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Quantum threshold reflection is not a consequence of a region of the long-range attractive potential
with rapidly varying de Broglie wavelength
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Quantum threshold reflection is a well-known quantum phenomenon which prescribes that at threshold, except
for special circumstances, a quantum particle scattering from any potential, even if attractive at long range, will
be reflected with unit probability. In the past, this property had been associated with the so-called badlands region
of the potential, where the semiclassical description of the scattering fails due to a rapid spatial variation of
the de Broglie wavelength. This badlands region occurs far from the strong interaction region of the potential
and has therefore been used to “explain” the quantum reflection phenomenon. In this paper we show that the
badlands region of the interaction potential is immaterial. The extremely long wavelength of the scattered particle
at threshold is much longer than the spatial extension of the badlands region, which therefore does not affect the
scattering. For this purpose, we review and generalize the proof for the existence of quantum threshold reflection
to stress that it is only a consequence of continuity and boundary conditions. The nonlocal character of the
scattering implies that the whole interaction potential is involved in the phenomenon. We then provide a detailed
numerical study of the threshold scattering of a particle by a Morse potential and an Eckart potential, especially
in the time domain. We compare exact quantum computations with incoherent results obtained from a classical
Wigner approximation. This study shows that close to threshold the time-dependent amplitude of the scattered
particle is negligible in the badlands region and is the same whether the potential has a reflecting wall as in the
Morse potential or a steplike structure as in the Eckart smooth step potential. The mean flight time of the particle
is not shortened due to a local reflection from the badlands region or due to the lower density of the wave function
at short distances. This study should serve to definitely rule out the badlands region as a qualitative guide to the
properties of quantum threshold reflection.
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I. INTRODUCTION

In any standard quantum mechanics textbook, one of the
first elementary exercises proposed for one-dimensional po-
tentials is the reflection by a step potential. When the energy
of the incident particle is greater than the step, the initial wave
function is reflected and transmitted at the discontinuity point
of the potential. At threshold conditions, where the incident
energy approaches the step height, the reflection probability
tends to one. This condition is termed total (quantum) reflection
since the transmitted part of the initial wave function is totally
suppressed and no classical turning point is present. Senn [1]
established a theorem for general one-dimensional potentials
which vanish as the coordinate goes to ±∞, showing that the
reflection probability goes to unity at threshold conditions ex-
cept under the special circumstance that the potential supports
a resonance state at threshold.

Threshold conditions and/or laws are of paramount im-
portance in gas-phase collisions and scattering of atoms by
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solid surfaces. When the incident energy is close to zero, the
corresponding de Broglie wavelength tends to infinity as the
inverse of the square root of the energy and quantum effects
are expected to be critical. Lennard-Jones and Devonshire [2]
first recognized this behavior in the context of atom-surface
interaction. Kohn [3] subsequently showed that quantum re-
flection leads to a zero sticking probability in threshold particle
surface scattering. As Kohn pointed out, “it is clearly a quantum
interference effect between the incoming and reflected waves.”
Quantum threshold reflection prevents sticking since atoms
are not able to come into contact with the surface. The same
phenomenon was reported by Côté et al. [4] in cold-atom
collisions, although the authors preferred to name it quantum
suppression since suppression entails some sort of exclusion
of amplitude from certain regions. These authors also realized
that one of the exceptions to the suppression is the presence of a
bound state at threshold with no mention of Senn’s work, which
surprisingly has been overlooked for years in this context.

Most of the theoretical work in this field has been carried
out using the semiclassical WKB framework [5,6] since ana-
lytical expressions are readily obtained. Within the primitive
WKB theory, reflection is only possible if there exist classi-
cal trajectories which are reflected by the potential. There-
fore, necessarily, quantum reflection, especially for a purely
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attractive potential, cannot be described by WKB theory
(unless one includes higher-order corrections or connection
formulas). With this perspective, Friedrich and Trost [6]
conclude the following: “Quantum reflection can only occur
in a region of appreciable quantality, i.e. where the condition
(36) is violated.” The condition (36) they mention refers to
the badlands function (also known as the quantality function)
defined in Eq. (3.19) below, which is related to the rapidity of
the spatial change of the de Broglie wavelength, which must
remain small for the WKB approximation to be valid.

At near-threshold conditions, the quantality function be-
comes very large in a finite spatial region which is quite
far from the surface, where the actual attractive force on the
particle is very weak. Friedrich et al. assume that the quantum
reflection emanates from this badlands region [6–8]. In Ref. [9]
Friedrich writes: “even though there is no potential barrier and
no classical turning point, incoming waves can be partially
reflected in this nonclassical region of coordinate space, so
that only a fraction of the incoming radial wave penetrates
through to the near-origin regime. Such classically forbidden
reflection. . . is called quantum reflection.”

In Ref. [8], Friedrich and Jurisch note that “this nonclassical
region is typically located at distances of several hundreds
or thousands of atomic units where the potentials are well
described by van der Waals forces with retardation effects.”
In their view, the failure of the WKB approximation in this
region provides a local condition for quantum reflection since
it is restricted to occur in a small part of the coordinate space.
This qualitative picture is widely used and accepted. Stickler
et al. [10] comment that “where B(y) is significantly nonzero
can be regarded as regions where quantum reflection can
occur” [B(y) indicates the badlands function]. For example, in
their recent measurements on electrically controlled quantum
reflection, Barnea et al. [11] note in their Fig. 2 that “the inset
shows the badlands function for different voltages, indicating
the region contributing to quantum reflection.”

As mentioned, for example, by Doak and Chizmeshya [12],
the WKB approximation breaks down in the region where the
magnitude of the attractive potential energy equals the incident
energy. They then note the following: “In a sense, this region
can be viewed as an analog at positive kinetic energy to a
classical turning point.” Mody et al. [5] claim the same, stating
the following: “The distance away from the slab at which the
particle is turned around—or quantum reflected—is precisely
this distance.” Zhang et al. [13] point out in the legend to their
Fig. 1, which is meant to describe the general phenomenon of
quantum reflection, that “[the] quantum reflection probability
is [nonvanishing] in a range of distances around z0 defined
as the distance where the absolute magnitude of the potential
energy |V (z0)| equals the incident kinetic energy Ez.”

