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Experimental nonlocality-based randomness generation with nonprojective measurements
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We report on an optical setup generating more than one bit of randomness from one entangled bit (i.e., a
maximally entangled state of two qubits). The amount of randomness is certified through the observation of Bell
nonlocal correlations. To attain this result we implemented a high-purity entanglement source and a nonprojective
three-outcome measurement. Our implementation achieves a gain of 27% of randomness as compared with the
standard methods using projective measurements. Additionally, we estimate the amount of randomness certified
in a one-sided device-independent scenario, through the observation of Einstein-Podolsky-Rosen steering. Our
results prove that nonprojective quantum measurements allow extending the limits for nonlocality-based certified
randomness generation using current technology.
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The existence of random processes, besides having philo-
sophical consequences, has applications in many disciplines
such as cryptography and simulations of physical, biological,
and social phenomena. Mismatches between the modeling and
the actual working of random number generators (RNGs) may
lead to wrong conclusions. Quantum technologies provide a
solution to this problem through device-independent (DI) ran-
domness generation protocols [1–3] built from Bell nonlocal
correlations [4,5]. To date, all implementations of DIRNGs
used projective measurements on quantum bits [2,6,7], thus
being limited to one random bit per round and particle. Here,
we report on an optical setup providing more than one random
bit per round from one entangled bit [8]. To attain this result, we
implement a Bell test involving a nonprojective measurement
on an entangled state of high purity. Our work demonstrates
the importance of nonprojective measurements to attain the
ultimate limits for DIRNG.

The standard scenario for nonlocality-based randomness
generation consists of a user, who has access to two quantum
measurement devices A and B, which have input choices and
provide outputs [3] (see Fig. 1). The user’s goal is to certify
that the outcomes produced in the experiment are random. We
consider the strongest definition of randomness in which the
user’s outcomes are demanded to be unpredictable not only to
her, but to any other observer [3]. This, besides being funda-
mentally important, guarantees that the obtained randomness
is private, a requirement for cryptographic applications [1,2,9].
In the device-independent scenario, nothing is assumed on the
inner working of the measurement devices, which are treated
as quantum black boxes fed with classical inputs x and y (the
measurement choices) and producing classical outputs a and b

(the measurement results). After collecting enough statistics,
the user’s description of the devices is given by the set of
conditional probabilities P (ab|xy).

In randomness certification protocols it is assumed that
the AB state is the reduced state of a tripartite state |�〉ABE

produced by an outsider, Eve, who holds a device E. Moreover,
Eve could have prepared the measurement devices, and thus
has a complete description of the measurements in A and
B. The randomness in the user’s outcome a for a particular
measurement x = x∗ can be estimated through the so-called
guessing probability [10,11],

Pguess = max
{|�〉,�a|x ,�b|y ,�e}

∑

a

〈�|�a|x∗ ⊗ I ⊗ �e=a|�〉 (1)

such that

P (ab|xy) = 〈�|�a|x ⊗ �b|y ⊗ I|�〉. (2)

This quantity gives the maximum probability that E’s outcome
e matches the user’s outcome a for measurement x∗ over
all possible quantum realizations, described by a tripartite
quantum state |�〉 and measurements �a|x , �b|y , and �e for
devices A, B, and E, compatible with the observed distribution
P (ab|xy). The guessing probability can be upper bounded
by semidefinite programming (SDP) techniques [10,11]. The
estimated randomness can be expressed in bits through
R = − log2(Pguess). In order to guarantee some amount of
randomness, the user’s observed correlations must be nonlocal,
that is, violate a Bell inequality. If this is not the case, they can
be reproduced by a local and deterministic model and therefore
Pguess = 1 [3].

The main motivation of this Rapid Communication is to
probe the ultimate limits for randomness certification using
quantum resources. In order to observe a Bell violation be-
tween A and B, the user’s state must be entangled. If the state
is of two qubits and the measurements are projective, as in
standard Bell experiments, one cannot certify more than one
random bit from each qubit. However, this is no longer the
case if one uses nonprojective measurements [8]. We report
here a photonic experiment demonstrating how nonprojective
measurements offer a significant advantage in a Bell scenario
and allow one to certify more than one random bit from a qubit.
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FIG. 1. Device-independent randomness generation scenario: A
user applies uncharacterized measurements x and y to two devices A
and B, obtaining outcomes a and b, respectively. In the experiment,
the user assumes that the state of the two devices A and B is the
reduced state of a pure tripartite quantum state |�〉 correlated with an
adversarial party, Eve, who holds device E. No further assumption is
made on Eve, who could have a complete description not only of this
quantum state, but also of all the measurements performed on it. In
order to guess the outcomes produced in the experiment, Eve applies a
measurement to her device E that produces outcomes e. Without loss
of generality, this outcome can be seen as Eve’s guess on the user’s
results.

