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Measuring nuclear-spin-dependent parity violation with molecules: Experimental methods and
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Nuclear-spin-dependent parity violation (NSD-PV) effects in atoms and molecules arise from Z0 boson
exchange between electrons and the nucleus and from the magnetic interaction between electrons and the
parity-violating nuclear anapole moment. It has been proposed to study NSD-PV effects using an enhancement
of the observable effect in diatomic molecules [D. DeMille et al., Phys. Rev. Lett. 100, 023003 (2008)]. Here we
demonstrate highly sensitive measurements of this type, using the test system 138Ba19F. We show that systematic
errors associated with our technique can be suppressed to at least the level of the present statistical sensitivity. With
∼170 h of data, we measure the matrix element W of the NSD-PV interaction with uncertainty δW/(2π ) < 0.7
Hz for each of two configurations where W must have different signs. This sensitivity would be sufficient to
measure NSD-PV effects of the size anticipated across a wide range of nuclei.
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I. INTRODUCTION

The weak force leads to interactions that are not the
same under inversion of spatial coordinates, i.e., parity is
violated. In atoms and molecules, certain aspects of the parity-
violating (PV) electroweak interactions are manifested by
nuclear-spin-dependent parity violation (NSD-PV). Nuclear-
spin-dependent parity violation leads to small and poorly
characterized effects that primarily arise from two fundamental
causes. The first is the electroweak coupling between vector-
electron and axial-nucleon neutral currents, VeAn, that results
from Z0 boson exchange between electrons and nucleons. So
far, VeAn measurements at low momentum transfer have come
from electron-nucleus scattering experiments; their results are
typically expressed in terms of the dimensionless constants
C2u,d that characterize the VeAn coupling to the up and down
quarks [1–4]. The C2u,d are defined, at tree level, as C2d =
−C2u = 1/2 − 2 sin2 θW , where θW is the Weinberg (weak
mixing) angle, which is a key part of the electroweak unifi-
cation of the standard model. However, C2u,d are numerically
small in the standard model and their present experimental
uncertainties are relatively large. Previous measurements of
C2u,d from parity-violating electron-scattering experiments
(SLAC E122 and SAMPLE, respectively) have provided
results with uncertainties 300% and 70% of the standard
model predictions [1,3]. Recent results from the Jefferson Lab
PVDIS Collaboration provided a nonzero measurement of the
2C2u-C2d combination, though with an uncertainty �70% of
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the predicted values [2]. Improvements in C2u,d measurements
would provide a new check of the standard model.

The second source of NSD-PV is the nuclear anapole
moment, which arises from weak interactions within the
nucleus [5]. This parity-odd magnetic moment can couple to
the magnetic dipole carried by the spin of a penetrating electron
and results in a contact potential between the electron and
the nucleus [6]. A nonzero nuclear anapole moment has been
measured only once, in 133Cs [7]. Additional measurements of
anapole moments may enable determination of parameters de-
scribing the strength of purely hadronic PV interactions [8,9],
which have proven difficult to measure by other means [10,11].

There are several current experiments using atomic physics
techniques to investigate NSD-PV in isotopes of Dy, Yb, Ra,
Fr, and Cs, which are complementary to the work reported
here. A highly sensitive atomic PV experiment (prior to the
results presented here) was performed in atomic Dy [12] and
yielded a null measurement of the PV effect, though this
particular measurement was sensitive only to nuclear-spin-
independent parity violation (NSI-PV) effects. Subsequently,
the theoretical expectation for the size of PV effects in Dy
was reduced [13] and another experiment [14] is planned to
measure NSD-PV in Dy. Another experiment [15] is planned
to measure NSD-PV in Yb, in which a predicted enhancement
of PV effects [16] has been observed [17,18]. As was the
case with the older experiments using 133Cs [7] and Tl [19]
(where a significant upper bound on NSD-PV effects was set),
these experiments, as well as a newer one in Ra+ [20], re-
quire measurements using several different hyperfine-resolved
transitions to separate NSD-PV effects from the much larger
NSI-PV effect. By contrast, more recent experiments in Cs
[21] and Fr [22] are aimed at a direct measurement of NSD-PV
effects.

In this paper we demonstrate a high statistical sensitivity
to NSD-PV. Our experiment is based on an approach of using
diatomic molecules. Diatomic molecules with a single valence
electron in an X 2� ground state offer several important traits
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that we employ in our method to measure NSD-PV effects
[23–25]. Due to their rotational and hyperfine structure,
diatomic molecules systematically have about five orders of
magnitude smaller energy splittings between opposite parity
states that can be mixed by NSD-PV than are typically found
in atoms. Magnetic fields of a technically feasible magnitude
can be used to Zeeman shift these molecular levels to near
degeneracy. This near-degeneracy enhances the mixing of
opposite-parity states due to NSD-PV and leads to much
larger PV signals than can be obtained in more traditional
approaches to measuring parity violation in atoms. To measure
the strength of the mixing induced by NSD-PV effects, a Stark
interference technique to enhance the observable effect due to
the NSD-PV-induced mixing has been proposed [26], similar
to that used in experiments with atomic Dy [12].

We report here on measurements of NSD-PV using the
molecule BaF. BaF is a prototypical case of the type of
molecule where the general approach described above can be
employed. Its properties (described below) make it relatively
easy to work with, from a technical point of view. BaF has both
odd and even nucleon number stable isotopes with good natural
abundances. Nuclear-spin-dependent parity violation effects
are nonzero only for isotopes with a nonzero nuclear spin I , i.e.,
with an unpaired proton or neutron [26]. For the isotopomer
137BaF, the predicted size of the NSD-PV effect associated
with 137Ba is well above the sensitivity we demonstrate here.

Here, however, we use 138BaF to demonstrate our measure-
ment technique. This was done for a few reasons. First, the raw
signals from 138BaF are ∼20 times larger than for 137BaF; this
is because 138BaF has a higher abundance than 137BaF (72%
vs 11%) and fewer nuclear-spin projection sublevels (IBa = 0
for 138BaF and IBa = 3/2 for 137BaF), only one of which can
be used during a measurement. Since IBa = 0 for 138BaF,
here NSD-PV effects are due only to 19F, with IF = 1/2.
However, since the valence electron wave function in BaF has
only a very small overlap with the F nucleus, the anticipated
effect due to IF is far below our experimental sensitivity. As
such, 138BaF is a powerful system with which to identify and
measure contributions due to systematic errors: any apparent
NSD-PV signal in the measurements we report here could be
due to only systematic errors. Hence, the primary result of
this paper is to demonstrate control over systematic errors at a
level sufficient for future measurements in molecular species
(including 137BaF) where NSD-PV effects are nonzero.

A. Relevant molecular structure of 138BaF

The ground electronic state X 2� of 138BaF is described
by the effective HamiltonianH = Be N2 + γ N · S + bI · S +
c(I · n)(S · n), where N is the rotational angular momentum,
S = 1/2 is the electron spin, Be is the rotational constant, γ

is the spin-rotation constant, b and c are hyperfine constants,
and n is a unit vector along the internuclear axis (h̄ = 1
throughout). Here N is a good quantum number, with eigen-
states of energy EN ≈ BeN (N + 1) and parity P = (−1)N .
We Zeeman-shift sublevels of the NP = 0+ and 1− manifolds
of states to near degeneracy, using a magnetic field B= Bẑ.
Zeeman shifts are dominated by the coupling to S, with the
approximate Hamiltonian HZ

∼= −gμB S ·B, where g ∼= −2
and μB is the Bohr magneton. Since Be � γ,b,c, the B
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FIG. 1. Level crossings in 138BaF. Up- (down-) sloping levels
belong to the even- (odd-) parity N = 0 (N = 1) rotational level.
Kets label the approximate quantum numbers |mS,mI ,mN 〉 and the
legend shows the value of m = mS + mI + mN . Letters label each
crossing where levels can be mixed via the Stark effect. Nuclear-
spin-dependent parity violation leads to mixing only between levels
with the same value of m. We measure NSD-PV at crossings A and
F. (Figure has been reproduced from [27].)

field necessary to bridge the rotational energy E1 − E0 ≈
2Be is large enough to strongly decouple S from I and N .
Thus we write the molecular states in the decoupled basis
|N,mN 〉|S,ms〉|I,mI 〉, which are good approximations to the
energy eigenstates near the level crossings. Level crossings
between pairs of opposite-parity states with different values of
(mN,mI ) and (m′

N,m′
I ) occur at different values of B because

of energy differences in the sublevels due to hyperfine and
spin-rotation terms in H [26].

In 138BaF, the levels |0,0〉| 1
2 , 1

2 〉| 1
2 ,mI 〉≡|ψ+

↑ (mN =0,mI )〉
(even parity) and |1,m′

N 〉| 1
2 , − 1

2 〉| 1
2 ,m′

I 〉 ≡ |ψ−
↓ (m′

N,m′
I )〉

(odd) are degenerate under H + HZ when B = B0 ≈
Be/μB ∼ 0.5 T. Figure 1 shows the level crossings in 138BaF.
The NSD-PV Hamiltonian is a pseudoscalar that mixes levels
with opposite parity and the same value of the total angular
momentum projection m, where m = mS + mN + mI . We use
the crossings labeled A (where mI = m′

I = 1/2, m′
N = 1, and

m = 1) and F (where mI = m′
I = −1/2, m′

N = 1, and m = 0)
in our NSD-PV measurements here [27].

For a diatomic molecule in a 2� state, the effective Hamil-
tonian H eff

P of the NSD-PV interaction is [24]

H eff
P = κ ′WP

(n × S) · I
I

. (1)

Here κ ′ is a dimensionless number parametrizing the strength
of the NSD-PV interaction; it depends only on the physics
of electroweak interactions and nuclear structure and is in-
dependent of any molecular parameters. The parameter WP

characterizes the strength of the matrix element (ME) of
the parity-violating Hamiltonian in the 2� wave function
of the electron, for a given nucleus, in a frame where the
molecule is not rotating; it is independent of electroweak
and nuclear effects and can be calculated accurately for
many different molecular species. All the angular momentum
dependence of H eff

P is encoded in the dimensionless operator
C ≡ (n × S) · I/I . Then the NSD-PV ME between nearly

042101-2



MEASURING NUCLEAR-SPIN-DEPENDENT PARITY … PHYSICAL REVIEW A 97, 042101 (2018)

FIG. 2. Schematic of the apparatus (top) and evolution of the level
populations (bottom). (1) BaF molecules are formed by laser ablation
into a pulsed jet; both parity states have equal thermal populations. (2)
Molecules enter the magnet and levels are brought to near degeneracy.
(3) Laser beam LP1 depletes the even-parity |ψ+

↑ 〉 state by optical
pumping via an odd-parity excited state |e−〉. (4) A single-cycle sine
wave E field (blue) is applied parallel to the B field. Stark and NSD-
PV interactions combine to mix opposite-parity states and transfer
population into |ψ+

↑ 〉. (5) Laser beam LP2 depletes the odd-parity |ψ−
↓ 〉

state by optical pumping via an even-parity state |e+〉. (6) Molecules
exit the magnet and population transferred to |ψ+

↑ 〉 by the E field and
the NSD-PV interaction is detected by laser-induced fluorescence.

degenerate levels is

iW (m′
N,m′

I ,mN,mI ) ≡ κ ′WP C̃, (2)

where iW is pure imaginary due to time-reversal invariance.
Here the ME C̃ ≡ 〈ψ−

↓ (m′
N,m′

I )|C|ψ+
↑ (mN,mI )〉 depends

only on the angular momentum content of the near-degenerate
states, while the quantity Wmol ≡ κ ′WP is the same at all
crossings in a given molecule and for a given nucleus. The
parameter WP has been calculated several times for Ba in BaF,
and also recently for F in BaF, with values WP (Ba) = 164 Hz
and WP (F) = 0.05 Hz [26,28]. The parameter κ ′ = κ ′

2 + κ ′
a

has contributions from the VeAn interaction (κ ′
2) and from the

electron-nuclear anapole moment interaction (κ ′
a). The value

of κ ′ encodes the physics of the NSD-PV interaction and is
ultimately the quantity we seek to measure.

B. Measurement principle: Idealized case

We use a Stark interference method to measure W . Fig-
ure 2 shows a schematic of the experiment and evolution of
molecular levels during the measurement. We first discuss an
idealized version of the measurement protocol. A beam of
138BaF molecules enters the magnet with field B ≈ B0. Next
we deplete the even-parity state |ψ+

↑ 〉 by optically pumping to
unobserved ground-state sublevels via a short-lived electronic
state of definite negative parity, |e−〉. This state preparation
occurs at a time defined as t = 0. In this idealized protocol,
the molecules then immediately enter a region with a spatially
varying electric field E = E0 sin(2πz/L)ẑ for 0 < z < L. The
Hamiltonian for the near-degenerate states, written in the basis

of parity eigenstates, is

H± =
(

0
−iW + dE(t)

iW + dE(t)
	

)
, (3)

where 	 is the small B-field-dependent detuning from exact
degeneracy and d is the dipole matrix element [26]. Though
the electric field is static in time, its spatial dependence
causes molecules with velocity v = vẑ to experience a time-
dependent field E(t = z/v) = E0 sin(ωt), with ω = 2πv/L.
The wave function is

|ψ(t)〉 = c+(t)|ψ+
↑ 〉 + e−i	t c−(t)|ψ−

↓ 〉 ≡
(

c+(t)
c−(t)

)
, (4)

where c+(0) = 0 and c−(0) = 1 due to the optical pumping.
Then, solving the Schrödinger equation with the assumption
W � dE0, we find

c+(t) ≈ −2ie−i	t/2

[
cos

(
	t

2

)
dE0ω

ω2 − 	2
sin2

(
ωt

2

)

+ i sin

(
	t

2

){
W

	
+ dE0ω

ω2 − 	2
cos2

(
ωt

2

)}]
.

