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Transmission and correlation properties of a two-photon pulse are studied in a one-dimensional waveguide
(1DW) in the presence of three types of quantum emitters: two-level atom (TLA), side optical cavity (SOC),
and Jaynes-Cummings model (JCM). Since there are many plane-wave components for a two-photon pulse, a
nonlinear waveguide dispersion is used instead of the linearized one. The two-photon transmission spectra become
flatter with decreasing the pulse width. With respect to the δ coupling between the 1DW and quantum emitter
the transmission dips show a blueshift for the non-δ one and the blueshift first increases and then decreases with
increasing the width of the coupling. The TLA and JCM can induce an effective photon-photon interaction that
depends on the distance between the two photons, while the SOC cannot. We show that the 1DW coupled with
the TLA or JCM is able to evaluate the overlap of the two photons and that the non-δ coupling has potential for
controlling the two-photon correlation.
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I. INTRODUCTION

Operating single photons occupies an important position
in quantum informatics [1–5], since as qubit carriers photons
can transport fast and reliably over long distances or time [6].
One-dimensional waveguides (1DWs) coupled with quantum
emitters provide a candidate for manipulating few-photon
states [7–12]. Single-photon transportation was widely investi-
gated in theory [13–19] and experiment [5,20–23]. Since there
is no direct interaction between photons, it is a challenge to im-
plement two-qubit gates [24,25], though they are necessary for
operating quantum data encoded in photon states [26]. Remark-
able attempts were made to address this difficulty by increasing
nonlinearities at the level of individual photons [1,27,28]. One
scheme is to use the 1DWs that are coupled with quantum
emitters, such as two-level atoms (TLAs) [13,14,29–33], side
optical cavities (SOCs) [34], or Jaynes-Cummings models
(JCMs) [35–38]. The 1DWs cast by micro- and nanowires or
line defects in photonic crystals confine photons to transport in
one direction [21–23]. When the 1DW is coupled with quantum
emitters, strong photon-emitter interaction opens an avenue
for entanglement transfer [33], quantum networks [37], and
other quantum devices. The quantum interference between the
incident photon and that from the quantum emitters results
in a complete single-photon reflection [39,40], multiphoton
bound states [41–43], and photon clouds near quantum emitters
[44–47]. Similar to the TLA, other atomlike objects such
as quantum dots and superconducting qubits were also used
due to their tunabilities [48–50]. Quantum electrodynamical
systems of superconducting circuits [48,51] and optomechan-
ical architectures [20,36,37] are typical applications for the
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1DW coupled with the JCM with which the photon blockade
effect [16,52] was observed. Moreover, a high-Q optical cavity
coupled with quantum emitters can serve as a node in quantum
networks [53].

Scattering dynamics of single-photon wave packets with
ultranarrow bandwidth in the 1DWs can be studied by solving
dynamical Schrödinger equations [34]. The TLA, SOC, and
JCM show effectiveness for controlling the photon pulse in
the 1DWs, such as waveform tailoring [54]. They also show
strong influence on the transport of two-photon states, as well
as the two-photon correlation [55]. We will focus on this topic
in the present work, namely, the influence of the TLA, SOC,
and JCM on the two-photon transmission and correlation in the
1DW. Compared with the single-photon case, the dynamics
of the two-photon wave packets is much more complicated
due to the two-photon correlation and nonlinearity of the TLA
and JCM. For convenience we denote the quantum systems of
the 1DWs that are coupled with the TLA, SOC, and JCM as
1DW-TLA, 1DW-SOC, and 1DW-JCM, respectively. For these
three types of quantum systems most researchers adopted the
δ function [34] to describe the coupling between the 1DW and
quantum emitters. However, when the transverse size of the
SOC is comparable to the wavelength of the incident light, the
δ function is not available and thus the non-δ function should
be used [56]. Existing methods for the two-photon scattering
problem includes input-output [15,57], Lehmann-Symanzik-
Zimmermann formalism [58,59], and the real-space formalism
[34]. We use the real-space formalism to account for the non-δ
coupling effects. A schematics for the 1DW non-δ coupled
with a quantum emitter is given in Fig. 1, where the quantum
emitter may be the TLA, SOC, or JCM. Their influences on
the two-photon transmission and correlation are analyzed and
compared mutually.