We do not question the fact that the region in which the
WKB approximation breaks down is local and reasonably well
defined by the region in which the badlands function is greater
than unity or that equivalently the incident kinetic energy is the
same as the magnitude of the attractive long-range potential.
Nor do we question the interesting observation of Dufour
et al. [14,15], that the badlands region creates an effective
potential barrier for the action of the particle. However, this
does not mean that the wave function of the particle is
locally reflected by this region. In a recent paper [16], the

close-coupling formalism (which is numerically exact when
convergence is reached) has been used successfully to describe
the experimental work on the quantum reflection of He atoms
from a grating [17,18]. The interaction potential consisted of
two parts, the long range was given by a Casimir–van der Waals
tail and the short range by a Morse potential. In order to avoid
the left classical turning point of the repulsive part of the Morse
potential which also leads to reflection and so makes it difficult
to distinguish it from the long-range quantum reflection,
absorbing boundary conditions were used [19,20]. This was
implemented by introducing an imaginary potential which is
essentially zero in the physically relevant interaction region
and is turned on at the edge of the coordinate grid for numerical
integration, preventing reflection from the repulsive part of
the potential. The central conclusion of Ref. [16] was that
quantum reflection is a coherent interference process which
involves the full interaction potential. It should be considered as
a nonlocal effect. Furthermore, in this formalism, the dynamics
takes place among the different (diffraction) channels needed
for numerical convergence. The picture that emerged from our
previous computation was that at near-threshold conditions,
quantum reflection was a nonlocal coherent process.

The purpose of the work presented here is to resolve this
issue once and for all. We will show that the quantum wave
function is not locally reflected by the badlands region of the
attractive part of the potential. As its name states, quantum
reflection is a quantum effect; one proves its existence without
the need to resort to any semiclassical theory or to the badlands
function. For this purpose we find it necessary to review
and generalize, in Sec. II, Senn’s proof of quantum threshold
reflection in one-dimensional systems. We review the proof for
the case of a potential that vanishes at ±∞ but consider also
the case of a repulsive potential which goes to ∞ such as the
Morse potential as well as the case of asymmetric asymptotic
potentials. In all of these one finds threshold quantum reflection
which is a direct result of boundary conditions and continuity
of the wave function and its derivative. It is thus a global effect
and very general. The potential plays a role in determining
how small the incident kinetic energy must be for quantum
reflection to become important.

We also note that to date, although quantum time-dependent
computations in the context of quantum reflection abound (see,
for example, Refs. [21,22]), no one has undertaken such a
computation to follow the wave packet in time to see where
and whether it is reflected. This is not an accident; due to
the very low energies involved, one needs to evolve a wave
packet which is very broad in space and moves very slowly.
This is difficult to implement, using numerical wave-packet
propagation techniques, even with present-day computational
resources. However, if the propagator is known analytically,
the problem becomes much easier.

For this purpose, we present in Sec. III a detailed study
of the quantum reflection phenomenon for a particle scattered
on a Morse potential. We derive an explicit expression for the
propagator and use it to study the space and time dependence of
the scattering dynamics of the Morse potential at low incident
momenta where quantum threshold reflection dominates the
dynamics.

Since the tail of the Morse potential is exponential, it has
a badlands region and so may be used to study in detail its
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impact on the scattering. We find that indeed, due to the very
long wavelength of the incident particle at the ultralow energies
leading to quantum threshold reflection, the large fraction of the
density of the particle at all times stays far away from the origin
where the Morse potential has its well. The lower the energy,
the further away the density stays from the origin. However,
we show that this distance has nothing to do with the badlands
region of the potential; it is just due to the long wavelength and
the sine form of the wave packet in the region where quantum
reflection is dominant. We repeat such a computation using
also an Eckart step potential and find the same. In fact, at very
low energies where the quantum reflection probability is close
to unity, the time-dependent wave function for the Eckart step
potential is indistinguishable from the one found for the Morse
potential.

To complete the picture, we also consider the time as-
sociated with quantum reflection. We compare the quantum
coherent time-dependent dynamics with an approximation
based on what is known in the chemistry literature as a classical
Wigner approximation [23,24] whereby one uses the quantum
form of the incident Gaussian wave function in phase space as
represented by its Wigner representation, but the time evolution
is carried out using classical mechanics. This classical Wigner
approximation presents an incoherent approximation to the
quantum dynamics. As also found using other methods [8],
the classical Wigner flight time associated with the reflection
is found to be slightly shorter than the quantum flight time
as determined from the mean quantum transition path time.
This is but another indication that one should not think of
the quantum particle as being reflected far away from the
surface, for if this were the case, the quantum flight time
would have to be much shorter than that determined from a
classical Wigner approximation. In contrast to the expectation
based on considering the residence time of the particle in the
interaction region [25], the quantum flight time is longer than
the classical time, even though the density of the classically
propagated Wigner distribution in the strong interaction region
of the potential is much larger than that of the exact quantal
density. At low energies, the quantum density is noticeable
only far away from the surface, at a distance comparable to
its de Broglie wavelength, while the density generated through
the Wigner dynamics does have appreciable amplitude close
to the surface.

This nicely demonstrates Kohn’s prediction [3] that al-
though classically the sticking coefficient at threshold is unity,
the quantum coefficient vanishes due to quantum reflection,
which prevents any noticeable amplitude of the wave function
close to the surface. It is also consistent with the observation
that He dimers do not dissociate upon quantum reflection [18],
since the density of the dimers is always sufficiently far from
the surface to prevent any interaction which would break up
the ultraweak bond. We end in Sec. IV with a discussion of the
implications of the present study on quantum threshold surface
scattering.