(5)

At the end of the electric field region, t = T ≡ L/v and
ωT = 2π (regardless of v). Then, at the end of the region,
the amplitude of state |ψ+

↑ 〉 is

c+(T ) = 2e−i	T/2 sin

(
	T

2

){
W

	
+ dE0ω

ω2 − 	2

}
. (6)

Before the molecular beam exits the magnet, a laser beam
depletes any remaining population in the odd-parity |ψ−

↓ 〉 state
by optically pumping to unobserved states via a short-lived
even-parity excited state, |e+〉. Section I C will explain why
this step is necessary. In our experiment, typical values of
the relevant parameters are dE0/(2π ) ∼ 3.5 kHz, ω/(2π ) ∼
11.4 kHz, and 	/(2π ) ∼ 1–4 kHz.

Ideally, we would detect the population of the even-parity
state |ψ+

↑ 〉 immediately at this stage of the measurement.
However, it is technically difficult to perform efficient state-
selective detection inside the magnet. Instead, we allow the
molecules to exit the magnet and detect them outside. We
refer to |ψ+

↑ 〉 (|ψ−
↓ 〉) as the detection (nondetection) state since

we do (do not) measure its population. In the transition from
inside to outside the magnet, the population in |ψ+

↑ 〉 is mapped,
via adiabatic transport, onto the population of a particular
resolved even-parity sublevel of the |NP = 0+〉 manifold of
states. (More details on this mapping are discussed in Sec. I C.)
We detect the population of this sublevel using laser-induced
fluorescence. This yields a signal S, given by

S = N0|c+(T )|2 (7)

� 4N0 sin2

(
	T

2

)[
2
W

	

dE0

ω
+

(
dE0

ω

)2
]
, (8)

where N0 is the number of molecules at t = 0 in the odd-parity
state |ψ−

↓ 〉, and we assumed 	 � ω to simplify the expression.
Note that the first term in the square brackets is odd under
E-field reversal and the second term is even. Thus the parity-
violating asymmetry A is extracted via reversal of the electric
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field E0:

A = S(+E0) − S(−E0)

S(+E0) + S(−E0)
= 2

W

	

ω

dE0
. (9)

Here	,E0, andω are experimental values we control, andd has
been accurately measured previously [27]. The uncertainty in
the weak matrix element δW is limited to δW � 1/(2

√
2N0T )

by shot noise (with minimum value obtained when 	 � 2/T ).
This is exactly the shot-noise-limited uncertainty expected for
measurement of any energy shift, with N0 detected particles
observed for coherence time T . Hence, our technique can be
interpreted as measuring an ac Stark shift between the pair of
nearly degenerate levels [29].

C. Subtleties of state preparation, depletion, and detection

At several steps in our experiment, laser-induced optical
pumping is used to prepare and/or detect states. The effect of
these lasers, and the associated evolution of states before and
after the lasers, proves rather subtle. In this section we explain
the physics relevant to understanding these subtleties, with an
emphasis on three critical concepts.

The first of these is that, due to the weak interaction and
stray electric fields, the energy eigenstates in the system are not
pure parity eigenstates. This distinction is unimportant outside
the magnet, where the splitting between opposite-parity levels
is ∼106 times larger than inside the magnet and mixing of
opposite-parity levels is negligible for our purposes. However,
mixing of the relevant levels inside the magnet due to the
weak interaction, though still small, is closely related to the
effect we wish to measure and cannot be neglected. We write
the energy eigenstates inside the magnet as |ψE

↑ (mN,mI )〉 and
|ψE

↓ (m′
N,m′

I )〉. These can of course be rewritten in the basis
of parity eigenstates; in the absence of any stray electric field
(E = 0), the Hamiltonian H± of Eq. (3) leads (via first-order
perturbation theory) to

|ψE
↑ 〉 ∼= |ψ+

↑ 〉 + i(W/	)|ψ−
↓ 〉,

|ψE
↓ 〉 ∼= |ψ−

↓ 〉 + i(W/	)|ψ+
↑ 〉.

(10)

The second critical concept is that energy eigenstates inside
and outside the magnet map deterministically onto one another.
Here we mean specifically that energy levels with the same
value of the conserved quantum number m = ms + mN + mI

and the same nominal parity retain their ordering, independent
of the strength of the magnetic field B, and that changes in B
are sufficiently slow as molecules move through the apparatus
that all avoided crossings between such sublevels are fully
adiabatic. In addition, B is large enough at all positions in
the apparatus that δm �= 0 (Majorana) transitions are deeply
suppressed. Finally, everywhere in the apparatus except in the
central interaction region where a large-E field is deliberately
applied, stray electric fields and the weak interaction are
sufficiently small and changes in B sufficiently rapid that
population transfer between states of nominally opposite parity
is negligible even when such levels cross. Specifically, the
energy eigenstates inside the magnet map onto energy (and
parity) eigenstates outside the magnet that are associated
with quantum numbers NP ,J,F,m, where we used standard
definitions of the coupled angular momenta J = N + S and
F = J + I, and the total angular momentum projection m is

conserved as molecules move into and out of the magnet.
In particular, |ψE

↑ 〉 maps to |N = 0+,J = 1/2,F = 1,m〉 and
|ψE

↓ 〉 maps to |N = 1−,J = 1/2,F = 1,m〉. The mapping of
superposition states preserves the relative population of the
states, but scrambles their relative phase within the molecular
ensemble (since minor changes in molecular-beam position
or velocity accumulate to phase differences 	φ � 1 over
the long path into or out of the magnet). For example, a
superposition state |ψ〉 = α|ψE

↑ 〉 + β|ψE
↓ 〉 inside the magnet

maps to an incoherent mixture of |N = 0+,J = 1/2,F =
1,m〉 (with probability |α|2) and |N = 1−,J = 1/2,F = 1,m〉
(with probability |β|2), outside the magnet.

The third critical concept is whether, when the laser excites
molecules, the energy eigenstates of interest are well resolved
or completely unresolved. These refer, respectively, to cases
where the splitting between these states is large or small
compared to the natural linewidth of the optical transition
γ ≈ 2π × 3 MHz (based on the measured lifetime [30] of
the state A 2�1/2 excited by the lasers). Outside the magnet,
where the levels are well resolved, optical pumping by the
laser depletes an energy eigenstate (which is, again, also a
parity eigenstate) and the emitted fluorescence intensity is
proportional to the population of that eigenstate. By contrast,
inside the magnet, where the levels are unresolved, interaction
with the laser depletes the particular superposition of energy
eigenstates that corresponds to a parity eigenstate. This is
because the excited state of the optical transition is an isolated
level with definite parity. (The B field does not have the correct
value to induce near degeneracies of opposite-parity levels
in the A 2�1/2 excited state.) Hence, inside the magnet, the
laser acts to project the wave function (or more generally,
the density matrix) of the system onto a parity eigenstate.
The parity quantum number (±1) of the state projected onto is
the same as that of the excited state addressed by the laser.

Now we can understand more precisely the effect of the
lasers at each step in Fig. 2. In step 3, the first parity
state projection laser, inside the magnet, is tuned to reso-
nance with the odd-parity excited state |e−〉 and so projects
the initial incoherent superposition of |ψ+

↑ 〉 and |ψ−
↓ 〉 onto the

pure parity eigenstate |ψ−
↓ 〉. This is exactly the initial-state

preparation described in Sec. I B. Then, following application
of the electric field E(t) (step 4 in Fig. 2), the system is in
the superposition state |ψ(T )〉 ∼= |ψ−

↓ 〉 + c+(T )|ψ+
↑ 〉, where

c+(T ) is given by Eq. (6). Next, interaction with the second
parity state projection laser, tuned to resonance with the even-
parity excited state |e+〉, projects the system onto |ψ+

↑ 〉 (step 5
in Fig. 2). Hence, after interacting with this laser for a short time
Tb, the system is in the (unnormalized) state |ψ(T + Tb)〉 =
c+(T )|ψ+

↑ 〉. To understand the evolution of this state as it leaves
the magnet, we write it in the basis of energy eigenstates:
|ψ(T + Tb)〉 ∼= c+(T )|ψE

↑ 〉 − ic+(T )(W/	)|ψE
↓ 〉. This maps

onto energy eigenstates outside the magnet as described above,
with the probability to be in state |N = 0+,J = 1/2,F = 1,m〉
given by |c+(T )|2. The detection laser excites this resolved
state (step 6 in Fig. 2) and we observe a fluorescence signal
proportional to this probability. This is exactly the signal S

described above in Sec. I B. Each step of the process just
described is depicted and summarized in Fig. 3.

This understanding also clarifies the importance of the sec-
ond parity state projection laser in our experimental protocol
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FIG. 3. Example of state projection and state evolution inside and
outside the superconducting magnet. Shown here is the interaction
with the second parity state projection laser inside the magnet,
evolution of the resulting state as molecules leave the magnet, and
interaction with the detection laser outside the magnet. Even- (odd-)
parity states are shown in blue (light gray) [red (dark gray)]. The
natural linewidth of the optical transitions is γ /(2π ) ∼ 3 MHz. Inside
the magnet, energy eigenstates in the ground state (|ψE

↑ 〉 and |ψE
↓ 〉)

are separated in energy by 	/(2π ) ∼ 1 kHz � γ , so these states are
fully unresolved by the optical transition. The state projection laser
addresses an excited state of definite parity and hence excites the
particular superposition of ground states that is a parity eigenstate.
Here the excited state of the transition |e+〉 has even parity, so the
laser depletes the odd-parity ground state |ψ−

↓ 〉 and leaves behind
the superposition corresponding to the even-parity state |ψ+

↑ 〉. The
population of each energy eigenstate is adiabatically transported to
a corresponding state |NP 〉 (a simultaneous eigenstate of energy
and parity) outside the magnet, according to the mapping |ψE

↑ 〉 ↔
|NP = 0+〉 and |ψE

↓ 〉 ↔ |NP = 1−〉. Here, outside the magnet, these
eigenstates are separated in energy by 	 ∼ 2π × 10 GHz � γ and
hence are fully resolved by the optical transition. Tuning the detection
laser to the transition between |NP = 0+〉 and a different excited state
of definite parity |e−〉 results in a fluorescence signal proportional to
the population of the |NP = 0+〉 state and hence of the |ψE

↑ 〉 state that
had been in the magnet after interaction with the state projection
laser. As described in the text, this population is, to an excellent
approximation, the same as the population |c+|2 of the even-parity
state |ψ+

↑ 〉 prior to interaction with the state projection laser. This is
exactly the signal desired for our NSD-PV measurement.

(Fig. 2). Suppose this laser were absent. Then, just after the
electric field ends at time T , the state of the system can be
written in terms of energy eigenstates, with the result

|ψ(T )〉 ∼=
[
c+(T ) − iW

	

]
|ψE

↑ 〉

+
[

1 − c+(T ) − iW

	
c+(T )

]
|ψE

↓ 〉. (11)

Then, transport out of the magnet and detection of the |N =
0+,J = 1/2,F = 1,m〉 state would result in a signal S ∝
|c+(T ) − i(W/	)|2 rather than S ∝ |c+(T )|2 as desired. The
resulting NSD-PV asymmetry would be roughly a factor of
2 smaller in this undesired case, compared to the case we
actually employ. In addition, the second parity state projection
laser dramatically reduces the sensitivity of the signal to stray
E fields in the region inside the magnet (where the levels
remain close in energy and can be significantly mixed by such
small fields), but after the deliberately applied field E(t) has
ended [31]. In fact, for diagnostics of such electric fields, we
deliberately block the second parity state projection laser beam.
Similarly, for diagnostics of stray E fields at locations prior to
application of E(t), we replace the first parity state projection
laser with a projection laser outside the magnet that depletes
the state |N = 0+,J = 1/2,F = 1,m〉, which then maps onto
|ψ+

↑ 〉 inside the magnet (though this auxiliary laser is not shown
in Fig. 2).

