonstrated the shift of transverse photon
position by an amount proportional to the expectation value of
the measured photon polarization observable, thereby reveal-
ing information about an expectation value in the course of a
single measurement [16]. Also, a weak value [7,8] has been
obtained from a measurement on a single system, rather than
from an ensemble. While the protection procedure requires
knowledge of the quantum state, the protective measurement
nonetheless offers an important advantage over conventional

strong (projective) measurements. Specifically, the Zeno pro-
tective measurement typically provides a far better estimate of
the expectation value (in the sense of smaller uncertainty in the
measurement result) than could be achieved, using comparable
resources, from strong measurements on an ensemble of
photons [16].

Since the action of the birefringent crystal has changed the
photon state, there is a nonzero probability for the photon
not to make it past the state-protecting polarizer, leading to
photon loss and thereby to an unsuccessful measurement.
This is the quantum Zeno analog of the state disturbance
induced by a continuous (non-Zeno) protective measurement
[12,19–21]. By decreasing the shift of the beam generated by a
single birefringent crystal (that is, by decreasing the interaction
strength), the probability of the photon reaching the output after
passage through all N stages can be increased. However, this
will also decrease the total shift of the photon position at the
output, leading to greater uncertainty in the expectation value
measured from this shift, especially when the total shift is not
significantly larger than the FWHM of the spatial mode of the
single photons. To compensate, one may enlarge the number N

of interaction-protection stages. While doing so does decrease
the photon survival probability, the decrease grows very slowly
with N , much slower than the decrease in uncertainty; for
N = 100 and a moderately weak measurement, the photon
survival probability is still in excess of 50% [16].

Therefore, in order to optimize the quality of the protective
measurement, it is desirable to significantly increase the num-
ber N of interaction–protection stages over the N = 7 stages
used in the experiment of Piacentini et al. [16]. To enable
this increase in N , this paper describes a proof-of-principle
scheme in which the photon is looped repeatedly through the
same interaction–protection stage before it is switched out
after an adjustable (and possibly large) number N of iterations
(see Ref. [17] for a similar approach unrelated to protective
measurement). Then, by choosing a birefringent crystal that
induces a very small beam shift compared to the beam width
and letting the photon traverse many times N through the loop
containing the interaction–protection stage, one would in prin-
ciple be able to realize a high-quality protective measurement.
The scheme can be implemented using commonly available
optical devices.

2469-9926/2018/97(4)/042104(5) 042104-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.97.042104&domain=pdf&date_stamp=2018-04-09
https://doi.org/10.1103/PhysRevA.97.042104


MAXIMILIAN SCHLOSSHAUER PHYSICAL REVIEW A 97, 042104 (2018)

This paper is organized as follows. Section II briefly reviews
the theory of protective measurement applied to the case of
photon polarization. Section III describes the scheme for the
protective measurement of single photons using a tunable
quantum Zeno effect. Section IV remarks on the influence
and mitigation of optical noise processes that occur during
the measurement. Section V presents a concluding discussion.

II. THEORETICAL BACKGROUND

Consider a photon prepared in the initial quantum state
|�i〉 = |ψ〉|φ(x0)〉, where |ψ〉 = cos θ |H 〉 + sin θ |V 〉 repre-
sents the polarization state of the photon and the spatial mode
|φ(x0)〉 is represented by a Gaussian of width σ centered at x0,

|φ(x0)〉 =̇ φx0 (x) =
(

1

2πσ 2

)1/4

exp

[
− (x − x0)2

4σ 2

]
. (1)

Suppose we let the photon pass through a birefringent material
that displaces the horizontally polarized component (H ) by an
amount +κ and the vertically polarized component (V ) by an
amount −κ . This interaction is described by the Hamiltonian

Ĥint = κ(|H 〉〈H | − |V 〉〈V |) ⊗ P̂ , (2)

representing a measurement of the polarization observable
Ô = |H 〉〈H | − |V 〉〈V |, with P̂ generating the polarization-
dependent shift of the center of the Gaussian wave packet. The
measurement strength is quantified by the beam-displacement
parameter κ relative to the width σ of the spatial mode, i.e., by
the ratio ξ = κ/σ . For the relevant case of weak measurement
(ξ � 1), photon polarization is only incompletely encoded in
the spatial degree of freedom.

After the interaction, the polarization degree of freedom
of the photon is projected back onto the initial state |ψ〉 =
cos θ |H 〉 + sin θ |V 〉, realizing the protection. Assuming the
measurement interaction is weak, after N such interaction-
protection steps the final photon wave function |�f 〉 is given
by [2,4,6,19]

|�f 〉 ≈ |ψ〉 exp

(
− i

h̄
Nκ〈Ô〉P̂

)
|φ(x0)〉

= |ψ〉|φ(x0 + Nκ〈Ô〉)〉. (3)