II. QUANTUM REFLECTION FOR GENERAL
INTERACTION POTENTIALS

Senn [1] established a quantum reflection theorem for
one-dimensional scattering. He considered the specific case

in which the potential vanishes in the limits x → ±∞. He
showed that the portion of particles that is transmitted in
general vanishes as the kinetic energy of the incident particles
approaches zero. He also showed that this behavior is no
longer valid when a bound level is present at the onset of the
continuum and in such cases, the reflection coefficient, even
at threshold, is less than unity. In particular, for symmetric
potentials, the resonance condition implies that the reflection
coefficient vanishes at threshold (threshold anomalies). In this
section we will review his proof and generalize it to two further
cases: one in which the potential has a repulsive wall, the other
in the case of an asymmetric potential whose asymptotic energy
at x → ∞ differs from its asymptotic energy as x → −∞. We
will refer to this case as an asymmetric asymptotic potential.
It is very instructive to review his derivation since it lies at
the heart of understanding the quantum threshold reflection
phenomenon.

A. Symmetric asymptotic potential

We consider a particle with mass m, coordinate x, and
incident momentum h̄k with k > 0. We first assume that the
potential V (x) differs appreciably from zero only inside a finite
interval for which −ξ < x < ξ . Let u and v denote two linearly
independent solutions of the corresponding one-dimensional
Schrödinger equation. For a particle incident from the left with
positive momentum (h̄k), the wave function is

�(x) = T (k) exp(ikx) (2.1)

for x � ξ and

�(x) = exp(ikx) + R(k) exp(−ikx) (2.2)

for x � −ξ , where T (k) and R(k) are the transmission and
reflection amplitudes, respectively. Inside the region where
the potential is different from zero, the wave function can be
written as

�(x) = au(x) + bv(x), (2.3)

where the following boundary conditions are chosen to ensure
independence of the two solutions:

v(−ξ ) = u′(−ξ ) = 0, u(−ξ ) = v′(−ξ ) = 1. (2.4)

These boundary conditions imply that the Wronskian of u and
v denoted by W (u,v) = uv′ − u′v is unity.

In addition to the boundary conditions one must impose
continuity of the wave function � and its first derivative at
x = ±ξ :

exp(−ikξ ) + R(k) exp(+ikξ ) = a,

ik[exp(−ikξ ) − R(k) exp(+ikξ )] = b,

T (k) exp(+ikξ ) = au(ξ ) + bv(ξ ),

ikT (k) exp(+ikξ ) = au′(ξ ) + bv′(ξ ). (2.5)

This set of linear equations is readily solved to express the
reflection amplitude in terms of the various values of the wave
function and its first derivative:

R(k) = exp(−2ikξ )
k(p − q) + i(sk2 − w)

k(p + q) + i(sk2 + w)
, (2.6)
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where p = v′(ξ ), q = u(ξ ), s = −v(ξ ), and w = u′(ξ ). Sim-
ilarly, using the Wronskian relationship pq + ws = 1, the
transmission amplitude is found to be given by

T (k) = exp(−2ikξ )2k

k(p + q) + i(sk2 + w)
. (2.7)

Thus, the reflection probability is given by

|R(k)|2 = w2 + k2[(p − q)2 − 2sw] + s2k4

w2 + k2[(p + q)2 + 2sw] + s2k4
. (2.8)

In the limit that k → 0 one finds that |R|2 → 1 unless w tends
to zero as well. If w → 0 then

lim
k,w→0

|R(k)|2 = (p − q)2

(p + q)2
(2.9)

and the reflection coefficient at threshold will in general differ
from unity unless p or q vanishes for k → 0. The condition
w = 0 in the limit k → 0 holds if and only if the potential
supports a bound state at E = 0. This proof is given in detail
in Ref. [1]. For our purposes of studying quantum reflection, we
will assume that w �= 0. From Eqs. (2.6) and (2.7) we readily
find that in the threshold limit

lim
k→0

T (k) = − exp(−2ikξ )
2ik

w
,

lim
k→0

R(k) = − exp(−2ikξ )

[
1 + 2ikp

w

]
, (2.10)

implying that the transmission amplitude vanishes linearly
with diminishing k and the reflection amplitude goes to −1.

B. Repulsive potential

The second case to be studied is when the potential goes
to ∞ when x → ∞ as in surface scattering. In this case
the analysis is simplified, since the transmission coefficient
vanishes or, in other words, we have the boundary condition
that the wave function vanishes when we go far enough to
positive values of the coordinate. The solution of Eqs. (2.5)
simplifies to

R(k) = exp(−2ikξ )
ks + iq

ks − iq
(2.11)

and quantum reflection takes the form (with q �= 0)

lim
k→0

R(k) = − exp(−2ikξ )

[
1 − 2iks

q

]
. (2.12)

Quantum reflection in this case may be identified by noting that
the imaginary part of the reflection amplitude becomes linear
with k.

C. Asymmetric asymptotic potential

In this third scenario we assume that the potential V (x)
differs appreciably from a constant only inside a finite interval
for which −ξ < x < ξ . For x < −ξ we assume that the
potential vanishes, while for x > ξ the potential is −V with
V > 0. For an incident energy E we use the notation for the
wave vectors k and k′ as follows:

E = h̄2k2

2m
= h̄2k′2

2m
− V. (2.13)

As before, we let u and v denote two linearly independent
solutions of the corresponding one-dimensional Schrödinger
equation. For a particle incident from the left with positive
momentum (h̄k), the wave function is

�(x) =
√

k

k′ T (k) exp(ik′x) (2.14)

for x � ξ and

�(x) = exp(ikx) + R(k) exp(−ikx) (2.15)

for x � −ξ . Inside the region where the potential is different
from zero, the wave function can be written as in Eq. (2.3) and
the boundary conditions are chosen as in Eq. (2.4).