D. Measurement principle: Modifications to account for
experimental constraints

1. Realistic experimental geometry

The expression for the signal given in Eq. (9) must be
modified to account for an experimental geometry that differs
somewhat from the ideal case described in Sec. I B. As before,
we have the initial conditions c+(0) = 0 and c−(0) = 1 due to
the action of the first parity state projection laser. However, in
our apparatus there is a spatial (and hence also temporal) gap
between the application of the parity state projection lasers and
the start and end of the E field (see Sec. II C). We define free
evolution times Tf 1 and Tf 2 such that the first (second) parity
state projection laser LP1 (LP2) is applied with time difference
Tf 1 (Tf 2) before (after) the Stark interference E-field start
(end). Accounting for these additional free evolution times,
the applied Stark interference E field is defined as

E(t) =
{
E0 sin[ω(t − Tf 1)] for Tf 1 < t < Tf 1 + Te

0 otherwise. (12)

Here Te = 2π/ω is the time duration of the E-field pulse.
We integrate the Schrödinger equation from t = 0 to t = T =
Tf 1 + Te + Tf 2 and find

c+(T ) = iW

	
[e−i	T − 1]+ 2dE0ω

ω2−	2
e−i	(Te/2+Tf 1) sin

[
	Te

2

]
.

(13)

At time T , the state of the system is |ψ(T )〉 = c+(T )|ψ+
↑ 〉 +

e−i	T |ψ−
↓ 〉. Then, as described in the preceding section, the

action of the second parity state projection laser LP2, transport
out of the magnet, and detection together lead to the measured
signal S = N0|c+(T )|2, given by

S � 4N0

(
dE0ω

ω2 − 	2

){
dE0ω

ω2 − 	2
sin2

[
	Te

2

]

+2
W

	
sin

[
	Te

2

]
sin

[
	

2
T

]
cos

[
	

2
(Tf 1 − Tf 2)

]}
.

(14)
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TABLE I. The E-field conditions and shutter states for the five
signals employed in a NSD-PV measurement.

Name E field Shutter state of lasers LP1 and LP2

S(−E,o) −Er open
S(+E,o) +Er open
S(0,o) none open
S(0,c) none closed
S(π,o) π pulse open

As the last step, we compute the NSD-PV asymmetry, Athy,
associated with the reversal of E0, following Eq. (9):

Athy = 2
W

	

ω2 − 	2

dE0ω

sin[	
2 (Te + Tf 1 + Tf 2)]

sin[	
2 Te]

× cos

[
	

2
(Tf 1 − Tf 2)

]
. (15)

Here, as before, 	 and E0 are experimental values we control,
the parameters ω, Te, Tf 1, and Tf 2 are defined by the geometry
of the interaction region (discussed later), the molecular ve-
locity v is measured to be v = 616 m/s, and the dipole matrix
element at each crossing d has been measured previously [27].

2. Imperfect optical pumping

In our discussion up to now, we assumed perfect depletion
by both parity state projection lasers LP1 and LP2; however,
in our experiment we observe incomplete depletion (possibly
due to inadequate laser power and/or interaction time or from
repopulation of the depleted states by decay from metastable
states populated in the molecular-beam source). In order to ac-
count for these effects, we record several types of signals, listed
in Table I. We define signals S(E,s), where E indicates the E-
field condition and s is the state of shutters that are used to block
both lasers LP1 and LP2 simultaneously. The E-field condition
takes several possible values, denoted by ±Er [corresponding
to the reversing E field of Eq. (15), with amplitude E0 positive
or negative, respectively], 0 (corresponding to no applied E
field), and π (corresponding to a unipolar E-field pulse with
magnitude and duration set to achieve complete population
swapping between the states |ψ+

↑ 〉 and |ψ−
↓ 〉, discussed further

below). The shutter condition is assigned values s = o (open)
and s = c (closed), corresponding to all state projection laser
light on and off, respectively [27].

The depletion efficiency for the state projection lasers is
related to certain ratios of these signals, which we define as
the optical pumping ratios (OPRs) Ri(E) = S(E,o)/S(E,c).
The subscript i indicates the parity state projection laser
LP1 or LP2. For example, the depletion efficiency for LP1 is
1 − R1(0) = 1 − S(E,o)/S(E,c), where for perfect depletion
R1(0) = 0. Recall that LP2 depletes the nondetection level,
the odd-parity ground state |ψ−

↓ 〉. With our current setup, we
cannot measure the remaining population in this level directly
via laser-induced fluorescence. Instead, we apply a π pulse
after LP2, so that the population in this nondetection state is
transferred to the detection state and vice versa. The resultant
signal S(π,o) is taken with both state projection lasers applied.
Thus, the depletion efficiency for the second projection laser

is 1 − R2(π ). Typically we have R1(0) ≈ 3–6 % and R2(π ) ≈
7–10 %.

To measure the fraction of the (odd-parity) nondetection
state population that is transferred to the (even-parity) detection
state by the Stark interference E-field pulse and NSD-PV
effects, despite a nonzero value of R1(0) (i.e., imperfect
depletion), we define the state transfer efficiency (STE) S
as

S(E) = R1(E) − R1(0)

1 − R1(0)
= S(E,o) − S(0,o)

S(0,c) − S(0,o)
. (16)

Following Eq. (9), the NSD-PV asymmetry in terms of the
measured signals is

A = S(+E) − S(−E)

S(+E) + S(−E)
= S(+E,o) − S(−E,o)

S(+E,o) + S(−E,o) − 2S(0,o)
.

(17)

II. APPARATUS

A. Molecular-beam source

We create a beam of BaF using a supersonic free jet source
based on Ref. [32]. A mixture of argon (95%) and SF6 (5%) at
pressure ∼13 atm expands into the vacuum chamber through
a pulsed valve nozzle with 1 mm diameter. The valve is driven
by an electrical pulse of 280 μs duration. A target, consisting
of a strip of Ba metal affixed to the outer diameter of a 2-mm-
thick, 10-cm-diam wheel, located just under the jet aperture,
is ablated by a pulsed Nd:YAG laser, with typical pulse energy
∼20 mJ and pulse duration ∼8 ns, fired ∼340 μs after the
start of the electrical pulse. A plume of Ba is entrained in the
jet and BaF molecules form through collisions between Ba
and SF6. The rapid adiabatic expansion of the gas into the
vacuum chamber cools the molecules’ rotational energy and
longitudinal velocity to temperature T ∼ 30 K. The beam has
a forward mean velocity v̄ = 616 m/s with FWHM spread
δv/v̄ = 7%; each pulse of BaF has typical duration ∼100 μs
at the beam source and ∼500 μs in the detection region. We
create molecular beam pulses at a 10 Hz repetition rate.

The source chamber is separated from the rest of the
apparatus by a skimmer with 6.35 mm diameter, located 6 cm
from the source. This allows differential pumping between the
source chamber (∼10−5 Torr) and the rest of the experiment
(10−7–10−8 Torr). After the skimmer, the molecules enter a
second vacuum chamber where a laser interaction region is
used to probe the molecules for beam diagnostics and/or to
prepare the molecules in a specific state (via optical pumping)
for certain auxiliary measurements. Collimators define the
molecular beam to have radius Rb ≈ 3.8 mm in the center
of the main interaction region.

B. Magnetic-field control

A superconducting (SC) magnet with a room-temperature
bore of ∼22 cm diameter generates theB field. The commercial
magnet package has 5 SC and 14 room-temperature (RT)
gradient coils for adjusting the B-field homogeneity. One of
the RT shim coils (the Z0 coil, which provides a uniform
field) is employed to tune the B field (and thus the detuning 	

between the two levels of opposite parity). An additional set
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FIG. 4. (a) Schematic of the assembled IR and the relevant coordinates. The IR has 32 cylindrical electrodes and 31 gaps between electrodes.
The central 10 rings (numbered from 12 to 21, corresponding to the region between gaps 11 and 21) encompass the region where reversing the
sine wave E field is nonzero during the NSD-PV measurements. Thin arrows (green) signify the parity state projection laser beam paths, including
their reflections in glass prisms. Paramagnetic tantalum foil shims (orange) are attached to the prisms to minimize the B-field nonuniformity
induced by the diamagnetic glass. The axial lines on electrodes 2–31 are grooves that act as wire channels to prevent electrode connection wires
from twisting and causing B-field inhomogeneities. The wire channels also provide strain relief at the wire solder points. (b) Cross section
depicting the placement of Kapton tape and spacer insulating, respectively, the radially and axially oriented connection surfaces between rings.
The insulated surfaces have no line of sight to the molecules, so static charges that may build up on these surfaces are of no concern.

of shim coils, referred to as the minishims, are used to create
local variations in the B field and hence to shape the field
for maximum homogeneity and/or to generate field gradients
of various shapes for systematic error tests. These home-built
coils are wound around the molecular-beam line, with radius
2 cm and spaced 1 cm apart. Each minishim coil produces a
magnetic field with a FWHM length of 6 cm along z and an
amplitude of up to 120 mG on axis.

Our measurement technique requires exceptional magnetic-
field homogeneity over the region between the parity state
projection lasers. The homogeneity is measured and improved
in a multistep process. An array of 32 NMR probes, spatially
distributed around the magnet center, is used for initial B-field
measurement with precision δB/B ∼ 0.5 ppm [33]. (One of
these probes is used throughout the measurements to measure
the field tuning achieved using the Z0 coil and to account for
small overall drifts in the B field.) When the value of B is
initially tuned to any given level crossing,B-field homogeneity
is first optimized by adjusting the SC and RT shim coils to
minimize the rms deviation among the NMR probe readings.
For finer precision, we use signals from BaF molecules to
measure the field, and the RT and minishim coils to correct
residual inhomogeneities (see Sec. III B).

C. Electric-field control

A complex interaction region (IR) enables control over E
fields in the system and, simultaneously, delivery of laser light
to the molecular beam inside the magnet (where we have
no physical access once under vacuum). The IR is designed
to minimize B-field inhomogeneities due to the small, but
non-negligible, magnetic susceptibility of its parts. We use
a simple principle to minimize B-field inhomogeneities due
to the material of the IR. That is, if a long straight object
with constant cross section is uniformly magnetized along
its length, the field due to the magnetization is like that
of an infinite solenoid: zero outside the object and uniform
inside. Hence, to the extent possible we construct the IR

from materials with small linear susceptibility (which will be
uniformly magnetized along the uniform B field) and with
constant cross section along the B field axis.

The IR (shown in Fig. 4) has 32 coaxial cylindrical elec-
trodes: 2 tubes (used as endcaps), 28 rings, and 2 extrawide
rings, all machined from oxygen-free high thermal conduc-
tivity (OFHC) copper with outer diameter equal to 3.53 cm
and inner diameter equal to 3.18 cm. Standard rings each have
a length of 6 mm; the extrawide rings, referred to as prism
rings, are ∼17 mm long to mount prisms that reflect laser light
through holes in the rings. Two electrical connections are made
to each electrode: one to apply a voltage and the other to mea-
sure the applied voltage. To ensure a clean and uniform surface,
the IR electrodes were bright dipped and then plated with high-
purity gold (with a palladium underlayer as a diffusion barrier).
We maintain concentricity between stacked electrodes using
an interlocking male-female design. Axially oriented surfaces
between each electrode are insulated using laser-machined
Kapton spacers, and radially oriented surfaces have Kapton
tape for insulation. The Kapton thickness (0.25 mm) was
minimized to maintainB- and E-field uniformity across the IR.

For PV data, we apply a complex set of voltages to the
central ten rings that lie between the prism rings to generate
the sharp turn-on and off of a pure sine wave. The nine rings
that lie outside the prism rings on either side allow us to
measure and control the E field in locations outside the region
between the parity state projection lasers. We use this system to
deliberately apply E fields of various shapes in order shim out
inhomogeneities due to stray fields and/or to study possible
systematics. Each electrode is controlled with an individual
digital-to-analog voltage channel with minimum resolution of
0.9 mV, corresponding to a maximum change in the E field on
the central axis of the molecular beam of ∼0.3 mV/cm.

D. Lasers and optics

Four external cavity diode lasers (ECDLs) address the tran-
sitions for parity state projection and detection. A frequency-
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stabilized HeNe laser is employed as a frequency reference
and is used in conjunction with a Fabry-Pérot transfer cavity
to stabilize the ECDL frequencies, with a system similar to that
in Ref. [34]. Three of the ECDLs are tuned to different tran-
sitions within the X 2�+(v = 0) → A 2�1/2(v′ = 0) manifold
of transitions, at wavelengthλ ≈ 860 nm. The two ECDLs used
as the two parity state projection lasers are tuned to different
frequencies when the magnetic field is tuned to a different level
crossing. The third ECDL is used both to excite the first step of
a two-photon transition used for detection (discussed below)
and also to deplete the molecular state outside the magnet
for auxiliary measurements. The fourth ECDL, used only for
detection, is tuned to a rotational line of the A 2�1/2(v′ = 0) →
D 2�+(v = 0) transition, at wavelength λ ≈ 797 nm.

An optical mount, consisting of beam shaping optics and
beam steering mechanics, is attached to each end of the IR to
align laser beams through the molecular beam at the desired
locations. A beam-shaping telescope expands the laser light
to a vertical 1/e2 diameter of 13.2 (11.5) mm for the first
(second) parity state projection laser. This corresponds to a
laser beam intensity at the edges of the molecular beam that is
about 50% of the peak intensity. Following the telescope, the
laser beam enters a prism attached to a prism ring on the IR and
is reflected by 90◦ so that it traverses the molecular beam. Then
the laser beam reflects by 90◦ again through a second prism
so that it exits the IR and strikes a photodiode, which is used
to verify transmission of the laser beam through the apparatus.
The prisms are BK7-glass right-angle prisms cut to a width of
4.8 mm along the molecular-beam direction. The prism surface
exposed to the molecules is coated with conductive indium tin
oxide and electrically connected to the prism ring with a thin
layer of indium metal to ensure that no static charges build up
on the inside surface. Additionally, we attached paramagnetic
tantalum foil shims to the prisms in order to minimize the
B-field nonuniformity induced by the diamagnetic BK7 glass.
We optimized the tantalum shim thickness such that the
calculated peak-to-valley B-field variation experienced by the
molecules is minimized; we find δB/B � 0.03 ppm.