Our experiment is similar to a standard Bell test using
photons entangled in polarization [see Fig. 2(a)]. However,
we need to solve two experimental challenges that make it
unique with respect to previous experiments and that are
crucial to achieve the certification of more than one random
bit. First, we need to prepare a highly entangled state pro-
viding a very high two-photon visibility. To achieve this, we
use an ultrabright spontaneous parametric down-conversion

source, where a type-II nonlinear periodically poled potassium
titanyl phosphate (PPKTP) crystal is pumped by a continuous-
wave 405-nm laser to generate 810-nm polarization-entangled
photons [13–17]. The nonlinear crystal is placed inside an
intrinsically phase-stable Sagnac interferometer, which is
composed of two laser mirrors, a half-wave plate (HWP),
and a polarizing beam-splitter (PBS) cube. The clockwise
and counterclockwise propagating modes of the generated
pair of photons overlap inside the interferometer, resulting
in the biphoton Bell state |ψ−〉 = (|HV 〉 − |V H 〉)/√2. We
carefully control the spatial and spectral modes of the generated
photons. Semrock high-quality (peak transmission >90%)
narrow bandpass [full width at half maximum (FWHM) of
0.5 nm] filters centered at 810 nm are used to ensure that
phase-matching conditions are achieved with the horizontal
and vertical polarization modes at degenerated frequencies.
Then, we enforce path indistinguishability of the photon pair
modes (HV and V H ) by coupling the generated down-
converted photons into single-mode fibers (SMFs) after being
transmitted by the PBS. We also adopt high-quality polarizing
optics components to ensure a polarization extinct ratio greater
than 107 : 1. This guarantees that the two-photon visibility
is not limited by the polarization contrast of the detection
apparatuses. Then, we use high-resolution coincidence field
programmable gate array electronics to implement 500-ps
coincidence windows, thus drastically reducing the accidental
coincidence count probability to less than 10−5 (PerkinElmer
single-photon avalanche detectors with an overall detection
efficiency of 15% were used). Owing to these measures, we
attain a high overall two-photon visibility of (99.7 ± 0.2)%.

FIG. 2. (a) Our experimental setup is composed of an ultrabright parametric down-conversion source (see main text) generating a near-perfect
|ψ−〉 = (|HV 〉 − |V H 〉)/√2 polarization state, followed by polarization measurements in each photon. The measurements x,y = 1,2,3 have
binary outcomes and are implemented using a quarter-wave plate (QWP), a HWP, and a PBS, followed by avalanche photodiode detectors
(APDs). A removable mirror (RM) allows one to select between measurements x = 1,2,3 and x = 4. The fourth and nonprojective measurement,
x = 4, performed by device A is implemented by a double-path Sagnac interferometer. (b) Bloch sphere representation of the measurements
performed in A and B. The measurements labeled by x,y = 1,2,3 are given by symmetrically spaced two-outcome (projective) measurements in
the x-z plane, and correspond to the settings required to maximally violate the chained Bell inequality [12]. Measurement x = 4 has three
outcomes, corresponding to Bloch vectors equally spaced in the x-z plane.
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FIG. 3. (a) The Sagnac interferometer used to implement the
three-outcome POVM. (b) shows the corresponding quantum circuit.

Last, we resort to an active power control system to stabilize
the pump beam incident power. This minimizes signaling
in the recorded data as the marginal counts are kept stable
over the entire data acquisition procedure.