Imposing the continuity of the wave function � and its first
derivative at x = ±ξ implies

exp(−ikξ ) + R(k) exp(ikξ ) = a,

ik[exp(−ikξ ) − R(k) exp(ikξ )] = b,√
k

k′ T (k) exp(ik′ξ ) = au(ξ ) + bv(ξ ),

i
√

k′kT (k) exp(ik′ξ ) = au′(ξ ) + bv′(ξ ). (2.16)

This set of linear equations is readily solved. One finds that the
reflection amplitude is

R(k) = exp(−2ikξ )

[
kp − k′q + i(skk′ − w)

kp + k′q + i(skk′ + w)

]
. (2.17)

Here we used the same notation as before, that is, p = v′(ξ ),
q = u(ξ ), s = −v(ξ ), and w = u′(ξ ). Similarly, the transmis-
sion amplitude is found to be

T (k) = exp[−i(k + k′)ξ ]

[
2
√

kk′

kp + k′q + i(skk′ + w)

]
.

(2.18)

It remains to consider the limit when the incident momen-
tum vanishes. Using the notation

k∞ =
√

2mV

h̄2 , (2.19)

one readily finds to first order in k for the reflection coefficient

lim
k→0

R(k) = exp(−2ikξ )

[
−1 + 2k(p + isk∞)

(k∞q + iw)

]
. (2.20)

This result is instructive. In contrast to the symmetric asymp-
totic potential case, here, even if w = 0, one still obtains the
threshold reflection behavior, that is, the reflection amplitude
goes to −1 at threshold. For the transmission coefficient one
finds that

lim
k→0

T (k) = exp[−i(k + k∞)ξ ]

[
2
√

kk∞
(iw + k∞q)

]
, (2.21)

so as expected
√

k
k′ T (k) is linear in k in this limit.

One should also consider the case of an attractive potential
in the sense that V (x) → −∞ as x → ∞. This is though a
limiting case of the asymmetric asymptotic potential for which
V → ∞. Since quantum reflection is found for any finite value
of V , it will also hold in this limit of an attractive potential.
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To summarize, as shown in all cases, quantum reflection,
that is, a reflection amplitude which at threshold (k → 0) goes
to −1, is universal and a result only of the continuity of the
wave function and the boundary conditions. There is no need
to consider a badlands region to explain the phenomenon.

III. QUANTUM REFLECTION FOR THE
MORSE POTENTIAL

A. Energy domain: Scattering wave functions

In the preceding section, an analysis of the behavior of the
reflection coefficient for a general one-dimensional potential
was reviewed. The continuity requirement of the wave function
and the boundary conditions are the only elements needed
for quantum threshold reflection. In this section we present
a detailed investigation of the threshold dynamics for the
one-dimensional Morse potential and a smooth Eckart step
potential [26,27]. In what follows the particle is taken to be
incident from the right rather than from the left as in the
preceding section.

The Schrödinger equation for the scattering of a particle
of mass m and incident energy Ei = h̄2k2/2m (with initial
momentum h̄k) by a Morse potential is

− h̄2

2m

d2�(z)

dz2
+ V

[
exp

(
−2

z − z0

d

)
− 2 exp

(
−z − z0

d

)]

�(z) = h̄2k2

2m
�(z), (3.1)

where V is the well depth, d−1 is the stiffness parameter, the
minimum of the potential is located at z = z0, and the harmonic
frequency of motion about the well bottom is

ω2
0 = 2V

md2
. (3.2)

Introducing the dimensionless “coordinate” [26,28]

y = Y exp

(
−z − z0

d

)
(3.3)

and the reduced variables

μ2 = −d2k2, 1 = 8md2V

h̄2Y 2
, (3.4)

where the parameter Y is expressed in terms of the other
parameters, allows us to rewrite the Schrödinger equation (3.1)
as

1

y

d�(y)

dy
+ d2�(y)

dy2
+

[
−1

4
+ Y

2y
− μ2

y2

]
�(y) = 0. (3.5)

Using the substitution

�(y) = yμ exp
(
−y

2

)
u(y) (3.6)

leads to the differential equation for the confluent hypergeo-
metric function [29]

y
d2u(y)

dy2
+ (1 + 2μ − y)

du(y)

dy
−

(
1 + 2μ − Y

2

)
u(y)=0.

(3.7)

Its two independent solutions u and v may be chosen to be

u(y) = M

(
1 + 2μ − Y

2
,1 + 2μ,y

)
,

(3.8)

v(y) = y−2μM

(
1 − 2μ − Y

2
,1 − 2μ,y

)
,

where M is Kummer’s function as defined in Ref. [29].
The scattering wave functions are a linear combination of

the two independent solutions

�+(y) = yμ exp
(
−y

2

)
[Au(y) + Bv(y)]. (3.9)

To determine the coefficients one imposes the boundary condi-
tions. (As already noted above, here our convention is that the
particle is incident from the right and not from the left as in the
preceding section.) When z → ∞ with k > 0, the scattering
wave function has the form

�+(z) = 1√
2π

[exp(−ikz) + R(k) exp(ikz)] (3.10)

and R(k) is the reflection amplitude. The second boundary
condition is that the wave function vanishes in the limit z →
−∞. These boundary conditions are another indication that the
full potential region is needed to correctly extract the reflection
amplitude, not only its long tail.

Noting the asymptotic property of the Kummer function

lim
y→0

M

(
1 + 2μ − Y

2
,1 + 2μ,y

)
= 1, (3.11)

we find that when z → ∞,

lim
z→∞ �+(z) = Ayμ + By−μ

= AY ikd exp(ikz0)

[
exp[−ik(z−z0)] + B

A
Y−2ikd

× exp(ikz) exp(−2ikz0)

]
,

(3.12)

from which we identify the reflection amplitude

R(k) = B

A
exp(−2ikz0)Y−2ikd (3.13)

and its modulus or reflectivity as |R| = |B/A|.
The second boundary condition is for z → −∞ or equiva-

lently y → ∞. Noting the properties

lim
y→∞ M

(
1 + 2μ − Y

2
,1 + 2μ,y

)

= �(1 + 2μ)

�( 1+2μ−Y

2 )
exp(y)y(−1−2μ−Y )/2, (3.14)

lim
y→∞ y−2μM

(
1 − 2μ − Y

2
,1 − 2μ,y

)

= �(1 − 2μ)