E. Detection

We measure the population of the detection state after
the molecules exit the magnet, via laser-induced fluorescence
with a photomultiplier tube (PMT). A custom large solid
angle focusing mirror pair, based on the design in Ref. [35],
is employed to maximize the light collection efficiency. A
1-in.-diam fused silica light guide transports light from the
focal point of the mirrors, in vacuum, to the PMT outside. With
this arrangement, approximately 85% of the fluorescence light
is directed into the PMT.

We employ a two-photon excitation scheme to realize
low-background fluorescence detection. The first laser beam is
applied to excite the X 2�+ → A 2�1/2 transition and a second
laser beam, spatially overlapped with the first, is tuned to
drive the A 2�1/2 → D 2�+ transition. We detect fluorescence
from the D 2�+ → X 2�+ decay, at 413 nm. This scheme
makes it easy to reduce background from scattered laser light,
since the detection wavelength is far to the blue of both laser
wavelengths. A red-blocking, blue-transmitting (BG40) color
glass filter is located at the PMT entrance for this purpose.

FIG. 5. (a) Calculated shape of our experimentally appliedE field.
Also shown is the desired analytic form of the pulse. The calculated
field shape is shown on the molecular-beam axis. Vertical dashed
lines indicate the location of the parity state projection laser beams.
(b) Voltages applied to the IR ring electrodes to generate the field
shown in (a).

III. SYSTEM CHARACTERIZATION

In this section we describe a set of measurements used
to optimize and characterize the electric and magnetic fields
experienced by molecules in the course of our NSD-PV
measurements. Measurements of both E and B fields rely on
applying local pulses of E field, so we begin by describing how
these pulses are created. Then we describe specifics of the B-
and E-field measurements.

A. Applying local E-field pulses

The IR electrodes are used to control the E field within
the central region of the magnet as follows. Consider the case
where all rings before the gap location zk , where k indicates
the gap number between two electrodes, are set at one voltage
V0 and all rings after gap k are set at V0 + δV . The voltage step
gives rise to an electric field which, near the axis of the tube,
is well approximated by

Eu(z; zk) = Eu
0 sech

(
z − zk

σu

)
, (18)

where σu = 0.76 cm and Eu
0 = 0.42 δV/cm. We refer to this

as a unipolar E-field pulse. Over the range of axial positions
0 < ρ < 3.8 mm, where detected molecules are present in the
IR, this E field varies by less than 3%; going forward we ignore
this small variation and treat the E field as radially uniform.

The width in z of the unipolar E-field pulse σu is much
smaller than the usual spacing between ring gaps zk+1 − zk .
Hence it is possible to create nearly any desired shape of E(z)
by properly superposing fields from voltage steps at each gap.
For example, this principle is used to create the finite-width
sinusoidal pulse described in Sec. I D (see Fig. 5). In addition,
for various diagnostic tests (described below) we frequently
apply unipolarE-field pulses at different positions in the IR. We
also sometimes use a bipolar pulse, which has two extrema and
is generated by applying equal and opposite voltage steps ±δV

at adjacent ring gaps, i.e., a voltage offset δV to a single ring.
The field resulting from such a voltage configuration Eb(z; zr )
is well approximated by the functional form

Eb(z; zr ) = Eb
0 sech

(
z − zr

σb

)
tanh

(
z − zr

σb

)
, (19)
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where σb = 0.82 cm, Eb
0 (δV ) = 0.28 δV/cm, and zr is the

center of the ring where the voltage offset is applied.
The spatially narrow unipolar E-field pulse induces a pop-

ulation transfer between the nearly degenerate opposite-parity
states [27]. Following Eq. (4) (with W = 0), assuming as usual
initial conditions c+(0) = 0 and c−(0) = 1, and in the limit that
the amplitude c+ � 1 (where first-order perturbation theory
holds), the amplitude of the even-parity state is determined by
the relation

ċ+(t) = −idE(t)e−i	t . (20)

Here we take t = (z − zLP1 )/v, with molecular-beam speed
v and zLP1 = −3.15 cm the position of the first parity state
projection laser. We integrate Eq. (20) and find the transfer
amplitude

c+(T ) = −id

∫ T

0
E(t)e−i	tdt. (21)

Assuming that no population transfer can occur outside the
range 0 < t < T , we can extend the integration limits to
infinity,

c+(T ) = −id

∫ +∞

−∞
E(t)e−i	tdt = −id

√
2π Ẽ(	), (22)

where Ẽ(	) is the Fourier transform of E(t) [27]. Then the
resultant signal S is given by

S ∝ |c+(T )|2 ∝ |Ẽ(	)|2, (23)

where Ẽ(	) = √
π/2σtEu

0 sech(π	σt/2), with σt = σu/v =
12.3 μs.

B. Local magnetic-field measurement

We measure the axial B field and its homogeneity using
signals from the molecules. As discussed above, when a
spatially narrow E-field pulse is applied with its center at
location zk , the population transfer between the two levels
depends on the B field at that location. We place E-field pulses
centered at each IR electrode ring gap zk (k = 1, . . . ,31) and
record signals as a function of applied field B0 in order to find
the location of the level crossing, corresponding to the signal
maximum. We define the associated detuning at position zk ,
	k , as 	k = δ	0 + 2μB(Bk − B0). Here δ	0 is a small offset
that depends on the quantum numbers mI ,m

′
N,m′

I of the level
crossing, μB is the Bohr magneton, Bk is the actual B field at
zk , andB0 is the applied field required for the maximum signal.
We then shim the B field to minimize the variance within the
set of 	k values, i.e., to make the field uniform. This shimming
procedure based on molecular signals is begun only after the
field has been shimmed as much as possible using signals from
the NMR probe array. Then, using these level-crossing signals,
we shim first with the RT shim coils and then, in the last step,
employ the minishim coils. For δB/B = 10−7, the detuning
	/(2π ) changes by approximately1 kHz. We routinely achieve
δB/B � 2 × 10−8 (rms) after shimming, in an overall field of
∼4600 G (see Fig. 6).

FIG. 6. Typical magnetic-field homogeneity after shimming. Ver-
tical dashed lines indicate parity state projection laser locations and
solid lines denote the region of the IR where electrodes control
the E field. Here 	 = 0 was chosen to facilitate visibility of the
fluctuations. Measurements were made with the same currents applied
to all shim and minishim coils, one week apart (dates indicated in
legend). Both measurements have δB/B < 0.02 ppm (rms) in the
region between LP1 and LP2. The overallB-field shift in the experiment
is 	/(2π ) ≈ 12 GHz.

C. Stray-electric-field measurement

It is known from previous experiments based on the same
measurement concept that stray, nonreversing electric fields
Enr , in combination with magnetic-field gradients ∂B/∂z,
could mimic a NSD-PV signal [12]. (By “nonreversing” we
mean fields that do not change when we reverse the voltages
used to generate the E field.) To minimize systematic errors
resulting from such combinations, we developed a method
for measuring and shimming away Enr . Here we present the
experimental measurement protocol and how Enr is extracted
from measured signals. Then we discuss various features of
the extracted Enr (z) functions and assess the accuracy of our
procedure in reproducing correctly a known applied value of
Enr .

A key feature of our approach is that we assume that the
nonreversing E field can be written as a superposition of
unipolar field pulses of the form given in Eq. (18). That is,
we write

Enr (z) =
31∑

k=1

ckEu(z; zk), (24)

so finding Enr (z) is equivalent to finding the set of coefficients
{ck}, where k = 1–31 indexes a ring gap number. Physically,
this would be an exact description of Enr (z) if the electrode
rings were perfect equipotentials. Moreover, any field we can
apply in our system has this form, so this is a realistic opera-
tional definition of any field that is useful to define. The set of
unipolar pulses is thus used as an effective nonorthonormal (but
assumed complete) basis set, from which the function Enr (z)
is composed.

1. Basic measurement strategy

Stray nonreversing E fields in our apparatus are too small
to cause, on their own, a measurable population transfer
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between the two opposite-parity levels. We thus utilize a Stark
interference method to amplify the effect of Enr fields in the
system to a measurable level. In addition to the unknown stray
field Enr , we deliberately apply a known, larger, reversible
field pulse ±Er (t). In practice, the reversible field pulse is
applied in the form of a unipolar pulse, so that ±Er (t) ∝
±Eu(z/v; zk/v) for some gap location zk [always with peak
amplitude Er0 = Eu

0 (δV = 0.7 V)]. In the presence of both this
reversible pulse and the nonreversing field, the total field is
E(t) = Enr (t) ± Er (t). Following Eq. (23), the resultant signal
is

S±(	) ∝ |Ẽr (	)|2 + |Ẽnr (	)|2
± Ẽ∗

r (	)Ẽnr (	) ± Ẽr (	)Ẽ∗
nr (	). (25)

The difference between signals taken with ±Er , Sδ(	) ≡
S+(	) − S−(	), arises from the interference terms

Sδ(	) ∝ Ẽ∗
r (	)Ẽnr (	) + Ẽr (	)Ẽ∗

nr (	), (26)

where the unknown parameters are the real and the imaginary
parts of Ẽnr (	).

With two unknown parameters, this is an underdetermined
system. Therefore, both measurements S±(	) are repeated
with the applied reversible field Er (t) shifted by a time offset
ti , i.e., Er (t − ti). In practice, this is done by applying the
unipolar pulse at a different gap position. By the shift the-
orem of Fourier transforms, F[E(t − ti)] = e−i	tiF[E(t)] =
e−i	ti Ẽ(	), where F denotes the Fourier transform. Now the
signal difference is

Sδ(	,ti) ∝ ei	ti Ẽ∗
r (	)Ẽnr (	) + e−i	ti Ẽr (	)Ẽ∗

nr (	). (27)

Since the unipolar pulse Er (t), when centered at t = 0, is a
real and even function, its Fourier transform Ẽr (	) is real and
even: Ẽ∗

r (	) = Ẽr (	). Then, defining α(	) ≡ Re[Ẽnr (	)] and
β(	) ≡ Im[Ẽnr (	)], the signal difference becomes

Sδ(	,ti) ∝ Ẽr (	)[α(	) cos(	ti) + β(	) sin(	ti)]. (28)

To determine α(	) and β(	) and hence extract Enr (t), the
following procedure is employed. We measure Sδ(	,ti) at a
regularly spaced set of detunings 	 = 	k = k	0, where k =
−N,−N + 1, . . . ,N − 1,N . In principle, to determine both
functions α and β, it suffices to obtain data across the range
of detunings 	 = 	k for only two values of the reversible
field pulse center ti . However, for redundancy we use a set of
ti values, denoted by {ti}, that contains at least three different
values. This yields a set of overconstrained equations for α(	k)
and β(	k) for each k. The best values of α(	k) and β(	k) are
assigned by minimizing the rms deviation to the data in this
overconstrained set. The time-domain form of the unknown
nonreversing field is then calculated from the Fourier series

Enr (t) = 	0√
2π

N∑
k=−N

[α(k	0) + iβ(k	0)]eik	0t . (29)

Like any function, Enr (t) can be written as the sum of an
even and an odd part Enr (t) = Eeven

nr (t) + Eodd
nr (t). As noted

before, the Fourier transform of the even part is real and even,
while the Fourier transform of the odd part is imaginary and
odd. Using these symmetry properties, we reduce noise in the
data by replacing α and β in Eq. (29) with the symmetrized

values ᾱ(±k	0) = [α(k	0) + α(−k	0)]/2 and β̄(±k	0) =
±[β(k	0) − β(−k	0)]/2. Finally, we take the inverse Fourier
transform of Ẽnr (	) = α(	) + iβ(	) to find the nonreversing
field Enr (t).

This completes the logical connection between ideal data
generated while applying the known reversible fields ±Er and
the unknown stray nonreversing field Enr that we wish to deter-
mine. In principle, this relation should be exact and should be
independent of the set of values {ti} (temporal locations of the
center of the reversing field pulses). However, by deliberately
applying Enr fields with known forms, it was quickly observed
that the functions Enr (z) determined by simple application of
Eqs. (28) and (29) had significant qualitative differences from
the input fields. This was found to be due to a variety of effects
such as spectral windowing artifacts (due to the finite range
of detunings employed in our procedure), relative dephasing
between interfering amplitudes from widely separated fields
(due primarily to the finite longitudinal velocity spread of
the molecular beam), distortions due to small magnetic-field
inhomogeneities, etc.