Thus, the center of the wave packet is shifted by Nκ〈Ô〉,
where 〈Ô〉 = cos2 θ − sin2 θ is the expectation value of Ô

in the state |ψ〉. In the limit κ ∝ 1/N with N → ∞ (i.e., an
infinitely weak interaction with infinitely many interaction–
protection steps), the evolution (3) becomes exact. This realizes
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FIG. 1. Proposed scheme for a photonic implementation of a protective measurement based on the quantum Zeno effect. A vertically
polarized signal photon resulting from a down-conversion process (DC) is reflected into the optical loop at the polarizing beam splitter (PBS).
Upon leaving the PBS, brief activation of a Pockels cell (PC1) by a pulse generator (PG), which is triggered by the arrival of the idler photon
at a detector (D), changes the polarization of the signal photon to horizontal. The signal photon then traverses an interaction–protection
stage consisting of two half-wave plates (HWPs), a pair of birefringent crystals (BCs), and a linear polarizer (PL). HWP1 prepares the initial
quantum state |ψ〉 = cos θ |H 〉 + sin θ |V 〉. BC implements a small polarization-dependent spatial displacement of the photon, weakly coupling
polarization and spatial degrees of freedom. PL realizes the state protection by projecting the photon back onto the initial state |ψ〉. HWP2
rotates the polarization to horizontal, thereby readying the photon for transmission at the PBS for its next round trip through the loop. After
N such round trips, a second Pockels cell (PC2) is activated to rotate the polarization to vertical and switch the photon out of the loop to be
detected at the spatially resolving photon imager (IMG).
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an ideal protective measurement, in which information about
the expectation value of Ô is encoded in the spatial mode
of the photon without disturbing the polarization state of the
photon. For finite measurement strengths, one cannot avoid
state disturbance [19,20], here manifesting as photon loss
at the protection stage [16]. Since the wave-packet shift is
approximately equal to Nκ , decreasing κ requires increasing
the number N of interaction-protection steps to maintain
appreciable total beam displacement relative to the beam width
σ (i.e., Nξ 	 1), such that the uncertainty of the measurement
result is not unduly increased [16]. It is this desired increase in
N that motivates the scheme described in the next section.

III. EXPERIMENTAL SCHEME

Figure 1 shows the proposed proof-of-principle scheme
for the protective measurement of a single photon using a
tunable quantum Zeno effect. A vertically polarized photon
from a photon pair produced by parametric down-conversion
is incident on a polarizing beam splitter (PBS) from the left,
as shown. The photon is reflected upward at the PBS and
describes a round trip through the loop as depicted in the figure.
In the absence of further optical devices in the loop, the photon
would be reflected at the PBS and exit the loop. To keep the
photon in the loop, a Pockels cell (PC1) is briefly activated
when the photon first enters the loop, switching the photon’s
polarization by 90◦ to horizontal during that first pass such that
the photon will be transmitted at the PBS on each subsequent
pass (a similar technique has been used for optical storage loops
[22]). The activation of the Pockels cell is produced by a pulse
generator that is triggered by the arrival of the second (idler)
photon at a single-photon detector. The pulse length is chosen
such that the Pockels cell is turned off before the photon enters
the second cycle through the loop.

A half-wave plate (HWP1) rotates the horizontal polariza-
tion of the photon to prepare an arbitrary initial quantum state
|ψ〉 = cos θ |H 〉 + sin θ |V 〉. The photon then passes through
an interaction-protection stage as used in Ref. [16]. The stage
consists of a pair of birefringent crystals and a linear polarizer
oriented at angle θ from the horizontal. The first birefringent
crystal implements the weak, polarization-dependent beam
displacement. Because the birefringence introduces a time and
phase delay between the polarization components, a second
birefringent crystal is used to compensate for the delay. The
polarizer then projects the photon onto the state |ψ〉, realizing
the state protection. Finally, HWP2 rotates the polarization of
the photon back to horizontal, thus preparing the photon for
transmission at the PBS and its next round trip.

After a predefined number of round trips have been com-
pleted, a second Pockels cell (PC2) is activated to rotate
the polarization of the photon to vertical, switching it out
of the loop. The photon and its position are then detected by the
photon imager placed at the output of the PBS (Piacentini et al.
used a 32 × 32 array of silicon single-photon avalanche diodes
[16]). Thus, activation of PC1 and PC2 mark the beginning
and end, respectively, of the protective measurement, with the
delay time between activation of PC1 and PC2 determining
the desired number of cycles. The zero position of the photon
at the imager (i.e., the position without beam displacement
that results in the absence of the weak measurement) can be

defined by initially removing the polarizer and birefringent
crystals from the setup and not activating either of the Pockels
cells, such that an incident photon is switched out of the loop
after a single round trip.

IV. INFLUENCE AND MITIGATION OF NOISE

The above discussion has neglected the loss and noise
processes associated with the devices in the optical loop. In
practice, crosstalk in the polarizing beam splitter means that
not all horizontally polarized photons will be transmitted, and
inaccuracies in setting the polarizer and wave-plate angles,
together with polarization changes induced by the mirrors,
may cause deviations from the desired polarization states
inside the optical loop. For example, if the photon entering
the polarizing beam splitter after a pass through the loop has
acquired a vertically polarized component, or if the beam
splitter incorrectly reflects a horizontally polarized photon,
then the photon might prematurely exit the loop before having
completed the desired number of round trips. In this case, the
beam displacement of such a photon would be smaller than
the amount expected based on the full number of round trips,
leading to an underestimation of the expectation value encoded
in the beam position.