�( 1−2μ−Y

2 )
exp(y)y(−1−2μ−Y )/2 (3.15)

and imposing the boundary condition that the wave function
vanishes when z → −∞ implies that the reflection amplitude
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FIG. 1. Imaginary part of the reflection amplitude as a function
of k. The region around k = 0 is magnified.

is given by

R(k) = −�(1 + 2μ)�( 1−2μ−Y

2 )

�(1 − 2μ)�( 1+2μ−Y

2 )
exp(−2ikz0)Y−2ikd . (3.16)

From these results one notes that, as expected, R∗(k) = R(−k)
and |R(k)|2 = 1. In the context of quantum threshold reflection
we readily establish that in this limit

lim
k→0

R(k) exp(2ikz0) = −1 + 2idk

[
ln(Y ) + d�̄

(
1 + Y

2

)

−π tan

(
πY

2

)
+ 4γ

]
, (3.17)

where �̄ is the digamma function and γ = 0.5772 . . . is Euler’s
constant.

To exemplify the quantum reflection threshold region we
plot in Fig. 1 the imaginary part of the reflection amplitude
as a function of k. For this purpose, and throughout this
paper, all numerical results are given in atomic units, with
h̄ = m = 1, and the parameters of the Morse potential are
taken to be V = 1, d = 1, and z0 = 0 so that ω0 = √

2 and
Y = 2

√
2. We note the linear dependence of the imaginary

part of the amplitude about k = 0. The numerical slope
is −17.626 [see also Eq. (3.17)]. The interval of linearity
is roughly [−10−2 � k � 10−2] and this is the domain of
quantum threshold reflection for the Morse potential (using
the parameters as above).

This range of k values is also the region in which the absolute
value of the badlands function for the Morse potential becomes
greater than unity. Defining the classical momentum as

p(z) = ±
√

2m[E − V (z)], (3.18)

the badlands function is defined as [9]

Q(z) = h̄2

(
3

4

(p′)2

p4
− p′′

2p3

)
, (3.19)

where primes denote derivatives with respect to the argument.
In Fig. 2 we plot the absolute value of the badlands function
vs the coordinate z in the range of k values for which the
scattering is dominated by quantum threshold reflection. As
expected, the Morse potential exhibits a badlands region, the

zBF ≈ 6.9

zBF ≈ 11.5

zBF ≈ 16.1

zBF ≈ 20.7

0 5 10 15 20 25 3010−2
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100

101

102
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107

108

z

|Q
|

Ei = 5 × 10−3

Ei = 5 × 10−5

Ei = 5 × 10−7

Ei = 5 × 10−9

FIG. 2. Absolute value of the badlands function |Q| as a function
of the distance z for various incident energies. The badlands region
is localized around the value zBF where |Q| attains its maximal
value. The lines labeled with zBF = 6.9,11.5,16.1,20.7 correspond
to the incident energies Ei = 5 × 10−3,5 × 10−5,5 × 10−7,5 × 10−9,
respectively.

location of the regions in which |Q(z)| > 1 moves outward,
and the magnitude of the function increases with decreasing k.

Imposing the boundary condition for z → ∞ allows us to
identify that

A exp(ikz0)Y ikd = 1√
2π

, (3.20)

so the final expression for the scattering wave function for a
given value of the incident momentum h̄k is

〈z|k+〉 ≡ �+
k (z) = 1√

2π
exp

(
−y

2

)

×
[

exp(−ikz)M

(
1 + 2ikd − Y

2
,1 + 2μ,y

)

+R(k) exp(ikz)M

(
1 − 2ikd − Y

2
,1 − 2ikd,y

)]
.

(3.21)

This result will be used in the next section to construct the
propagator for the Morse potential.

B. Time domain: Wave-packet propagation

For the scattering from the Morse potential, there is no
transmission so that the completeness of the scattering states
is expressed as

Î =
∫ ∞

0
dk|k+〉〈k+|. (3.22)

The coordinate space matrix element of the propagator is then〈
z

∣∣∣∣∣exp

(
− iĤ t

h̄

)∣∣∣∣∣z′
〉
=

∫ ∞

0
dk exp

(
−i

h̄k2

2m
t

)
〈z|k+〉〈k+|z′〉.

(3.23)

We will study the spatial and temporal dynamics of an
initial coherent state centered about the position zi and incident
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momentum −pi (pi > 0) and characterized by the width parameter �. Its coordinate representation is

〈z|�〉 =
(

�

π

)1/4

exp

(
−�

(z − zi)2

2
+ i

h̄
pi(zi − z)

)
. (3.24)

Since the incident wave function is localized in the asymptotic region, we may readily evaluate the matrix element 〈k+|�〉 using
the asymptotic form of the wave function

〈k+|�〉 =
(

1

π�

)1/4{
exp

[
ikzi − 1

2�

(pi

h̄
− k

)2
]

+ R∗(k) exp

[
−ikzi − 1

2�

(pi

h̄
+ k

)2
]}

. (3.25)

The time evolution of the incident wave packet is then given by〈
z

∣∣∣∣∣exp

(
− iĤ t

h̄

)∣∣∣∣∣�
〉

=
∫ ∞

0
dk exp

(
−i

h̄k2

2m
t

)
〈z|k+〉〈k+|�〉

=
(

1

π�

)1/4 1√
2π

exp

[
−Y

2
exp

(
−z − z0

d

)]

×
{∫ ∞

−∞
dk exp

[
−i

h̄k2

2m
t − 1

2�

(pi

h̄
− k

)2
− ik(z − zi)

]
M

(
1 + 2ikd − Y

2
,1 + 2ikd,y(z)

)

+
∫ ∞

−∞
dk exp

[
−i

h̄k2

2m
t − 1

2�

(pi

h̄
− k

)2
+ ik(z + zi)

]
R(k)M

(
1 − 2ikd − Y

2
,1 − 2ikd,y(z)

)}
, (3.26)

where we used the fact that R∗(k) = R(−k). With these
preliminaries, the time propagation is reduced to a numerical
quadrature over k. In practice, the propagation of this initial
wave packet expressed in Eq. (3.26) is carried out by integration
over k in the range [pi/h̄ − 7

√
�; pi/h̄ + 7

√
�]. The overlap

|〈k+|�〉| is virtually zero outside this range. The number of
k-grid points is 5 × 104 and this leads to converged evaluation
of the integral in Eq. (3.26) for any combination of Ei , �, t ,
and z used in this study.