To account for these effects, we developed a complex
multistep procedure for accurately determining the ambient
nonreversing fields Enr (z). The details of this procedure and
the logic behind it are given in Appendix A. Even with
our optimized procedure, small but noticeable differences
were observed between the fields assigned in this way and
known forms of deliberate nonreversing input fields. Hence we
distinguish between the “assigned” nonreversing field Anr (z),
as determined from this procedure, and the physical stray field
Enr (z). Just as for Enr (z), we define Anr (z) as a field that can be
generated by applying voltages to the electrodes in our system,
i.e., as a superposition of unipolar field pulses.

The accuracy of match between Anr (z) as determined via
this procedure and the actual underlying field Enr (z) was
verified experimentally. To do this, we applied deliberate
nonreversing unipolar field pulses as input to the system. The
resulting output assigned field matched the input consistently
well, with the magnitude of residual differences always satisfy-
ing |Anr (z) − Enr (z)| < 15 mV/cm. Similarly good agreement
was found by applying the extraction procedure to simulated
data with more complex forms of Enr (z), e.g., superpositions
of several unipolar pulses. The agreement remained good even
when the input form of the field Enr (z) was not constrained to
be a sum of unipolar pulses centered on ring gap locations zk ,
i.e., when the simulated input field included contributions that
would correspond physically to the electrode rings not being
equipotentials, as, for example, if there were patch potentials
on the electrode surfaces.

2. Experimental measurement and shimming of Enr

To nullify the ambient nonreversing fieldEnr (z) that exists in
the apparatus, we apply voltages to the IR electrodes that create
a field meant to cancel the assigned nonreversing field Anr (z).
Since Anr (z) is, by construction, a superposition of fields that
can be generated by applying voltages to the electrodes in our
system, it is straightforward to apply shim voltages to each
electrode to nullify each term in the superposition.

After two consecutive iterations of Enr shimming, we
find that the remaining nonreversing field consistently has
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magnitude |Anr (z)| < 15 mV/cm. We observed, in both nu-
merical simulations and experimental data taken with known
deliberately applied nonreversing fields, that further shim
iterations did not consistently reduce the magnitude of the
assigned stray field. This is believed to be due to the fact that,
after two shimming iterations, the residual nonreversing field
has only high-frequency components that are not captured by
theAnr assignment algorithm. However, we also observed that
further iterations of shimming did not increase the magnitude
of the assigned residual field. Hence, repeated shimming after
the second iteration serves to change the functional form of
Anr (z) in an effectively random manner, without increasing
its typical magnitude. We take advantage of this property as a
way to effectively randomize the stray nonreversing fieldEnr (z)
while keeping its magnitude as small as it is possible for us to
determine. Figure 7(a) shows typical measured Anr functions
under various conditions.

Additionally, we investigated both long- and short-time-
scale drifts in the residual Anr after shimming. Figures 7(b)
and 7(c) display measurements taken many days apart with
the same shim voltage values. We observed no drifts in Anr

above the range of ∼15 mV/cm over this time scale, which
was typical of the time used to collect NSD-PV data. Even
though the exact shape of Anr (z) is not reproducible from run
to run over long periods of time, our measurements of the
nonreversing field after at least two iterations of shimming
consistently have peak magnitude |Anr | < 15 mV/cm and rms
variation 〈Anr〉rms < 6 mV/cm in the entire region between the
parity state projection lasers.

IV. NSD-PV MEASUREMENT

In this section we describe the details of NSD-PV data
collection and how we deduce the value of the weak matrix
element W from fluorescence data. Before each NSD-PV run,
using the methods described in Sec. III, we (i) measure and
shim the B field and then measure the shimmed B field and
(ii) measure and shim the nonreversing E field and then
measure the shimmed nonreversing E field. We proceed to
NSD-PV measurements after verifying that the B-field homo-
geneity is (δB/B)rms < 0.05 ppm and |Anr (z)| � 15 mV/cm
everywhere within the IR, i.e., everywhere between gap 1 and
gap 31.

A. NSD-PV data structure

Parity violation data are grouped into three segments:
pulses, blocks, and runs. For a single pulse of the molecular
beam, we record signals from the PMT as well as all 32
electrode voltages (to ensure fidelity of electrical connections)
and signals from the photodiodes for both parity state projec-
tion lasers (to verify shutter states, open or closed). Electrode
voltages are changed on every pulse to one of the five voltage
set and shutter state conditions (see Sec. I D). Pulses are marked
as bad and excluded from the data analysis when (i) any of
the measured electrode voltages do not match the intended
applied voltages, (ii) a photodiode signal does not match the
expectation for the intended shutter state, (iii) any of the
laser frequencies deviate significantly from their set points, or
(iv) when the detected molecule counts are below a preset
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FIG. 7. Experimentally determined values of the ambient non-
reversing field Anr (z) and reproducibility of measurements after
shimming. Points indicate best values and shaded areas indicate
ranges of ±1σ statistical uncertainty. Legends indicate the date on
which data were taken. (a) Suppression of Enr by shimming. After two
consecutive iterations of shimming (triangles and squares) beginning
from the baseline measurement (circles), the residual assigned stray
field has magnitude |Anr (z)| < 15 mV/cm everywhere within the
IR. (b) and (c) Reproducibility of shimmed Anr measurements taken
with the same shim voltage values many days apart. Typically
〈Anr (z)〉rms < 6 mV/cm in the region between lasers LP1 and LP2

(dashed vertical lines). Solid lines denote the region of the IR where
electrodes control the E field.

threshold (in which case a stepper motor turns the barium
wheel in the source chamber, changing the surface exposed to
the ablation laser until the signal size reaches a preset typical
size). Most bad pulses resulted from factor (iii); this happens
typically for 10–30 out of every 300 pulses.

A collection of pulses with the same B-field setting (i.e.,
same 	) constitutes a block. Then a block of data gives a single
asymmetry data point A(	) and its associated uncertainty
δA(	). To account for cases when pulses are excluded due
to errors, data in a block are acquired until a minimum
of 300 good pulses is recorded. The parity state projection
laser shutters simultaneously switch between open and closed
every 60 pulses. During each shutter state, all four E-field
conditions are applied, in a random order. This way we remove

042101-11



ALTUNTAŞ, AMMON, CAHN, AND DEMILLE PHYSICAL REVIEW A 97, 042101 (2018)

any correlations that might arise from B-field drifts as we
sweep over a range of 	 values. During a block, we measure
the magnetic field using one of the off-axis NMR probes
repeatedly, 20–30 times. At the end of a block, these values
are averaged and used to assign the 	 value for the block. An
entire block of data is excluded from the data analysis when
any of several experimental errors (e.g., consistently low signal
size, too high OPR value for either of the parity state projection
lasers, etc.) are detected. In a typical run, with approximately
500 blocks on average, ∼30 are assigned as bad.

A run comprises 250–500 blocks with the same four E-field
voltage sets and common B-field shim settings, but with an
array of different values of 	. We make measurements in
the detuning range 1 kHz � |	/(2π )| � 4 kHz, in steps of
δ	/(2π ) ≈ 350 Hz. Due to small fluctuations in the ambi-
ent magnetic field, we observe differences in 	 even when
we try to set the same value of 	 with the Z0 RT shim
coil. These detuning fluctuations are typically not larger than
2π × 100 Hz. To account for this, we bin adjacent asymmetry
points together into detuning intervals of size 	bin/(2π ) = 250
Hz and calculate the weighted average and the standard error
of the combined asymmetry data points within each bin. For
a typical data run with approximately 500 blocks, a given bin
has N ≈ 13 asymmetry data points. We observed no effects
on the extracted value of W by using different binning interval
sizes.

B. W measurement and statistical uncertainty

1. Asymmetry fit function

For a PV run, the value for the NSD-PV matrix element
W is extracted by fitting the asymmetry data to the function
Afit(	), where

Afit(	) = WfitA0(	) + a0 + a1	. (30)

Here A0(	) = Athy(	)/W , with Athy(	) defined in Eq. (15).
The free parameters in the fit are Wfit as well as the auxiliary
coefficients a0 and a1. The rationale for inclusion of these
auxiliary parameters is as follows.

First, experimental and simulated data were observed to
sometimes exhibit a constant offset (independent of 	) in the
asymmetry. To account for this observation, we empirically
modify our fit function with the addition of a constant offset
term, a0. We know, from numerical simulations and analytical
calculations, that such a term can be induced by Enr fields alone
(with its value dependent on the specific shape and amplitude
of Enr ). In these simulations and calculations, we find that the
presence of a nonzero value of a0 has no clear correlation with
systematic errors in W .

The linear term in Eq. (30), associated with the coefficient
a1, was included to account for observations in numerical
simulations where various deliberate imperfections were added
to the system. In particular, we observed in these simulations
that a linear term typically arises from Enr fields spatially coin-
cident with B-field gradients. Moreover, in these simulations
we found that a nonzero a1 term is strongly correlated with
potential systematic errors in W , i.e., with a contribution to
A0(	) with similar dependence on 	 as given by Eq. (15).
Therefore, we considered it important to include this linear
term in our data analysis. We treat any nonzero a1 values
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FIG. 8. Sample PV data at crossing F (see Fig. 1). (a) Rectangles
(triangles) indicate data for the STE, S , taken with the positive
(negative) value of E0 for the E-field sine pulse. (b) Measured
asymmetry (circles) and the fit (line) using Eq. (30). For this run,
we acquired approximately4.4 h of good data. The average number
of molecules per pulse was N̄0 ≈ 96, giving a total of N0 ≈ 3.0 × 106

molecules for each one of the five signal types measured (see Table I).
Best-fit values for the parameters W , a0, and a1, along with their 1σ

statistical uncertainties, are shown in the figure. The reduced χ2 for
this fit is χ 2

ν = 0.94.

resulting from fits to our NSD-PV data as a preliminary
manifestation of a systematic error in W . However, inclusion
of this term in all asymmetry fits comes at a cost in statistical
power. This is because, over the limited range of 	 values
used in our NSD-PV data sets, there is substantial covariance
between fitted values of W and of a1. Because of this covari-
ance, including a1 as a free parameter increases the statistical
uncertainty in W from the fits by a factor of ∼√

2.

2. NSD-PV measurements

Figure 8 shows STE signals and asymmetries from a typical
run. We fit asymmetry data to Eq. (30) with parameter val-
ues Te = 2π/ω = 87 μs, Tf 1 = 7.4 μs, Tf 2 = 8.9 μs, E0 = 1
V/cm, ω/(2π ) = 11.4 kHz, and d/(2π ) = 3360 (3530) Hz
(V/cm) for the A (F) crossing (see Fig. 1). Figure 9 shows
the results for W , a0, and a1 for all parity violation data with
138BaF. We performed NSD-PV measurements with several
different E-field shim voltage values in order to see any
dependence on a specific form of the ambient Enr field. Here,
by “different” we mean that the Anr signals have different,
effectively random shapes but are all consistent with zero
within our measurement accuracy, i.e., |Anr (z)| < 15 mV/cm
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FIG. 9. Summary of NSD-PV data with 138BaF. Data runs plotted with the same symbol were taken with the same Enr shim voltage set. Error
bars represent 1σ statistical uncertainties. Results are shown from NSD-PV data runs at crossings (a) A and (b) F. Central values of weighted
averages are denoted by a solid horizontal line and the 1σ uncertainty range is shown by dashed lines. Shown on the left is the weighted average
of A crossing runs, W (A)/(2π ) = 0.32 ± 0.49 Hz, and F crossing runs,W (F)/(2π ) = 0.05 ± 0.51 Hz. Shown in the middle is the asymmetry
offset term a0 for each run. With each different Enr shim voltage set, the a0 value changes, as expected, while for runs with the same Enr shim
voltage set, results for a0 are consistent. Shown on the right is the linear asymmetry term a1 for each run. The weighted average for A crossing
runs is a

(A)
1 = (−2 ± 6) × 10−8 Hz−1 and for F crossing runs a

(F)
1 = (3 ± 6) × 10−8 Hz−1.

everywhere within the IR. We generate this effectively random
difference in the ambient Enr after two consecutive shim
iterations by shimming for a third time (or a fourth time and
so on). As can be seen in Fig. 9(a), measured W values for
different Enr fields (shown in different colors) are consistent,
as expected. Data runs taken with the same Enr field shim set
yield consistent a0 values (within 2σ ), but, as expected (since
a0 depends on the stray nonreversing field), the values of a0

differ for different shim voltage values. The fitted a1 values are
consistent with 0, consistent with the hypothesis that there are
no significant systematic errors in W .

As a further test for systematics, we made measurements
at both level crossings, A and F, as shown in Fig. 1. The
angular momentum dependence of H eff

P , via the operator
C ≡ (n × S) · I/I , ensures that the matrix element W has a
different value at each crossing [see Eq. (2)]. Note that C is a
purely angular factor, whose matrix elements C̃ depend on the
angular momentum quantum numbers of both states at a given
crossing. The values of these dimensionless matrix elements
in our case are C̃A = −0.41i and C̃F = 0.39i, at crossings
A and F, respectively. By contrast, the dipole matrix element
d for each crossing has a similar value and the same sign:
d = dA = 2π × 3360 Hz/(V/cm) for crossing A and d =
dF = 2π × 3530 Hz/(V/cm) for crossing F. This means that
systematics due to a common Enr field would give asymmetries
of the same sign at both crossings, while a true NSD-PV signal
would cause the asymmetry to reverse sign but have nearly
identical magnitude. As a result, nearby level crossings within
the same molecule, such as the A-F pair in 138BaF, enable
powerful tests for systematic errors. Nuclear-spin-dependent
parity violation measurements at the A and F crossings are
shown in Figs. 9(a) and 9(b), respectively. Our final results

for W at each crossing are W (A)/(2π ) = 0.32 ± 0.49 Hz and
W (F)/(2π ) = 0.05 ± 0.51 Hz, where the uncertainties here are
only statistical.