This work is organized as follows. In Sec. II we introduce
the model and related formulas for the three quantum systems.
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Then, we discuss the two-photon transmission in Sec. III and
two-photon correlation in Sec. IV. At last, a brief conclusion
is summarized in Sec. V.

II. MODEL AND FORMULAS

The quantum system of the 1DW side coupled with a
quantum emitter (see Fig. 1) is governed by the Hamiltonian

H = Hw +He +Hi . (1)

Hw and He describe the waveguide and quantum emitter,
respectively, andHi corresponds to their interaction.Hw reads

Hw =
∑

μ

∫
dxψ̂†

μ(x)ω̂μ(i∂x)ψ̂μ(x), (2)

where μ ∈ {r, l} denotes the right-/left-moving photon in the
waveguide with the creation field ψ̂

†
r/ l(x) and energy operators

ω̂r/ l(i∂x). ω̂μ(i∂x) is determined by the waveguide dispersion
ω(k), i.e., ω̂r/ l(i∂x) = ω(−/+i∂x). We take

ω(k) = ω0

√
1 +

(
k

k0

)2

, (3)

where ω0 and k0 measure the cut-off energy and lateral
restraint of the waveguide. It represents the dispersion of a two-
dimensional confined waveguide, such as a one-dimensional
rectangular waveguide or a cylindrical waveguide. This dis-
persion gives a k-dependent group velocity,

vg = ω0

k0

k

k0

(
1 + k2

0

k2

)− 1
2

. (4)

In most works ω(k) is linearized near the characteristic energies
of the quantum emitter for simplicity, while this nonlinear
dispersion is kept throughout the work. This is because the
incident pulse we consider contains many plane-wave com-
ponents, and the linearization approximation is not always
valid. We assume that the quantum emitter has n modes and
denote them as {|j 〉}. Each mode with energy ω̃j has a creation
(annihilation) operator α̂

†
j (α̂j ), and thusHe is a function of α̂

†
j

FIG. 1. Schematics of a waveguide side coupled with a quantum
emitter. The yellow curves represent a two-photon pulse in the
waveguide whose non-δ coupling with the quantum emitter is denoted
by black arrows. The quantum emitter considered may be the TLA,
SOC, or JCM.

and α̂j , namely,

He = He({α†
j },{αj }). (5)

The interaction HamiltonianHi has the form

Hi =
∑
μ,j

∫
dxVj (x)ψ̂†

μ(x)α̂j + H.c., (6)

where Vj (x) is the coupling strength between the photon field
and quantum emitter mode |j 〉.

We consider three types of quantum emitters: (i) TLA, (ii)
SOC, and (iii) JCM. For the TLA only one excited state exists,
that is, α̂† = f̂

†
e f̂g and He = ω̃ef̂

†
e f̂e + ω̃gf̂

†
g f̂g , where f̂

†
g/e

(f̂g/e) are the creation (annihilation) operators of the excited
or ground electron with energies ω̃e/g . The coupling V (x) is
described by a δ function, i.e., V (x) = V0δ(x). Similar to the
TLA we consider only one mode in the SOC for which α̂† =
ĉ† and He = ω̃cĉ

†ĉ, where ĉ† is the creation operator of the
cavity photon. Since the SOC can have a large size along the
waveguide, we adopt the Gaussian coupling

V (x) = V0

(
1

4
πw2

)−1/2

e−4x2/w2
. (7)

Its Fourier transform is Vk = V0e
−k2w2/16. w measures the

width of SOC and when w → 0 V (x) tends to V0δ(x). Because
the JCM describes the coupling between one cavity (also a
SOC) and one TLA, it has two modes described by α̂

†
c =

ĉ† and α̂
†
a = f̂

†
e f̂g with He = ω̃ef̂

†
e f̂e + ω̃gf̂

†
g f̂g + ω̃cĉ

†ĉ +
g(ĉ†f̂ †

g f̂e + f̂
†
e f̂gĉ). The subscript indices of c and a denote

the cavity and atom, respectively, and g is the Rabi coupling.
The coupling for the SOC with the waveguide is assumed to
have the form in Eq. (7) and that for TLA with the waveguide
is zero.