The time evolution of the initial wave packet is plotted in
Figs. 3, 4, and 5 for three different incident energies (Ei =
p2

i /2) 5 × 10−1, 5 × 10−5, and 5 × 10−9, respectively. The ini-
tial parameters for the three energies are (−pi,zi) = (−1,102)
and � = 10−2, (−pi,zi) = (−10−2,104) and � = 10−6, and
(−pi,zi) = (−10−4,106) with � = 10−10, respectively. Four
panels are displayed in each figure. Figures 3(a), 4(a), and 5(a)
show the quantum time evolution of the probability density of
the coherent state evaluated from Eq. (3.26). Figures 3(b), 4(b),
and 5(b) show the corresponding time evolution of |〈z|�〉|2
based on a classical Wigner dynamics approximation to the
exact quantum dynamics. In the classical Wigner propagation,
classical trajectories are launched with initial conditions sam-
pled from the Wigner transform of 〈z|�〉 (in all cases 4 × 109

trajectories are included) and the relative probability density at
z′ and t ′ is calculated by counting the trajectories with position
z′ at time t ′. Figures 3(c), 4(c), and 5(c) and Figs. 3(d), 4(d),
and 5(d) show a close-up of the time-dependent probability
density close to the well of the Morse potential for the exact
quantum and classical Wigner dynamics, respectively. In all
panels, the number of grid points in both z and t space is 2000.

In Fig. 3 the dotted line (denoted by z0) shows the location
of the Morse potential well and the dash-dotted line (denoted
by zTP) shows the location of the classical turning point at the
incident momentum pi . In this relatively-high-energy case, the
magnitude of the badlands function remains small so that in
any case it is not important. In Figs. 4 and 5 the dotted line

(denoted by zBF) shows the location of the maximal magnitude
of absolute value of the badlands function.

As shown in Fig. 3 at the highest energy probed (Ei = 0.5),
which is at the edge of the region in which the imaginary part
of the reflection amplitude is still linear in k (see Fig. 1),
the quantum wave packet reaches the left turning point of
the Morse potential and even penetrates into the classically
forbidden region. For the classical Wigner approximation, the
probability density builds up at the classical turning point
zTP (with a slight “penetration” due to the momentum spread
aroundpi of the Wigner transform of 〈z|�〉) and has a relatively
small amplitude at the bottom of the potential well, where the
classical trajectories spend less time. Note that even at this
relatively high energy, there is a qualitative difference between
the quantum and classical Wigner scattering. The former shows
an oscillatory structure typical for the interference of incoming
and outgoing waves, while the incoherent Wigner distribution
does not show this at all.

At the two lower incident energies shown in Figs. 4 and 5,
the quantum wave packet does not reach the interaction region
and the reflection takes place at distances that are far greater
than zBF, where the maximum of the absolute value of the
badlands function is found. From these two plots it becomes
evident that the badlands region has no special meaning for
the quantum evolution. Especially at the lowest energy probed
(Fig. 5), the first maximal density is located at a distance which
is ∼1000 times larger than the location of the maximum of
the badlands function (zBF). No special attention should then
be paid to the badlands function. The repulsive wall of the
potential or its left turning point also plays no role in this co-
herent interference process except for imposing the boundary
condition that the function vanishes to the left of the repulsive
wall. On the other hand, the classical Wigner approximation
of the wave-packet dynamics leads to a significant probability
density even at the badlands region. This is not surprising
since the badlands region is positioned in the tail of the Morse
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FIG. 3. Space and time evolution of a coherent state scattered from a Morse potential at the incident energy Ei = 0.5. The time and space
evolutions of the probability density are shown using (a) exact quantum and (b) classical Wigner propagation. (c) and (d) Close-up of the
same time evolutions close to the potential well, respectively. The minimum of the Morse potential z0 and the classical turning point zTP

(corresponding to Ei) are indicated. At this relatively high energy the quantum wave packet approaches the repulsive wall and even tunnels
beyond it. For further details see the text.

potential, where the potential is almost constant. Hence, the
time spent by the classical trajectories in this region is not
different from the remaining part of the potential tail.

As may also be inferred from Figs. 4 and 5, the quantum
reflection is just a result of the coherent interference of the
incoming and outgoing wave functions. Since the particle is

almost a free particle, the boundary condition that the wave
function vanishes a bit further left to the classical turning point
implies that to a good approximation the wave function is
just ∼sin[k(z − zTP)], which is just the difference between the
amplitude of the incoming and outgoing waves. Inspection of
the two figures shows that at the respective inflection times
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FIG. 4. Space and time evolution of a coherent state scattered from a Morse potential at the incident energy Ei = 5 × 10−5. The time and
space evolutions of the probability density are shown using (a) exact quantum and (b) classical Wigner propagation. (c) and (d) Close-up of
the same time evolutions close to the potential well, respectively. The maximum of the absolute value of the badlands function |Q(z)| at this
incident energy is at zBF ≈ 11.5.
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FIG. 5. Space and time evolution of a coherent state scattered from a Morse potential at the incident energy Ei = 5 × 10−9. The time and
space evolutions of the probability density are shown using (a) exact quantum and (b) classical Wigner propagation. (c) and (d) Close-up of
the same time evolutions close to the potential well, respectively. The maximum of the absolute value of the badlands function |Q(z)| at this
incident energy is at zBF ≈ 20.7.

t = 106,1010 the maximum of the wave function in the two
respective figures occurs at z − zTP  π/2ki while the first
zero occurs at z − zTP  π/ki . Changing the location of the
turning point, for example, by making the Morse potential
softer, would change the location of the respective maxima.
This is again another indication of the nonlocal character of
this scattering or coherent interference process.