V. SYSTEMATIC ERRORS

Systematic errors were a principal concern in the design of
our experiment and development of the NSD-PV measurement
scheme. In previous experiments using a similar scheme but
with Dy atoms [12], it was observed that stray, nonreversing
electric fields Enr in combination with magnetic-field gradients
∂B/∂z could mimic the NSD-PV signal. To minimize the
systematic contributions resulting from such combinations, we
established the methods detailed in Sec. III for measuring and
then shimming away to zero, as accurately as possible, both
∂B/∂z and Enr .

This section discusses how the magnitude and uncertainty of
possible systematic errors in the NSD-PV weak matrix element
W are determined. First, we outline our strategy for identifying
parameters that produce systematic errors. Then we present
the results of systematic error search measurements conducted
with deliberately amplified Enr fields,B-field inhomogeneities,
and/or offsets in laser detunings. We conclude with our as-
signment of the final systematic error shift, and its associated
uncertainty, in the measurements of W .

A. Strategy for determining systematic errors

Our strategy for identifying systematic errors is as follows.
We first shim imperfections as described above and set upper
bounds on their residual nonzero values. Then we intentionally
amplify an experimental imperfection via an associated control
parameter and make a NSD-PV measurement. We analyze the
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resultant asymmetry as we do for a regular NSD-PV run and de-
fine the result for W as W+d , where the superscript +d signifies
use of an imperfection-controlling parameter with a positive
sign. Next we reverse the sign of the imperfection-controlling
parameter and then make another NSD-PV measurement to
obtain W−d .

The results of these measurements are evaluated using the
following criteria. If (W+d − W−d )/2 is within 3σ of the
null result, we conclude that there is no definitive systematic
contribution associated with the parameter being varied. If, on
the other hand, (W+d − W−d )/2 > 3σ , we treat the result as
suspicious and make additional measurements while chang-
ing the same parameter. If the results from these additional
measurements also yield (W+d − W−d )/2 > 3σ , we conclude
that a mechanism generating a clear systematic offset has been
identified.

In our final systematic error budget, we include contribu-
tions to the uncertainty due to the systematic error associated
with an imperfection-control parameter if either one of the
following criteria are met: (i) The parameter has been observed
to cause a systematic shift in W in a previous NSD-PV
experiment employing measurement techniques similar to ours
or (ii) the parameter produced a definitive change in W , as
described above. However, we include a systematic shift in
our measured W value, that is, a true systematic error, rather
than an uncertainty in a possible systematic error, only when
criterion (ii) is met.

B. Deliberate Enr fields

We use the IR electrodes to generate deliberate Enr (z) field
shapes that could potentially lead to systematic errors. We
employ two different shapes of Enr fields in these systematic
error search measurements: the unipolar pulse, defined in
Eq. (18), and the bipolar pulse, defined in Eq. (19). We divide
the IR into five sections based on the locations of different
steps employed in the NSD-PV measurement sequence: before
(after) the first (second) prism rings, the two prism rings
themselves, and the central region where the sinusoidal E
field is applied. We chose a gap location (a ring) in each
section and intentionally exaggerated the Enr at that location
by applying a voltage step at that gap (a voltage at that ring) to
generate a unipolar (bipolar) E-field pulse considerably larger
than the size of the ambient Enr at that location. Figure 10
shows the center location and peak amplitude of the applied
field pulse for each such measurement and the corresponding
W±d values. Excluding the measurements made with unipolar
pulses centered at gaps 22 and 23 (which are discussed later,
separately, in Sec. V E), all of the W±d values are within
2.1σ of 0, i.e., they cause no definitive change in the W

value. Furthermore, in none of these measurements did we
observe a significant correlation between Wd and the sign of
the intentionally amplified Enr , as would be expected for a true
systematic offset in W .

C. Deliberate B-field inhomogeneities

The RT shim coils of our primary magnet, along with the
minishim coils, allow for a variety of magnetic-field gradients
to be applied. We used this control to search for systematic

FIG. 10. Systematic error search measurements made with in-
tentionally amplified Enr fields. Measurements were made with
deliberately exaggerated (a) bipolar and (b) unipolar field pulses. The
horizontal axes specify the center location and peak amplitude Eb (u)

0

(in mV/cm) of the applied field pulse. Shown on top is the value
Wd

avg = (W+d − W−d )/(2Ad ) and on bottom are the results for W+d

and W−d , i.e., measurements made with Enr pulses with the same loca-
tion and magnitude but amplitude reversed in sign. For reference, the
typical ambientEnr rms amplitude isEa

nr0 = 5.1 mV/cm under normal
NSD-PV run conditions. Data points indicated with blue ellipsoids did
not reproduce when repeated (green triangles) with somewhat smaller
values of the deliberate Enr field pulse and so are not included in the
final systematic error budget. In (b), results shown to the right of the
vertical gray band are from measurements made with a deliberate
unipolar pulse centered near the location of the LP2 laser beam.
These are treated separately (see Sec. V E) since they were found
to be related to a different mechanism.

error contributions resulting from the couplings between de-
liberately amplified magnetic-field inhomogeneities and any
ambient imperfections in the experiment.

We investigated possible systematic errors with three differ-
ent room-temperature shim coils. These coils, referred to as Z1,
Z2, and Z3, give magnetic-field contributions described by the
functions BZ1(z) = AZ1

1 (z − z01) + AZ1
0 , BZ2(z) = AZ2

2 (z −
z02)2 + AZ2

0 , etc. Here the coefficients AZn
k and z0n are values

determined using data from molecular level-crossing signals
(as in Sec. III B), when a known current is applied to each of
these coils. Then, applying a known current to one of these coils
yields a known, deliberately exaggerated B-field imperfection.
We made similar measurements using various minishim coils.

Figure 11 presents the shape of the deliberately exaggerated
B-field inhomogeneity for each of these measurements and the
results obtained for the NSD-PV matrix element W±d with
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FIG. 11. Systematic error search measurements with intentionally amplified B-field inhomogeneities. (a) Deliberately exaggerated B fields
employed in the measurements summarized in (b). The B-field conditions are color coded with the results in (b). Amplification factors
are calculated using the typical standard deviation in the ambient B field, δBa ≈ 0.07 mG, i.e., δBa × 2μB/(2π ) = δ	a/(2π ) = 0.21 kHz,
during NSD-PV runs. Dashed vertical lines represent the parity state projection laser beam locations. (b) Shown on top is the value Wd

avg =
(W+d − W−d )/(2Ad ) and on bottom are the measured values of W±d for different amplified B-field gradient conditions. Triangles (squares)
indicate measurements made with positive (negative) applied B-field inhomogeneity relative to the shapes shown in (a). The horizontal axis
labels indicate the minishim coil (MSC) location (for localized applied B-field pulses) or shape [for B fields applied via the RT shim coils
(RTCs)] of the inhomogeneity and the amplification factor Ad relative to the maximum size of ambient inhomogeneities of the same shape
during NSD-PV data runs.

each of these field imperfections applied. All measurements
are within 1.3σ of the null result and there is no significant
correlation of results with the sign of the applied imperfections,
i.e., W+d and W−d are the same within their uncertainties.

D. Deliberate Enr pulse and linear B-field gradient

We know from numerical simulations that certain combi-
nations of nonreversing E fields and B-field inhomogeneities
mimic the NSD-PV effect and give rise to a nonzero offset
in the deduced value of the weak matrix element W from our
data. Here we describe a simple case of such an effect, which
is amenable to analytic solution. We take the nonreversing E
field to have a Gaussian shape and the B field to have a linear
gradient. We use this case for two purposes. First, by applying
these field imperfections deliberately with known exaggerated
size, we demonstrate that our experiment can detect a signal
with the same form as the NSD-PV signal and replicate the
expected size of the signal. Second, by using our measured
limits on the size of ambient imperfections of the same form
in our apparatus, we set a limit on the size of systematic errors
from this type of imperfection in our actual NSD-PV data.

We define the nonreversing field as a Gaussian function and,
as before, apply it in the presence of a reversible field in the
form of a single cycle sine wave, that is,

Enr (t) = E1e
−(t/σg )2

, (31)

where E1 is the nonreversing field amplitude and σg describes
the width of the nonreversing E field. The B-field inhomo-
geneity is defined such that the detuning 	(t) has the form
	(t) = 	0 + γ t , where 	0 is the uniform detuning applied in
the NSD-PV measurement sequence and γ /2μB = ∂B/∂t is
the linear magnetic-field gradient.

Given these definitions, we calculate the amplitude of pop-
ulation transfer between the nearly degenerate states, similar to
the calculation in Sec. I D. Assuming 	0, dE0 � ω, γ � ω2,
andγ � σ−2

g , and in the limit that the amplitude c+ � 1 so that
first-order perturbation theory holds, we find that the resultant
Gaussian-sine-linear asymmetry AGSL that mimics NSD-PV
effects is given by

AGSL(	0) = 2√
π

E1

E0
γ

σg

2

(
π2

2
− 3 − σ 2

g ω2

4

)
	0

	2
0 + x2

.

(32)

Here x = E1
E0

σg

2
ω2

g√
π

is a frequency scale set by the Enr field
condition; x → 0 in the limit of a vanishing nonreversing field
E1 → 0.

1. Verification and calibration of sensitivity

To compare this simple analytical model to experimental
results, we made NSD-PV measurements while applying a
deliberate near-Gaussian Enr pulse and a B-field linear gradi-
ent. Figure 12 shows two such measurements performed with
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FIG. 12. Measurements made with simultaneously applied deliberate Enr and linear B-field gradient. (a) and (b) Shown on top are the
deliberately applied unipolar Enr pulse centered at gap 16 with amplification factor Ad ≈ 42 and the intentionally applied linear B-field gradient
with amplification factor Ad ≈ 16 and on bottom are the asymmetry data (circles) and fit (line) using Eq. (33) as the model function. (c) Values
of the sign-adjusted asymmetry amplitude Bs = B sgn(γ )sgn(Enr ) for each measurement. The horizontal solid line is the weighted average of
all measurements and the dash-dotted lines indicate the ranges of ±1σ statistical uncertainty. The thick solid line is the predicted value Bc

GSL.

different signs of the B-field gradient. We also made a second
set of measurements in the same manner but with the opposite
sign of E1.

The resulting asymmetry data are fit to a modified version
of the analytical model given in Eq. (32). In particular, we fit
to the function

A(	0) = B	0

	2
0 + x2

+ a0, (33)

where the fit parameters are the asymmetry amplitude B and
asymmetry offset a0. Comparing to Eq. (32), the predicted
value for B is

BGSL = 2√
π

E1

E0
γ

σg

2

(
π2

2
− 3 − σ 2

g ω2

4

)
. (34)

We additionally studied numerical simulations, using the
same input conditions for B(z), Enr (z), and Er (z). In these
simulations, we observed that as the amplitude for the reversing
E field E0 and/or the nonreversing field E1 increases, the
agreement between the predicted value for B by the analytical
model BGSL and the one extracted from the simulated data Bsim

deteriorated. This is due to the inadequacy of the first-order
perturbation approximation for sufficiently large values of E0

and/or E1. In the conditions of our experimental data, the
numerical simulations predicted an asymmetry approximately
equal to 26% smaller than expected from the analytic expres-
sion of Eq. (34). Therefore, we modify our expectation for
the value of B extracted from measurements to the corrected
prediction Bc

GSL = CF BGSL, where CF = 0.74 is required to
match the numerically simulated data for the actual values of
E1/E0 and E0 used in our measurement.

In the experimental measurements, we had E1 =
0.212 V/cm, γ /(2π ) = 37.6 MHz/s, E0 = 1 V/cm, σg =
(1.3 cm)/(616 m/s) = 21 μs, and ω/(2π ) = 11.4 kHz. Then
the expected value for the fit parameter B is Bc

GSL/(2π ) =

(0.74 × 129) Hz = 95 Hz. The weighted average of measure-
ments yields the experimental value Bexpt/(2π ) = 121 ± 8 Hz.
The ratio of this experimental value to the predicted value
is Bexpt/B

c
GSL = 1.26 ± 0.08, indicating that our sensitivity is

calibrated correctly to within ∼25%. Similar measurements,
using a different functional form for the reversing E field and
smaller magnitudes of both fields, yielded consistent results.
This accuracy is sufficient for our current null measurement re-
sult with 138BaF, but in future work a more accurate calibration
should be made.

2. Associated systematic error in NSD-PV data

By comparing Eqs. (9) and (32), we would deduce a nonzero
value for W in the presence of a combined Gaussian Enr

and linear B-field gradient. Under our nominal NSD-PV data
taking conditions, E1 � E0. Then, in Eq. (32), x2 → 0 and the
resulting systematic error contribution to W , 	WGSL

sys , is given
by

	WGSL
sys = WGSL(x2 → 0) = dE1

2
√

πω
γσg

[
π2

2
− 3 − σ 2

g ω2

4

]
.