Given that the loop will in general be traversed a large
number of times, such noise effects may accumulate. However,
the fact that the Zeno scheme prescribes that the photon must
be returned to its initial polarization state after each passage
through the loop suggests a way of mitigating at least some of
the noise effects in a manner that avoids their accumulation.
For example, by placing an additional linear polarizer, oriented
to pass horizontal polarization, immediately before the second
Pockels cell (PC2 in Fig. 1), one can actively reinforce proper
photon polarization after each pass through the loop (albeit at
the expense of an increase in the probability of photon loss).
Additionally, one could mitigate the influence of premature
exits by timing the detection at the photon imager such that the
photon is counted only if it has completed the desired number
of round trips. Thus, a photon that has prematurely exited will
simply be discarded. Proper detector timing can be suitably
defined by the start trigger provided by the coincident detection
of the idler photon, together with the expected travel time of
the photon in the loop.

Photon loss inside the loop due to absorption at optical
devices is another limiting factor. However, this problem is
not unique to this scheme, but occurs in any Zeno-type setup
in which the photon passes many times through an array of
identical optical devices. While the absolute size of such losses
depends on the quality of the optical devices and the accuracy
of their alignment, it is equally important to consider how
such practical losses compare to the fundamental probability
of photon loss intrinsic to the measurement scheme itself. As
mentioned above, the intrinsic loss probability is on the order of
50% for N = 100 passes and a moderately weak measurement
[16], so it is not unreasonable to expect that in many situations
such intrinsic losses will substantially outweigh the optical
losses arising from imperfections. It also bears noting that in
those situations where the main goal of the experiment is a
faithful measurement result for those photons that do complete
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the optical loop, loss processes do not necessarily need to be
considered problematic.

While the photon polarization is reset after each pass
through the loop, the spatial displacement of the photon is ac-
cumulated over many passes. As a consequence, imperfections
in the displacement incurred during each pass will also accu-
mulate. It will therefore be of paramount importance to ensure
that the beam inside the optical loop is level, with the beam
displacement occurring only in a horizontal plane and in a well-
defined relation to the placement of the birefringent crystals.

V. DISCUSSION

The scheme proposed here aims to provide a flexible imple-
mentation of a high-quality photonic protective measurement.
Its key component is a timed optical loop that allows the photon
to pass through an arbitrary and easily adjusted number N of
interaction-protection stages. In such an experiment, one may
use a birefringent crystal with very small beam displacement
relative to the beam width, and then increase the number N

of loop cycles until a sizable shift of the photon position is
seen on the photon imager. In this way, the expectation value
may be measured with low uncertainty while ensuring a large
photon survival probability. It is expected that a successful
implementation of the present scheme would substantially
improve the performance of the setup described in Ref. [16].

In practice, the typical loss and noise processes associated
with any optical device may dictate a reasonable upper limit
for N if we are to maintain an acceptably large photon survival
probability. Measures have been mentioned for mitigating
noise processes inside the optical loop that avoid the problem
of accumulation of errors during repeated passes. It would
be interesting to see how an experimental realization of the
scheme will perform in the vicinity of N = 100, the number
theoretically considered in Ref. [16].

It is noted that the quantum Zeno technique has also
been employed in the realization of so-called interaction-free
measurements [17,23,24]. The basic idea of an interaction-free
measurement is to infer the presence of a quantum object
without interacting with it. In the original, non-Zeno scheme

of such a measurement [23], the presence of an opaque
object in one arm of an interferometer is inferred from the
detection of a probe photon at the previously dark output of
the interferometer, without the photon having interacted with
the object. In the quantum Zeno version of an interaction-free
measurement [17,24], an initially horizontally polarized probe
photon undergoes N repeated small polarization rotations

θ = π/2N . After each rotation, the photon passes through
a polarization interferometer that has an object placed in the
vertically polarized arm. Transmission of the photon through
the interferometer therefore amounts to projecting the photon
onto the initial, horizontal polarization state. By increasing
N , the probability for the photon to be absorbed by the
object can be made arbitrarily small. Thus, with the object
present, the polarization of the photon after N passes will
be horizontal, while in the absence of the object the final
polarization will have been rotated to vertical. Measurement
of this final polarization therefore reveals information about
the presence of the object, even though the photon has not
interacted with the object. While the Zeno-type sequence of
projection steps in this scheme is similar to the repeated
projections in the protective measurement described in this
article (and in Ref. [16]), the interaction-free measurement
and the protective measurement are otherwise rather different.
The interaction-free measurement ascertains the presence of an
object by making inferences from the absence of an interaction;
indeed, the projection can be viewed as a consequence of
the non-interaction. The protective measurement, by contrast,
includes an interaction between system and probe on each
pass (in the present case, photon polarization is coupled to the
spatial degree of freedom), and the purpose of the projection
is to disentangle the system and probe after each interaction
step to protect the initial photon state. Moreover, rather than
measuring presence, the protective measurement measures the
expectation value of an arbitrary observable of the system.
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