C. Mean flight time

In this section we will compare the mean flight time of the
initial wave packet for arrival at a position y = 2zi as derived
from the exact quantum mechanics and a classical Wigner
approximation. For this purpose, we note that the transition
path time distribution [30], in a quantum mechanical context,
is defined in terms of the positive density correlation function
at time t about the final position y,

Ct (y; �) = Tr[|�〉〈�|K̂†
t δ(ẑ − y)K̂t ] = |〈y|K̂t |�〉|2,

(3.27)

where K̂t = exp(−iĤ t/h̄) is the quantum propagator [31–34].
The transition path time probability distribution reads

Pt (y; �) = Ct (y; �)∫ ∞
0 dt Ct (y; �)

, (3.28)

where we assume that the normalization integral∫ ∞
0 dt Ct (y; �) is finite. The mean flight time for arrival

at y is then, by definition,

〈t〉QM =
∫ ∞

0
dt tPt (y; �). (3.29)

The correlation function of Eq. (3.27) can be rewritten
as a phase-space trace of two Wigner densities. One is the
Wigner representation of 〈z|�〉 and the other is the Wigner
representation of the Heisenberg time evolved density ρ̂(t) =
exp(iĤ t)δ(ẑ − y) exp(−iĤ t). The classical Wigner approxi-
mation is then obtained by replacing the exact Wigner repre-
sentation of the time-evolved quantum density with its classical
Wigner approximation δ(qt − y), where qt is the classical

TABLE I. Mean flight time associated with quantum threshold reflection. Here Ei is the incident energy, (−pi,zi) is the phase-space center
of 〈z|�〉, and � is its width parameter; y = 2zi is the position at which the transition path time distribution is evaluated; and zTP is the classical
turning point corresponding to Ei ; tcl is the time it takes the classical particle, moving on the Morse potential with initial conditions (−pi,zi), to
reach y; 〈t〉free is the mean flight time for a free particle to traverse the distance y + zi + 2|zTP| at the incident energy; 〈t〉QM is the mean flight
time for arrival at y based on exact propagation of 〈z|�〉; 〈t〉W is the mean flight time for arrival at y based on classical Wigner propagation of
〈z|�〉. The relative error in the classical Wigner computation is less than 10−4.

Ei (−pi,zi) � zTP tcl 〈t〉free 〈t〉QM 〈t〉W

5 × 10−1 (−1,102) 10−2 −0.799642 2.995945 × 102 3.015993 × 102 3.027164 × 102 3.024703 × 102

5 × 10−3 (−10−1,103) 10−4 −0.694295 2.990785 × 102 3.001389 × 104 3.035366 × 104 3.019901 × 104

5 × 10−5 (−10−2,104) 10−6 −0.693160 2.998158 × 102 3.000139 × 106 3.032529 × 106 3.027396 × 106

5 × 10−7 (−10−3,105) 10−8 −0.693147 2.999724 × 102 3.000014 × 108 3.030957 × 108 3.028983 × 108

5 × 10−9 (−10−4,106) 10−10 −0.693147 2.999963 × 102 3.000001 × 1010 3.030797 × 1010 3.029225 × 1010
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TABLE II. Mean flight time associated with quantum threshold reflection for different width parameters of the initial wave packet. All
notation is as in Table I.

Ei (−pi,zi) � zTP tcl 〈t〉free 〈t〉QM 〈t〉W

5 × 10−1 (−1,103) 10−2 −0.799642 2.999595 × 103 3.001599 × 103 3.030568 × 103 3.030314 × 103

5 × 10−1 (−1,103) 10−3 −0.799642 2.999595 × 103 3.001599 × 103 3.002835 × 103 3.002590 × 103

5 × 10−1 (−1,103) 10−4 −0.799642 2.999595 × 103 3.001599 × 103 3.000132 × 103 2.999874 × 103

5 × 10−9 (−10−4,107) 10−10 −0.693147 2.999996 × 1011 3.000000 × 1011 3.030856 × 1011 3.030788 × 1011

5 × 10−9 (−10−4,107) 10−11 −0.693147 2.999996 × 1011 3.000000 × 1011 3.003084 × 1011 3.003007 × 1011

5 × 10−9 (−10−4,107) 10−12 −0.693147 2.999996 × 1011 3.000000 × 1011 3.000377 × 1011 3.000296 × 1011

trajectory that is evolved to time t from the initial condition
(p,q). This enables us to calculate the mean flight time based on
the classical Wigner approximation, which we denote by 〈t〉W.

The resulting mean flight times as a function of the incident
energy are shown in Table I. First we notice that the mean
flight times based on the classical Wigner approximation are
consistently smaller than the corresponding times based on
exact quantum propagation. Naively, this might not be expected
from visual inspection of Figs. 4 and 5, which show that
the quantum probability density in the neighborhood of the
potential well is much smaller than the Wigner probability
density [25]. In different words, if the quantum reflection
phenomenon would be a result of reflection from the badlands
region, the mean flight time of the quantum particle should
be less than that of the classical Wigner flight time since the
path traversed is shorter. The fact that 〈t〉W < 〈t〉QM indicates
that the quantum particle is not being reflected far away from
the potential well. Furthermore, the mean flight time of the free
(classical) particle for traversal of the distance y + zi + 2|zTP|,
where zTP is the classical turning point corresponding to Ei , is
consistently shorter [8] than either 〈t〉QM or 〈t〉W.