(35)

The typical value of ambient nonreversing E field localized at
z = z16 (gap 16, the center of the IR) during NSD-PV data
is small and consistent with zero, E1(ambient) = Ea

nr (z16) =
−1.5 ± 3.5 mV/cm, and for a localized field σg ≈ 21 μs,
as before. The linear magnetic-field gradient under normal
operating conditions is also small and consistent with zero,
γ (ambient)/v = ∂	a/∂z/(2π ) = 0.03 ± 0.02 kHz/cm. With
these values, the systematic error shift in W and its associated
uncertainty, arising from this combination of imperfections, is
	WGSL

sys /(2π ) = 0.01 ± 0.02 Hz.

042101-16



MEASURING NUCLEAR-SPIN-DEPENDENT PARITY … PHYSICAL REVIEW A 97, 042101 (2018)

-360 -240 -120 0 120 240 360

-45

-30

-15

0

15

30

45

0 mV/cm
+ 60 mV/cm
-60 mV/cm
+117 mV/cm
-117 mV/cm

W
/(2

π)
(H
z)

nr0*δνL2 [MHz(mV/cm)]

FIG. 13. Plot of W vs Enr0δνL2 from measurements made with a
deliberate offset in the LP2 laser detuning, δνL2, and an intentional
unipolar Enr centered at gap 22. The legend shows the value of Enr0

for each data point. The red line is a fit to the relation W/(2π ) =
CW (Enr0δνL2), yielding CW = 0.095 ± 0.004 Hz/[MHz(mV/cm)].

E. Laser imperfections

A number of laser imperfections are possible in our exper-
iment, such as a laser detuning offset or uncontrolled changes
in the laser intensity. In numerical simulations and preliminary
NSD-PV data, we observed that without the first and the
second parity state projection lasers LP1 and LP2, sensitivity
to systematic contributions resulting from the combination
of Enr and B-field gradients increase dramatically, due to
the retention of information about such fields from outside
the region between these laser beams. Consequently, having
high depletion efficiency for both lasers (i.e., a low OPR
value) is of critical importance. We explored the effects of
these imperfections by deliberately exaggerating them and
then making NSD-PV measurements as outlined in Sec. V A.
Additionally, we investigated systematic effects resulting from
the combination of unipolar Enr pulses centered near the parity
state projection laser application locations (i.e., at z = z10

and z22 for LP1 and LP2, respectively) and offsets in the
corresponding laser detuning.

We did not observe any systematic contribution to W related
to Enr pulses applied near the LP1 beam. Hence, imperfections
related to this laser beam are treated separately in the final
systematic error budget. On the other hand, the combination
of a unipolar Enr field near the LP2 laser beam, ELP2

nr (z) =
Eu(z; z22), and a nonzero detuning offset in this laser, δνL2,
was observed to result in a nonzero shift in W . The resulting
systematic offset in W was found to be proportional to the
product of δνL2 and the amplitudeEnr0 of the local nonreversing
field near z = z22 [see Fig. 13(a)]. In additional data not shown
here, we also observed that the systematic offset associated
with this effect, 	WL2Enr

sys , is proportional to the LP2 laser power.
Hence, the effect has the properties that would be expected
for a dc Stark-induced ac Stark shift. However, to date we
have not found a satisfactory model for an underlying physical
mechanism that captures all observed features of this effect.

This combination of imperfections also was found to result
in a nonzero value for the parameter a1 used to describe a term

in the asymmetry A(	) that is linear in 	 [see Eq. (30)]. We
discuss the implications of this observation in Appendix B.

In order to determine the systematic error in W resulting
from this effect, we must determine the typical ambient laser
detuning offset 	δνL2 during NSD-PV runs. This is done as
follows. First, by deliberately detuning the laser in known
steps, we mapped out the dependence of the OPR on δνL2 and
fit this dependence to a simple functional form for OPR(δνL2).
Then, using the continuously recorded values of OPR during
NSD-PV data runs, we inverted this relationship to determine
the range of values of δνL2 during the run. The average OPR
value for laser LP2 in a typical NSD-PV run is 8%, correspond-
ing to a laser detuning offset of 	δνL2 = −0.3 ± 1.3 MHz.

We determine the systematic error in W using the relation-
ship established in Fig. 13,

W/(2π ) = CW (Enr0δνL2), (36)

where we found CW = 0.095 ± 0.004 Hz/[MHz(mV/cm)].
Here Enr0 is the residual nonreversing E field near the LP2 laser
beam [i.e., Enr (z = z22)], whose typical mean and uncertainty
under normal operation conditions are Ea

nr0(z22) = 1.3 ± 4.7
mV/cm. Together with the typical ambient value for δνL2

given above, the systematic error shift in W and its associ-
ated uncertainty due to this combination of imperfections is
	WL2Enr

sys /(2π ) = 0.04 ± 0.21 Hz.

F. Total systematic shift and uncertainty

We compute the systematic uncertainty in W from the
measurements with deliberately exaggerated parameters in
the following way. As noted previously, we determine the
amplification factor Ad = P d/P a for each type of exaggerated
imperfection. For stray E fields, the rms value of the typical
Anr (z) signal is defined to be the value for P a; for B-field
inhomogeneities, the standard deviation of the typical mea-
suredB field under normal operating conditions is used. For the
effect associated with a laser detuning offset, we determined
the typical ambient laser detuning of LP2 laser as described
above (Sec. V E).

For each type of parameter, we calculate the weighted
average Wd

avg of W+d/Ad and W−d/[−Ad ], and its uncertainty
δWd

avg. Then we define (δWsys)max, the maximum value of the
systematic error in W associated with this parameter (same
pulse shape applied at the same center location, etc.), as
(δWd

sys)
max = |Wd

avg + sgn(Wd
avg)δWd

avg|. The total maximum
systematic contribution for a given type of imperfection (e.g.,
Enr fields, B-field gradients, etc.) is computed by addition in
quadrature of the values (δWd

sys)
max

for each of the individual
parameters of this type that we varied.

Only two combinations of imperfections were found to give
definite shifts in W : (i) linear B-field gradient and unipolar Enr

at z = z16 and (ii) nonzero detuning offset of the LP2 laser
plus Enr near z = z22. The systematic offset and its associated
uncertainty are calculated as detailed in Sec. V D 2 for the
first combination of parameters and in Sec. V E for the second
combination.

Table II presents our total systematic error budget. Fol-
lowing the criteria outlined in Sec. V A, we included con-
tributions from five parameters in the calculation of the
total systematic uncertainty. We find a total systematic
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TABLE II. Systematic shifts and uncertainties in W . All systematic errors are added in quadrature to obtain the total uncertainty in the
systematic error in W .

Parameter Ambient value Shift (	W )sys/(2π ) (Hz) Uncertainty δWsys/(2π ) (Hz)

bipolar Enr pulses Ea
nr0 = 5.1 mV/cm 0.12

unipolar Enr pulses Ea
nr0 = 5.1 mV/cm 0.16

B-field inhomogeneities 	a/(2π ) = 0.21 kHz 0.24
linear B-field gradient and ∂	a/∂z/(2π ) = 0.03 ± 0.02 kHz/cm, −0.01 0.02
unipolar Enr at z = z16 Ea

nr0(z16) = −1.5 ± 3.5 mV/cm
detuning offset in LP2 and 	δνL2 = −0.3 ± 1.3 MHz, −0.04 0.21
Enr at and near z = z22 Ea

nr0(z22) = 1.3 ± 4.7 mV/cm

Total systematic −0.05 0.38

shift 	Wsys/(2π ) = −0.05 Hz and its associated uncertainty
δWsys/(2π ) = 0.38 Hz. We emphasize that our strategy of
determining the total systematic uncertainty has been conser-
vative, i.e., we included contributions from several parameters
despite not observing direct manifestations of related system-
atic errors.

G. Final results

Table III summarizes the weighted average results for each
crossing. The experimentally measured values of the NSD-PV
weak matrix element W in 138BaF at crossings A and F (see
Fig. 1) are

W (A)/(2π ) = 0.29 ± 0.53 ± 0.41 Hz, (37)

W (F)/(2π ) = 0.00 ± 0.55 ± 0.41 Hz, (38)

where the first uncertainty is statistical and the second system-
atic. Recall that the NSD-PV matrix element W connecting
the nearly degenerate levels is given by iW = κ ′WP C̃, where
WP and κ ′ have the same value at every crossing for a
molecule with a given nucleus, whereas C̃ depends on the
quantum numbers of the molecular states at the crossing.
Hence, the matrix element W has a different value at each
crossing, but the quantity Wmol ≡ κ ′WP should be the same
at all crossings. Combining the NSD-PV measurements at
the A and F crossings of 138BaF, we find Wmol/(2π ) =
−0.39 ± 0.95 ± 1.02 Hz. Here, since the systematic errors are
evaluated for the entire set of measurements rather than for
each crossing individually, we take the simple average of the
individual systematic uncertainties (weighted by the statistical
uncertainty for each crossing) as the final value for the total
systematic uncertainty. However, because the statistical errors
are not correlated, we average them in (weighted) quadrature
in the usual way. Combining the statistical and the systematic
errors in quadrature, we obtain our final result:

Wmol/(2π ) ≡ κ ′WP /(2π ) = −0.39 ± 1.40 Hz. (39)

H. Interpretation of the result

In 138BaF, the calculated overlap of the valence electron
with the 19F nucleus leads to WP (F)/(2π ) ∼ 0.05 Hz [28].
Then our NSD-PV measurement with 138Ba19F can be inter-
preted as a measurement of the parameter κ ′ that quantifies the
strength of the NSD-PV interactions of the 19F nucleus. We
find

κ ′(19F) = −8 ± 28. (40)

This may be compared to a simple nuclear shell-model predic-
tion for κ ′(19F), which we denote by κ ′

thy(19F). This is obtained
by assuming that the 19F nucleus is described by a single
valence proton in an s1/2 orbital [36]. This gives κ ′

thy(19F) ≈
−0.08 [6,26,37]. The consistency of our measurement with
this near-zero predicted value demonstrates the absence of
systematic errors outside our range of uncertainty.

However, determining κ ′(19F) was not the primary goal
of this study. It is more useful to compare our demonstrated
sensitivity to that of previous atomic PV experiments and those
projected for future molecular NSD-PV measurements. With
∼80–90 h of data at each crossing, our statistical uncertainty
for the NSD-PV matrix element for each crossing, W (A) or
W (F), is δW/(2π ) < 0.6 Hz. The previous most sensitive
atomic PV experiment, using Dy, had a statistical uncertainty
of 2.9 Hz with ∼30 h of data [12]. In the next generation
of our experiment, NSD-PV in 137BaF should be measured.
The calculated value of WP in 137BaF is WP (137Ba)/(2π ) =
160 ± 15 Hz [23,26,38–41]. The crude expectation for the
NSD-PV nuclear factor κ ′ is κ ′(137Ba) ≈ κ ′

a + κ ′
2 ≈ 0.07 [26].

Assuming the same statistical and systematic uncertainties as
obtained in this work, the projected uncertainty δκ ′ in κ ′(137Ba)
would be δκ ′(137Ba) = ±0.009. This is hence expected to
be sufficient for a measurement of κ ′(137Ba) at the level of
∼10%. Our projected total uncertainty for measuring NSD-PV
in 137BaF would represent a factor of ∼7 improvement on
the sensitivity of the current best atomic measurement of
NSD-PV: This experiment, using Cs atoms to measure the

TABLE III. Final results for all NSD-PV data with 138BaF. The first uncertainty is statistical and the second systematic.

Crossing d/(2π ) [Hz/(V/cm)] C̃ W/(2π ) (Hz) Wmol/(2π ) = κ ′WP /(2π ) (Hz)

A 3360 −0.41i 0.29 ± 0.53 ± 0.41 −0.71 ± 1.29 ± 1.00
F 3530 +0.39i 0.00 ± 0.55 ± 0.41 0.00 ± 1.41 ± 1.05
weighted average −0.39 ± 0.95 ± 1.02
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effect associated with the nucleus 133Cs, yielded κ ′(133Cs) ≈
0.39 ± 0.06 [7]. Based on our results here, the next generation
of our experiment should not be limited by systematic effects,
as long as the actual value of κ ′ is not much smaller than the
predicted value.

A large number of molecular species with the required prop-
erties (level structure, known spectroscopic constants, etc.) for
measuring NSD-PV exist. Measuring the NSD-PV effect in
several different species would make it possible to disentangle
the different contributing effects [42]. The overall size of the
NSD-PV effect scales roughly as (κ ′

2 + κ ′
a)Z2, where Z is the

atomic number. Hence, NSD-PV effects grow very rapidly with
Z. The contribution from Z0 exchange, κ ′

2, is independent of
atomic mass number A, while the contribution from the nuclear
anapole moment, κ ′

a , scales roughly as A2/3 [8]. Hence, we can
distinguish the effect due to the nuclear anapole moment from
that due to Z0 exchange with measurements over a range of
nuclear masses. In heavier nuclei such as 137Ba, 69Ga, and
173Yb, the anapole moment term dominates, whereas in light
nuclei like 9Be, 11B, or 47Ti, Z0 exchange is expected to be
primary [26].