According to Eq. (1), the two-excitation state can be written
out directly. We take the system of the 1DW-JCM as an
example, whose two-excitation state is

|�〉 =
∑
μ,ν

∫
dx1dx2ϕμν(x1,x2)

1√
2
ψ̂†

μ(x1)ψ̂†
ν (x2)|∅〉

+
∑

μ

∫
dxψ̂†

μ(x)[ϕμc(x)ĉ† + ϕμa(x)f̂ †
e f̂g]|∅〉

+ C
1√
2
ĉ†ĉ†|∅〉 + Aĉ†f̂ †

e f̂g|∅〉. (8)

Here, |∅〉 is the vacuum state with the atom in the ground
state and no photon in the system, and ϕμν(x1,x2) is the wave
function of the two-photon state and meets the permutation
symmetry ϕμν(x1,x2) = ϕνμ(x2,x1). ϕμj (x) implies that one
excitation is in the waveguide and another is in |j 〉. C and A

represent the amplitudes of the two-excitation states ĉ†ĉ†|∅〉
and ĉ†f̂ †

e f̂g|∅〉, respectively. Substituting Eqs. (1) and (8) into
the Schrödinger equation,

ih̄
∂

∂t
|�〉 = H|�〉, (9)
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gives the coupled dynamical equations for ϕμν(x1,x2), ϕμc(x),
ϕμa(x), C, and A as follows:

i
∂

∂t
ϕμν(x1,x2) = [ω̂μ(i∂x1 ) + ω̂ν(i∂x2 )]ϕμν(x1,x2)

+
√

2

2
[V (x1)ϕνc(x2)+V (x2)ϕμc(x1)], (10a)

i
∂

∂t
ϕμc(x) = [ω̂μ(i∂x) + ω̃c]ϕμc(x) +

√
2V (x)C

+ gϕμa(x) +
√

2
∫

dx ′V ∗(x ′)[ϕμμ(x,x ′)

+ϕμμ̄(x,x ′)], (10b)

i
∂

∂t
ϕμa(x) = [ω̂μ(i∂x) + ω̃a]ϕμa(x)

+V (x)A + gϕμc(x), (10c)

i
∂

∂t
C = 2ω̃cC +

√
2

∑
μ

∫
dxV ∗(x)ϕμc(x)

+
√

2gA, (10d)

i
∂

∂t
A = (ω̃c + ω̃a)A +

∑
μ

∫
dxV ∗(x)ϕμa(x)

+
√

2gC, (10e)

where μ̄ = r (l) if μ = l (r). The dynamical equations for the
system of the 1DW-SOC can be obtained by setting g = 0,
A = 0, and ϕμa = 0, while for the system of the 1DW-TLA
one should first set g = 0, A = 0, ϕμa = 0, and C = 0, and
then make the transform of ϕμc → ϕμa . In the map for the
1DW-TLA, the setting of C = 0 ensures the resulting TLA
cannot be in a double-excitation state [refer to Eq. (8)]. Because
the nonlinear dispersion in Eq. (3) is taken for the 1DW, it is
convenient to work in the reciprocal space and so we do a
Fourier transform for Eq. (10), i.e.,

i
∂

∂t
ϕμν(k1,k2) = [ωμ(k1) + ων(k2)]ϕμν(k1,k2)

+
√

2

2

[
Vk1ϕνc(k2) + Vk2ϕμc(k1)

]
, (11a)

i
∂

∂t
ϕμc(k) = [ωμ(k) + ω̃c]ϕμc(k) +

√
2VkC + gϕμa(k)