Second, and contrary to standard Bell tests, our experiment
consists not only of projective measurements, but involves
a nonprojective measurement defined by a positive-operator-
valued measure (POVM). Indeed, while device B applies three
projective measurements (labeled by y = 1,2,3), device A can
implement three projective measurements (x = 1,2,3) plus a
POVM measurement (x = 4) of three outcomes. All projective
measurements are implemented by usual polarization analyz-
ers. The nonprojective measurement used in our experiment
consists of three outcomes, associated with POVM elements
�i = 2

3 |ψi〉〈ψi |, where

|ψ0〉 = |V 〉,
|ψ1〉 = − 1

2 (|V 〉 +
√

3|H 〉),
|ψ2〉 = − 1

2 (|V 〉 −
√

3|H 〉). (3)

This measurement is obtained in our setup by coherently
coupling to additional spatial modes through the Sagnac
intereferometer in Fig. 3(a).

We consider the polarization basis for the single photon
{|H 〉,|V 〉} and two spatial modes {|0〉,|1〉} created by the
polarizing beam splitter (PBS) which defines the Sagnac
interferometer. The action of the interferometer can be better
understood by the quantum circuit in Fig. 3(b): A single photon
with polarization |ψ〉 enters through port |0〉 of the PBS and
populates the spatial modes according to

|H 〉|0〉 → |H 〉|0〉,
|V 〉|0〉 → |V 〉|1〉. (4)

The input port |1〉 is fed with vacuum, but an analogous
analysis of its working completes the specification of the
controlled-NOT (CNOT) gate implemented by the PBS. Once
inside the interferometer, half-wave plates at angles θ1 and
θ2 rotate polarization depending on the spatial mode of the
photon. That is, internal half-wave plates implement controlled
operations C1(θ1) controlled by the state |0〉 and C2(θ2). A new
passage through the same PBS implements a second CNOT gate
controlled by the polarization. Finally, we insert a half-wave
plate on output mode |0〉 at θ3 implementing the controlled
operation C3(θ3).

The total unitary transformation which couples polarization
with spatial modes is given

U = C3(θ3) · CNOT · C2(θ2) · C1(θ1) · CNOT. (5)

The coupling matrix (5) followed by detection in spatial modes
defines a family of POVMs in polarization parametrized by
θ1, θ2, and θ3. In order to obtain this extremal POVM we
chose the settings θ1 = 0, θ2 = 2sin

√
2/3, and θ3 = π/2. With

these settings, the effect of U on the states {|ψ0〉,|ψ1〉,|ψ2〉} of
Eq. (4) is

|ψ0〉 →
√

1/6|0〉|H 〉 +
√

1/6|0〉|V 〉 +
√

2/3|1〉|V 〉,
|ψ1〉 →

√
2/3|0〉|H 〉 +

√
1/6|0〉|V 〉 +

√
1/6|1〉|V 〉,

|ψ2〉 →
√

1/6|0〉|H 〉 +
√

2/3|0〉|V 〉 +
√

1/6|1〉|V 〉. (6)

By inserting a PBS in the outcome mode |0〉 we obtain the
three outcome ports with the measurement statistics defining
the desired POVM.

We also notice that in our work we invoke the fair-sampling
assumption [5], which we use to discard the no-detection
events. This assumption is highly debatable in DI crypto-
graphic applications, in which two distant users are connected
by a channel whose losses can be simulated by an eavesdropper.
But note that it is less critical in DIRNG protocols in which
the two devices are in the same location and under the control
of an honest user.

Using the estimated visibilities we first run a numerical
search to find measurements that maximize the amount of
randomness generated in our scenario. This search led us to
the measurement settings shown in Fig. 2(b). By implementing
these measurements we obtained a collection of observed ex-
perimental frequencies f (ab|xy). The raw data obtained from
measurements are available in Ref. [18]. Retrieving the amount
of randomness from these data is not straightforward because
the probability distributions P (ab|xy) obtained upon normal-
izing these frequencies are ill defined due to the finite statistics
regime intrinsic to any implementation. For instance, they do
not satisfy the no-signaling conditions (satisfied in quantum
mechanics) defined by