Our technique is sufficiently general and already sensi-
tive enough to enable measurements across a broad range
of diatomic molecules. With planned improvements such
as a much more intense and slower molecular-beam source
[43–46], the sensitivity should even be sufficient to measure
NSD-PV effects in light nuclei, where nuclear structure cal-
culations are increasingly accurate. This gives the promise
of using measurements of this type to provide a long-sought
determination of purely hadronic PV interaction strengths [47].
Future measurements with our technique also may be useful
for constraining the strength of PV interactions mediated by
lighter analogs of the Z0 boson [48].
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APPENDIX A: MEASURING THE NONREVERSING
E FIELD

1. Extracted versus physical fields

By deliberately applying Enr fields with known forms, it
was observed that the functions Enr (z) determined by simple
application of Eqs. (28) and (29) had significant qualitative
differences from the input fields. To account for this, we draw
a distinction between the actual, physical nonreversing field
Enr (z) and the (inaccurate) nonreversing field we infer from
the molecular data by simple application of Eqs. (28) and (29).
We refer to this imperfect extracted field asXnr (z; {zi}; Enr (z)),
since we find that it depends on the set of values {zi} used as
well as on the form of the underlying physical field Enr (z).

To understand the differences between the actual (Enr )
and extracted (Xnr ) nonreversing fields, we made extensive
studies of the response of the system to deliberately applied
nonreversing field pulses Edel

nr (z; zk) with the simple form
of a unipolar field pulse centered at ring gap location zk:

FIG. 14. Experimentally measured actual extracted field pulse
AXPk(z; {{zi}}) (circles), and the corresponding perfect extracted
field pulse PXPk(z; {{zi}}) (solid line), from numerical simula-
tions. Dashed curves show the deliberately applied nonreversing
field pulse Edel

nr (z; zk) used in both the numerical simulations and
the experimental measurements. Both AXPk(z; {{zi}}) functions
were measured with the condition |k − i| � 1. (a) Comparison of
AXP16(z; {{z16}}) and PXP16(z; {{z16}}) for Edel

nr (z; z16). (b) Com-
parison of AXP31(z; {{z30}}) and PXP31(z; {{z30}}) for Edel

nr (z; z31).
Vertical dashed (solid) lines indicate LP1 (LP2) laser beam locations
(ends of the IR).

Edel
nr (z; zk) = Eu(z; zk) [with peak amplitude Edel

nr0 = Eu
0 (δV =

0.7 V)]. For these studies, we used a simple choice for the set of
reversible field pulses, namely, we apply reversible field pulses
Er (z; zi) to a set of three adjacent gap locations {zi−1,zi,zi+1}.
We denote such a triplet of gap locations for the reversible field
pulses by {{zi}}. The extracted fields under these conditions
were found with experimental data and also with simulated data
generated by numerical solutions of the Schrödinger equation
(20); both were subjected to the same extraction analysis.

In these studies, it became clear (in both the numerical
simulations and the experimental data) that the finite range
of detunings employed in our procedure led to significant
spectral windowing artifacts. The flat-top window implicit
in our procedure (since we take data over a finite range
of detunings and do not weight points differently) leads to
significant broadening and sidelobes when transformed to the
time-position domain (see Fig. 14). Attempts to use other
windowing strategies did not lead to acceptable solutions.
Instead, we used the following procedures to account for these
effects.

As described earlier, we assume that Enr (z) can be written as
a superposition of unipolar field pulses Eu(z; zk), with associ-
ated weighting coefficients ck . Our field extraction procedure,
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TABLE IV. Chosen set of three adjacent locations at which Er (z; zi) is applied during the sequence of measurements used to determine the
extracted nonreversing field function Xnr (z).

Middle gap number Significance Set of three adjacent
of applied Er set locations Er applied

i = 2 first ring {{z2}} ≡ {z1,z2,z3}
i = 5 halfway between beginning of IR and LP1 laser beam {{z5}} ≡ {z4,z5,z6}
i = 10 gap just before first prism ring {{z10}} ≡ {z9,z10,z11}
i = 16 central electrode in the IR {{z16}} ≡ {z15,z16,z17}
i = 21 gap just before second prism ring {{z21}} ≡ {z20,z21,z22}
i = 27 halfway between LP2 laser beam and end of IR {{z27}} ≡ {z26,z27,z28}
i = 30 last ring {{z30}} ≡ {z29,z30,z31}

described above, leads to a noticeably different result, the
function we call Xnr (z; {zi}; Enr (z)). However, all steps in
the extraction procedure are linear in the fields of interest.
Hence, it should be the case that Xnr (z; {zi}) can be written
as a superposition of the functions X (z; {zi}; Edel

nr (z; zk)) that
result from applying the same extraction procedure to the
unipolar field “basis” pulses. In other words, these functions
(the extracted versions of the input basis functions) can act as
an effective basis set for any extracted function Xnr (z; {zi}).
Then determining the coefficients ck such that

Xnr (z; {zi}; Enr (z)) =
31∑

k=1

X
(
z; {zi}; Edel

nr (z; zk)
)

(A1)

is sufficient for determining Enr (z), since the same coefficients
should appear in its expansion in terms of unipolar field pulses.

With this approach, the next task was to determine ac-
curate representations of the extracted pulse basis functions
X (z; {zi}; Edel

nr (z; zk)). We noticed significant discrepancies
between the measured and numerically simulated versions of
these functions, except when the distance |zi − zk| between
the centers of the nonreversing field pulse zk and the reversible
field pulses zi was sufficiently small. (This was found to
be due primarily to the finite longitudinal velocity spread
of the molecular beam. When averaged over the molecular
ensemble, this leads to effective dephasing of the interfering
amplitudes when Enr and Er are widely separated in time.) We
found that, so long as |k − i| � 5, the simulated and measured
versions of the extracted fields agree out to |z − zk| � 2 cm.
Then, to ensure that every position z in the IR is probed
with a reversible field pulse sufficiently near its location, we
make final Enr (z) measurements with seven different sets {{zi}}
of reversible pulse locations. The list of these sets of gap
triplets is given in Table IV. This choice effectively divides
the interaction region into seven sections such that reliable
data on Enr in each section are available from reversible field
pulses applied in that section.

We find it useful to define the actual extracted field pulses
AXPk(z; {{zi}}), i.e., the extracted field from experimental data
with an applied unipolar basis set pulse centered at gap k and
determined by applying reversible pulses at the gap triplet
{{zi}}: AXPk(z; {{zi}}) = X (z,{{zi}}; Edel

nr (z; zk)). Ideally, we
would measure AXPk(z; {{zi}}) at every gap k = 1, . . . ,31
with a nearby reversible pulse gap triplet {{zi}} and use these
as the basis set for determining the coefficients ck that define
Xnr (z) and Enr (z). However, these experimentally determined

functions are contaminated by noise and other imperfections.
Moreover, generating this complete set of data would be even
more time consuming than taking a full set of NSD-PV data.

Instead, we used a limited set of experimental data of this
type, in combination with numerically simulated data, to gen-
erate a full set of effective basis functions for the extracted field.
This was done as follows. We began with nine AXPk(z; {{zi}})
measurements, at k = 1,5,10,11,16,21,22,27,31; for each,
the reversible field pulse set {{zi}} was chosen from the set
in Table IV so that at least one member of the set satisfies the
condition |k − i| � 1. We refer to the set of values of k for
which AXPk(z) measurements were taken as {k}meas. Next we
generated the analogous extracted field pulses, but now with
numerically simulated data rather than actual experimental
data, for all Edel

nr (z; zk) center locations (k = 1–31). For each,
the location of the reversible field pulse set {{zi}} was chosen to
be the closest to zk among the sets in Table IV. We refer to these
functions extracted from simulated data as the perfect extracted
field pulse functions PXPk(z; {{zi}}). To (partially) account for
any differences between these (noise-free) perfect extracted
pulses and the actual experimental response of the system, we
rescale the PXPk(z; {{zi}}) functions to make them match, as
well as possible, the actual extracted pulses AXPk(z; {{zi}}).
These rescaled noise-free functions, referred to as the fitted
extracted field pulse functions FXPk(z; {{zi}}), are defined as

FXPk(z; {{zi}}) = SkPXPk(z; {{zi}}), (A2)

where the quantities Sk are scaling coefficients. We define their
values as follows. For values of k in the set {k}meas, the scaling
coefficients are chosen to minimize the mean-square deviation
between the perfect and actual extracted pulses, i.e., such that∫

|SkPXPk(z; {{zi}}) − AXPk(z; {{zi}})|2dz (A3)

is minimized. For other values k = k′, outside the set {k}meas,
we set the scaling coefficient Sk′ as follows. We find the nearest
value to k′, within the set {k}meas, that shared the same set {{zi}}
of reversible field pulses. Denoting this nearest value by knear,
we then set Sk′ = Sknear .

This final set of scaled functions FXPk(z; {{zi}}), k =
1–31, forms an effective nonorthonormal (but complete) basis
set for the extracted field functions, which is both noise-free
and the best match to experimentally measured extracted
response functions. Figure 14 shows examples of the delib-
erately applied pulses Edel

nr (z; zk) as well as typical data for
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the corresponding extracted functions AXPk(z; {{zi}}) and
PXP16(z; {{z16}}).

2. Assigned nonreversing electric field

We ultimately determine the unknown ambient nonre-
versing field Enr (z) with the following procedure. We apply
reversing unipolar field pulses at the gap triplets {{zi}} given
in Table IV and calculate the extracted nonreversing field
Xnr (z; {{zi}}; Enr (z)) with uncertainties δXnr (z; {{zi}}; Enr (z)).
We then write Xnr (z) as a superposition of the effective basis
functions FXPk(z), with a set of associated weighting coeffi-
cients ck . The ck values and their uncertainties are determined
by minimizing the deviation between Xnr (z) and the linear
combination of FXPk(z) functions. That is, we assign ck by
minimizing the expression∫ ∑

i

|Xnr (z; {{zi}}) − ∑31
k=1 ckFXPk(z; {{zi}})|2

|f (|z − zi |)δXnr (z; {{zi}})|2dz
. (A4)

Here the weighting function 1/f (|z − zi |) is a simple analytic
form chosen to account for the fact that when |z − zk| is too
large, the discrepancy between actual and perfect field pulses is

significant. We use f (|z − zi |) =
√

1 + ( |z−zi |
	z

)4, where 	z =
0.5 cm is chosen empirically to generate a good match between
data and fits when deliberate nonreversing fields of the form
Edel

nr (z; zk) are applied and then subjected to the extraction
procedure.

Then, finally, we can determine the assigned nonreversing
field Anr (z), which is our best estimate of the ambient non-
reversing field determined from this complex procedure. This
function is given by

Anr (z) =
31∑

k=1

ckEdel
nr (z; zk), (A5)

where the set of coefficients {ck} is determined as described
above.

APPENDIX B: SECOND PARITY STATE PROJECTION
LASER IMPERFECTIONS AND a1 FIT PARAMETER

We observed a clear linear relationship between a1 and W

(Fig. 15) in measurements with the combination of a unipolar
Enr field near LP2 laser beam (i.e., near z = z22), Eu

nr (z; z22),
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a 1
(H
z-
1 )

W/(2π) (Hz)

δνL2 = 1.0 ± 0.9 MHz
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δνL2 = 2.0 ± 0.5 MHz

δνL2 = -2.3 ± 0.5 MHz

δνL2 = 2.7 ± 0.4 MHz

δνL2 = −3.0 ± 0.4 MHz

FIG. 15. Plot of a1 vs W from measurements made with a deliber-
ate offset in the LP2 laser detuning δνL2 and an intentionally amplified
unipolar Enr centered at z = z22. The red line is a fit to the linear
relationship a1 = b1W . This yields b1 = (−6.4 ± 0.4) × 10−8 Hz−2.

and a nonzero detuning offset in this laser, δνL2. Thus, a
nonzero a1 fit result in a regular NSD-PV run (i.e., without
any parameters deliberately exaggerated) could be treated as
a preliminary indication of this type of systematic error as
well. This correlation between a1 and W provides us with an
additional and independent method of checking the systematic
contribution to W . Using the observed relationship a1 = b1W ,
we project the maximum systematic contribution to W , Wmax

sys ,
is Wmax

sys = a
avg
1 /b1, where a

avg
1 is the average a1 fit result from

NSD-PV runs given in Fig. 9 and b1 is the slope of the line in
Fig. 15. The values of Wmax

sys for each crossing, deduced using
this approach, are

(
Wmax

sys

)A
/(2π ) = 0.3 ± 1.0 Hz, (B1)(

Wmax
sys

)F
/(2π ) = 0.4 ± 1.0 Hz, (B2)

each consistent with the null result. The method described in
the main text for evaluating this contribution to the systematic
error yields smaller uncertainties. Hence, we treat this eval-
uation of Wmax

sys as a preliminary check for systematic errors
related to δνL2 and Eu

nr (z22) and use the calculations described
in Sec. V F to assign the total systematic uncertainty in W .
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