+
√

2
∫

dk′Vk′[ϕμμ(k,k′) + ϕμμ̄(k,k′)],

(11b)

i
∂

∂t
ϕμa(k) = [ωμ(k) + ω̃a]ϕμa(k) + VkA + gϕμc(k),

(11c)

i
∂

∂t
C = 2ω̃cC +

√
2

∑
μ

∫
dkVkϕμc(k) +

√
2gA,

(11d)

i
∂

∂t
A = (ω̃c + ω̃a)A +

∑
μ

∫
dxVkϕμa(k) +

√
2gC,

(11e)

where the equation of V−k = Vk is used. The Fourier transfor-
mations for ϕμν(x1,x2), ϕμc(x), and ϕμa(x) are

ϕμν(k1,k2) = 1

2π

∫
dk1dk2ϕμν(x1,x2)eisμk1x1+isνk2x2 ,

(12a)

ϕμc(k) = 1√
2π

∫
dkϕμc(x)eisμkx, (12b)

ϕμa(k) = 1√
2π

∫
dkϕμa(x)eisμkx, (12c)

where sμ = +/− if μ = r/ l.
Once the wave functions are found from Eq. (10), the

densities for the right- and left-moving photons, ρr/l(x), can
be obtained, namely,

ρμ(x) = |ϕμc(x)|2 + |ϕμa(x)|2

+ 2
∫

dx ′[|ϕμμ(x,x ′)|2 + |ϕμμ̄(x,x ′)|2], (13)

and so the total photon density in the waveguide is ρw(x) =
ρr (x) + ρl(x). The factor 2 in Eq. (13) is due to the exchange
symmetry in the two-photon states. Integrals of ρr/l(x) give
the numbers of the right- or left-moving photons,

nμ =
∫

dxρμ(x), (14)

and the total number in the waveguide photons is

nw = nr + nl. (15)

When t → ∞, 1
2nr and 1

2nl measure the transmission and
reflection of the system, respectively. The excitation numbers
in the SOC and TLA, respectively, are

nc =
∫

dx ′[|ϕrc(x)|2 + |ϕlc(x)|2] + 2|C|2 + |A|2 (16)

na =
∫

dx ′[|ϕra(x)|2 + |ϕla(x)|2] + |A|2. (17)

The loss of the system reads

nloss = 2 − (nw + nc + na). (18)

The two-photon correlation can be described by the second-
order correlation function, i.e.,

G(2)
x1,x2

= 〈�|ψ̂†(x1)ψ̂†(x2)ψ̂(x2)ψ̂(x1)|�〉
= |ϕrr (x1,x2) + ϕll(x1,x2) + ϕrl(x1,x2) + ϕlr (x1,x2)|2,

(19)

where ψ̂(x) = ψ̂r (x) + ψ̂l(x). The second-order correlation
function in the reciprocal space is given by

G
(2)
k1,k2

=
∫

dx1dx2G
(2)
x1,x2

e−ik1x1−ik2x2 . (20)

For solving the dynamical Eq. (10), one needs to choose
an initial state which takes the following Gaussian type
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throughout this work, i.e.,

ϕi(x1,x2) = 1√
S

[φ(x1 − x10)φ(x2 − x20)

+ φ(x2 − x10)φ(x1 − x20)], (21)

where φ(x) = e− 1
4 k2

wx2
eikix and S = ∫

dx1dx2|ϕi(x1,x2)|2. x10

and x20 are the initial center positions of the two photons and
their difference is denoted by d = x20 − x10. kw describes the
width of the two-photon pulse (∼2

√
2k−1

w ), and ki is the center
wave vector corresponding to the energy εi = ω(ki). ϕi(x1,x2)
meets the permutation symmetry, i.e., ϕi(x1,x2) = ϕi(x2,x1).

In numerical calculation we take ω0 and k0 as the units
of the energy and wave vectors, and the corresponding units
for time and length are τ0 = 2π/ω0 and λ0 = 2π/k0. Other
parameters adopted are as follows: for the SOC ω̃c = ωc − iγc

with the energy ωc = 1.25ω0 and the loss γc = 0.01ω0; for the
TLA ω̃g = 0 and ω̃e = ωa − iγa with the transition energy
ωa = 1.25ω0 and the loss γa = 0.001ω0; the Rabi coupling
g = 0.1ω0. In addition, we use the fourth-order Runge-Kutta
and predictor-corrector methods to solve Eq. (11), discretized
in the reciprocal space of (0,4k0) × (0,4k0) by the grid with
29 × 29 points. The numerical approach has been tested by
comparing the single-photon transmission from our methods
with that from the theory in Ref. [34].