∑
b P (ab|xy) = ∑

b P (ab|xy ′) (no
signaling from B to A) and

∑
a P (ab|xy) = ∑

a P (ab|x ′y) (no
signaling from A to B). In order to circumvent this problem
we use the following steps. From the experimental frequencies
f (ab|xy) we generated a set of no-signaling probability
distributions PNS = {PNS(ab|xy)} through the Collins-Gisin
parametrization of the space of probabilities [19]. By consid-
ering marginal probabilities P (a|x,y = 1) and P (b|x = 1,y),
the Collins-Gisin representation enforces the no-signaling
constraints of P by dropping all probabilities involving the
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last outcome of all measurements. For instance, for the POVM
that has three outcomes, the probability PNS(a = 3,b|xy) is
implicitly set by imposing PNS(a = 3,b|xy) = P (a = 3|x,

y = 1) − P (a = 2,b|xy) − P (a = 1|xy). With PNS we run
the semidefinite (SDP) program proposed in Refs. [10,11], that
provides an upper bound to the guessing probability (1),

Pguess = max
{P (abe|xy)}

P (a = e|x∗), (7)

such that

P (ab|xy) =
∑

e

P (a,b,e|x,y) ∀ a,b,x,y, (8)

P (abe|xy) � 0 ∀ a,b,e,x,y, (9)
∑

abe

P (abe|xy) = 1 ∀ x,y, (10)

{P (a,b,e|x,y)}a,b,e,x,y ∈ Q2. (11)

This expression gives the maximum probability that Eve’s
outcomes match Alice’s, given that the distributions observed
are marginals of a joint tripartite distribution with Eve. The
last constraint means that the joint distributions lie in the set
Q2, an outer approximation to the set of quantum probability
distributionsQ proposed in Ref. [20]. The solution of this SDP
optimization provides a linear function S(P ) whose value is
a lower bound on the amount of randomness of any set of
distributions P . We finally rewrite S in terms of expected
values and use it to estimate the amount of randomness in
our experiment. The errors of the recorded probabilities are
calculated assuming fair samples from Poissonian distributions
and Gaussian error propagation. We note that our statistical
analysis considers the asymptotic limit of many experimental
runs. A more detailed statistical method considering finite
statistics [2,7,21,22] is beyond the scope of this work.

After these steps we were able to certify

RDI
POVM = 1.18 ± 0.08 (12)

bits of randomness per use of the devices. As a matter of
comparison we also performed the same analysis in the case
where Alice and Bob use only the projective measurements
x,y = 1,2,3 and randomness is obtained from the setting
x = 1. In this case, RDI

proj = 0.93 ± 0.08. Thus, the addition of
a three-outcome nonprojective measurement provided a gain
of 27% of randomness.

In our setup, we can also certify randomness in a
semidevice-independent scenario in which device B is assumed
to be fully characterized. In this scenario, randomness can

be certified by the presence of quantum steering [23], a
situation where box A is still treated as a black box with
inputs x and outputs a, while B is assumed to be able to make
tomography of the conditional states ρB

a|x . The information the
user has in this situation can be summarized in the set of un-
normalized quantum sates {σB

a|x}a,x
, where σB

a|x = p(a|x)ρB
a|x .

Notice that, in order to obtain a set {σB
a|x}a,x

that satisfies the

no-signaling conditions
∑

a σB
a|x = ∑

a σB
a|x ′ , we also need to

resort to the distributions PNS obtained through the Collins-
Gisin parametrization. Given the knowledge of {σa|x}a,x , Alice
and Bob can estimate the amount of randomness in Alice’s
outcomes through the following semidefinite program [24],

Pguess(x
∗) = max

{σ e
a|x }

Tr
∑

e

σ e
a=e|x∗ (13)

such that
∑

e

σ e
a|x = σa|x ∀ a,x, (14)

∑

a

σ e
a|x =

∑

a

σ e
a|x ′ ∀ e,x,x ′, (15)

σ e
a|x � 0 ∀ a,x,e. (16)

Once more, the solution to this program gives a linear
function (a quantum steering inequality) of the experimental
data that can be used to calculate the guessing probability
and appropriate errors. The amount of randomness can be
calculated in a similar manner as in (1) [24] and, in this case,
we were able to certify RSt

POVM = 1.27 ± 0.14.
In the context of certified RNG protocols, our work is

relevant both from a fundamental and applied perspective,
as it demonstrates how the more general class of nonpro-
jective quantum measurements allows extending the limits
for nonlocality-based certified randomness generation using
current technology. In the scenario of device-independent
quantum information processing, we show that a gain of 27% in
the rate of random bit string generation is possible. In the case
of semidevice-independent RNG protocols, we demonstrate
that this gain can be improved to 36%.
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