At first sight, one would wonder, though, why the classical
Wigner times are longer than the free particle time. The well
potential accelerates the classical particle so that the classical
Wigner flight time should be shorter than that of the free
particle. The reason for this has to do with the Gaussian nature
of the incident wave packet. The free particle time does not
take this Gaussian structure into consideration; it is the free
particle time for a single trajectory at the mean energy of the
incident wave packet. To clarify this we present in Table II
the mean flight times as a function of the width parameter
of the initial wave packet for two incident energies. In the
higher-energy case, quantum reflection is not important, but it
dominates the lower-energy case. When the width parameter is
decreased, the momentum spread of the initial wave packet is
decreased. In this higher-energy case, the inequality 〈t〉W <

〈t〉QM holds for all three width parameters, but when the
width is sufficiently small (� = 10−4), both mean flight times
become shorter than the corresponding free particle flight time

〈t〉free. However, they are consistently longer than the time
it takes the classical particle, moving on the Morse potential
with initial conditions (−pi,zi), to reach y (denoted by tcl in
Table II). It becomes clear then that the Gaussian averaging
leads to flight times that are slightly longer than expected
for a single energy due to the momentum distribution of the
incident wave packet. Different incident momenta have slightly
different turning points and thus different flight times. The
Gaussian averaging is thus not trivial.

To summarize, the time-dependent analysis has shown that
the quantum flight time is very similar to the classical Wigner
flight time even when quantum threshold reflection dominates
the dynamics. Moreover, the quantum time is even slightly
longer than the classical Wigner time, negating the claim such
as the one in Ref. [25] that the “the quantum particle spends
less time in the interaction region than the classical particle.”
The badlands region does not shorten the quantum time as
compared to the classical.

D. Quantum threshold reflection for the smooth Eckart
potential step

To complete the picture and prevent any misconception
arising from the fact that the reflection probability from a
Morse potential is always unity we also consider the case of
scattering from a smooth potential step. For this purpose we
use the Eckart potential [27]

VE(z) = V

(
1

1 + exp(z/β)
+ κ exp(z/β)

[1 + exp(z/β)]2

)
, (3.30)

with κ = 1/3 such that the potential is a smooth step with
height |V |, and the reflection probability is now dependent on
the incident energy (in the following V = −1 a.u. and β = 1
a.u.). The potential step is plotted in Fig. 6. The wave-packet
propagation is carried out using the method described in
Sec. III B, where the appropriate transmission and reflection
amplitudes and scattering states of the Eckart potential are
used.

The transmission and reflection amplitudes at an incident
energyE (for a particle coming from the right) are given by [27]

TE(k) = �( 1
2 + ω − iβk − iβk′)�( 1

2 − ω − iβk − iβk′)
�(1 − 2iβk)�(−2iβk′)

√
k

k′ , (3.31)

RE(k) = �( 1
2 + ω − iβk − iβk′)�( 1

2 − ω − iβk − iβk′)�(2iβk′)

�( 1
2 + ω − iβk + iβk′)�( 1

2 − ω − iβk + ik′)�(−2iβk′)
, (3.32)
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FIG. 6. The Eckart potential as a function of the position z, using
the parameters κ = 1/3, V = −1 a.u., and β = 1 a.u.

where h̄k = √
2mE, h̄k′ = √

2m(E − V ), and 4ω2 =
1 −8mVβ2κ/h̄2, and the general scattering state can be
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FIG. 7. (a) Space and time evolution of a coherent state scattered
from a smooth Eckart step potential at the incident energy Ei =
5 × 10−9. In this case the reflection probability is |R|2� ≈ 99.9%.
(b) Close-up of the same time evolution close to the potential step.
The maximum of the absolute value of the badlands function |Q(z)|
at this incident energy is at zBF ≈ 20.3.

written as

〈z|k+〉 =
√

k′

k

TE√
2π

z̃iβk′
(1 − z̃)−iβkF ( 1

2 + ω − iβk + iβk′,

1
2 − ω − iβk + iβk′; 1 − 2iβk,1 − z̃), (3.33)

using the auxiliary variable z̃ = 1/[1 + exp(−z/β)]. Here F

denotes Gauss’s hypergeometric function. As for the Morse
potential, the overlap 〈k+|�〉 between a scattering state and
the initial wave packet can be evaluated analytically using the
asymptotic form of Eq. (3.33) and the wave-packet propagation
is readily computed using the same quadrature procedure as
described for the Morse potential.

In Fig. 7 the time evolution of the initial wave packet
[as in Eq. (3.24)], on the Eckart potential, is shown for the
parameters used in Fig. 5 [(−pi,zi) = (−10−4,106) and � =
10−10]. Based on visual inspection of Figs. 5 and 7, the time
evolutions of the initial wave packet on the two potentials
seem identical. There are tiny numerical differences between
the two densities, since the quantum reflection on the Eckart
potential is not total (the reflection probability is 99.9% for the
chosen parameters). In the case of the Eckart step potential,
the location of the maximum value of the badlands function
|Q| is at zBF ≈ 20.3 [see Fig. 7(c)]. Thus, the same conclusion
regarding the role of the badlands region is reached for quantum
threshold reflection on the smooth Eckart step potential.

IV. CONCLUSION

In this work we have clearly shown that there is no need to
invoke the nonclassical or badlands region of the interaction
potential to understand the phenomenon of quantum threshold
reflection. At the threshold energies, imposing the condition
that the wave function vanishes beyond the classical turning
point of the potential implies that the scattering wave function
is well approximated as sin[k(z − zTP)]. Since the incident
wave vector is very small, the first maximum of the wave func-
tion occurs far away from the turning point. As a result, the den-
sity around the potential well is very small and any interaction
with the surface is negligible. A comparison with results based
on a classical Wigner approximation serves to stress that quan-
tum reflection is a result of the coherent sum of an incoming and
an outgoing wave and it is the destructive and constructive in-
terference that combines to give a density which is very small in
the strong interaction region. This is why, for example, the He
dimer does not dissociate upon scattering from a surface at very
low energies. This has nothing to do with the badlands region.

Quantum threshold reflection is thus a nonlocal interference
process, in which the incoming and outgoing waves interfere
destructively in the region of strong interaction, due to the
boundary condition that the wave function must vanish beyond
the classical turning point region. The badlands region has
implications when attempting to construct a WKB solution
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to the scattering wave function, but it has no implication on
the evolution of the quantum density, neither in space nor in
time. This study should serve to definitely rule out the badlands
region as a criterion for quantum threshold reflection.
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