FIG. 2. Time evolution of the waveguide photon density (a)–(c)
and of the corresponding number of excitations (d)–(f) for the 1DW-
JCM. The width of the two-photon pulse in k space is set to kw =
0.05k0 (a), (d), 0.1k0 (b), (e), and 0.15k0 (c), (f), respectively. For easy
observation, the photon densities in (a)–(c) are normalized to their
maximum (see the bottom of the panels). Other parameters: ωa =
ωc = 1.25ω0, γc = 10−2ω0, γa = 10−3ω0, g = 0.1ω0, V0 = 0.1ω0,
w = 0.3λ0, ki = 0.65k0, and d = 0.

III. TRANSMISSION

Figure 2 shows the time evolution of the two-photon pulse
with d = 0 for the system of the 1DW-JCM, where the pulse is
incident from the left direction. When it arrives at the position
of the JCM (at x = 0), it is scattered [see Fig. 2(a)]. During the
scattering process the incident photons have a chance to jump
into the JCM, referred to the curves of nc and na in Fig. 2(d).
The losses of the cavity and atom are responsible for nloss �= 0
after the scattering. Note that the nonlinear dispersion of the
waveguide leads to a k-dependent vg [see Eq. (4)]. As a result,
the pulse shows a spread in space for large kw [see Fig. 2(c)],
while the spread is not obvious for small kw [see Figs. 2(a) and
2(b)]. The width of the pulse in Eq. (21) is ∼2

√
2k−1

w and is√
2k0[(εi/ω0)2 − 1]1/2

/πkw times its center wavelength. For
εi = ωc = 1.25ω0 the multiple is ∼6.8, 3.4, and 2.3 when kw =
0.05k0, 0.1k0, and 0.15k0, respectively. Therefore, when the
pulse width is in magnitude of its wavelength, the linearization
for the 1DW dispersionω(k) is not a good approximation, while
when the pulse width is 5 times larger than the wavelength it
can be adopted for simplicity.

Another main effect for increasing kw is to smooth the
transmission spectra, shown in Fig. 3 where the transmissivity
for the three quantum systems are all plotted. As kw increases
the transmission curves become flatter, especially around the
minimum or maximum points. For the TLA and SOC there
is only one transmission dip, while for the JCM there are
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FIG. 3. Transmissivity of two-photon states for the 1DW-TLA
(upper row), 1DW-SOC (middle row), and 1DW-JCM (lower row).
The coupling constant V0/λ

1/2
0 equals 0.05ω0, 0.1ω0, and 0.2ω0 for

columns from left to right. Other parameters: ωa = ωc = 1.25ω0,
γc = 10−2ω0, γa = 10−3ω0, g = 0.1ω0, w = 0, and d = 0.
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FIG. 4. Variation of transmission spectra with the width w of V (x) for the 1DW-SOC (left gray panel) and 1DW-JCM (right yellow panel).
The value of w for each curve is given on the right side of the figure and V0 is at the top of each panel. The dotted curves in panels (a)–(c) are
the transmission spectra of the 1DW-TLA whose coupling with the 1DW is set to V (x) = V0δ(x). For easy observation, lines are offset from
the bottom with a step value of 0.5. Other parameters: ωa = ωc = 1.25ω0, γc = 10−2ω0, γa = 10−3ω0, g = 0.1ω0, d = 0, and kw = 0.05k0.

two, because their mode numbers are different. In analogy to
the single-photon transmission, one can introduce an effective

coupling between the 1DW and SOC, i.e., J = V 2
0

vg
. Since J

is an increasing function of V0, resulting in the transmission
decrease for increasing V0, see the curves in columns from left
to right. In addition, J shows an inverse function relationship
with vg , and vg decreases with decreasing εi , so that the
transmission spectra are nonsymmetric with respect to ωc or
ωa , that is, the left side of the spectra is a little lower than the
right (see Fig. 3). This fact also results in a rightward movement
for the transmission dips, especially for large V0 [see Figs. 3(c),
3(f), and 3(i)]. Since Figs. 2 and 3 tell that the approximation
of the linearization of ω(k) is not suitable for a narrow pulse
input, the nonlinearity of ω(k) is considered in all the numerical
calculation throughout this work.

In Figs. 2 and 3 the coupling function V (x) is taken as a
δ function, i.e., V (x) = V0δ(x), which is a good description
for the local point coupling between the 1DW and quantum
emitter, while for a large SOC its coupling with the 1DW
is mainly determined by the SOC mode and thus can be
other types of functions. The non-δ coupling effect on the
transmission of the two-photon state is shown in Fig. 4 for the
1DW-SOC and 1DW-JCM. Because there is no effective inter-
action between two photons in the 1DW-SOC, the transmission
of the two-photon state is similar with that of the single-photon
state [56]. For example, Fig. 4(a) shows that the transmission
dips are always on the right side of ωc, implying that the
frequency of the hybridization mode between the 1DW and
SOC is blueshifted. Further, the blueshift value first increases
and then decreases with increasing w, because the transmission
dip first shifts rightward and then leftward with increasing w.
This variation behavior of the transmission dip is enhanced by
increasing V0 [see Figs. 4(b) and 4(c)], and the transmission dip

is broadened simultaneously. For a non-δ coupling function the
effective coupling between the 1DW and SOC can be defined

as Jk = V 2
k

vg
, where Vk , the Fourier transform of V (x), decreases

with increasing w. As a result, the transmission dip becomes
shallower for increasing w.

The dotted gray curves in Figs. 4(a)–4(c) represent the trans-
mission spectra of the 1DW-TLA where w = 0, corresponding
to the δ coupling between the 1DW and TLA. Similar to the
1DW-SOC, the transmission of the 1DW-TLA decreases with
increasing V0, as shown in Fig. 3. The transmission dip is
shallower for the 1DW-TLA than the 1DW-SOC [see the dotted
gray and solid black lines in Figs. 4(a)–4(c)], though the single-
photon transmission in them is consistent with each other. This
can be argued as follows: Double occupation is forbidden in the
TLA, so that the TLA cannot fully antiresonantly scatter the
two-photon state, while the SOC can because it has the double-
occupation state. The TLA does not influence the transport of
the second photon if it has been excited by the first one (that
is, the TLA cannot be excited twice).

Combining the TLA and SOC, one gets the JCM whose
transmission spectra are also plotted as a function of w in
Figs. 4(d)–4(f). The transmission spectra have two transmis-
sion dips, corresponding to the energy levels of the JCM that are
about 1.15ω0 and 1.35ω0. The difference between two levels
is 2g. Similar to the 1DW-SOC, the two transmission dips first
shift rightward and then leftward with increasing w, which
can also be enhanced by increasing V0. The transparent region
between the two transmission dips exhibits a very narrow
spectrum when g is small, analogous to electromagnetically
induced transparency phenomena. Since vg increases for in-
creasing the photon energy, the local minimum is smaller
for the left transmission dip than the right one. As a result,
the right transmission dip disappears sooner than the left
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FIG. 5. Variation of transmission spectra with distance d between
the two incident photons for the 1DW-TLA (left), 1DW-SOC (mid-
dle), and 1DW-JCM (right). Other parameters: ωa = ωc = 1.25ω0,
γc = 10−2ω0, γa = 10−3ω0, g = 0.1ω0, V0 = 0.1ω0, kw = 0.05k0,
and w = 0.

when w increases [see Figs. 4(d)–4(f)]. This can also be
confirmed by comparing the 1DW-JCM with the 1DW-SOC.
The transmission dip in the 1DW-SOC disappears sooner than
the left one in the 1DW-JCM but later than the right one. In
all, the nonlinear dispersion and non-δ coupling provide more
abundance for the transmission of the two-photon pulse.

The transmission of the two-photon pulse also shows strong
dependence on the distance d between the two incident photons
(see Fig. 5). For the 1DW-TLA the local minimum around the
transmission dip decreases with increasing d [see Fig. 5(a)].
The photon in the 1DW cannot be scattered by the TLA once
it is excited. Since the two single-photon pulses described by
φ(x − x10) and φ(x − x20) overlap heavily for small d [conse-
quently, the two photons are indistinguishable, see Eq. (21)],
the two-photon pulse comprised of them has large transmis-
sion. However, the two photons would be distinguishable when
d is large enough. As a result, the transmission spectra of the
two-photon state would tend to that of the single-photon pulse.
Since the SOC has the double-occupation state, changing d

does not influence the transmission spectra for the 1DW-SOC
[see Fig. 5(b)]. As a combination of the TLA and SOC the
transmission spectra of the 1DW-JCM are also dependent on
d [see Fig. 5(c)], especially around the transmission peak and
dips. This dependence can further be enhanced by increasing
kw, namely, decreasing the pulse width. Therefore, it is possible
to evaluate the quality of the single-photon series by the
1DW-TLA and 1DW-JCM. When there is no overlap between
any two single-photon states for a single-photon series, the
local minimum around the transmission dip approaches zero,
while it is nonzero.

In addition, the excitation number na|t→∞ can identify the
existence of the bound modes between the quantum emitters
and waveguide photons [44–47]. These bound modes have
an exponentially decaying photon “cloud” in the vicinity of
the quantum emitters. Since the losses of the cavity and TLA
always lead to na|t→∞ = 0 no matter whether the bound modes

(a)

(b)

(c)

FIG. 6. Variation of na |t→∞ with the width w of V (x) and incident
energy εi for the 1DW-JCM. Other parameters: ωa = ωc = 1.25ω0,
γc = γa = 0, g = 0.1ω0, kw = 0.05k0, and w = 0.

exist or not, we need to set γa and γc to be zero for the
bound mode identification; see Fig. 6 where the 1DW-JCM
is taken as an example to show the non-δ coupling effects on
the bound modes. The excitation number na |t→∞ has a nonzero
value near the two transmission dips [refer to Figs. 4(d)–4(f)],
indicating the existence of the bound modes. The excitation
efficiency of the bound modes strongly depends on w; see
Fig. 6(a) where, roughly speaking, na|t→∞ first increases and
then decreases with increasing w, which can be explained as
follows. As w → 0 the coupling between the waveguide and
JCM appears only at a point (position of the JCM), that is,
the photons that are not at this point in the waveguide have
no chance to excite the JCM. Consequently, the excitation
efficiency is small for small w. For large w as long as the
photons are near the JCM, they have a chance to excite the JCM.
Since Vk decreases with increasing w, the excitation efficiency
becomes small again for large enough w. Furthermore, the fact

that the effective coupling Jk = V 2
k

vg
increases with decreasing

vg results in the nonzero value of na|t→∞ in the low-εi region,
especially for large V0 [see Figs. 6(b) and 6(c)]. This is also
why na|t→∞ has larger values near the left than the right
transmission dips.

IV. TWO-PHOTON CORRELATION

The scattering of the quantum emitters can induce a nontriv-
ial correlation or entanglement between the two photons [55].
Figure 7 shows the two-photon correlations G(2)

x1,x2
for three

quantum systems with V (x) = V0δ(x) under four different d.
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TLA

(a)

Max: 3.40×10-4

(b)

Max: 3.63×10-4

(c)

Max: 2.30×10-4

(d)

Max: 2.20×10-4

SOC

(e)

Max: 3.35×10-4

(f)

Max: 3.36×10-4

(g)

Max: 1.65×10-4

(h)

Max: 1.68×10-4

0.0

0.5

1.0

JCM

(i)

Max: 2.69×10-4

(j)

Max: 2.73×10-4

(k)

Max: 1.55×10-4

(l)

Max: 1.56×10-4

d = 0 d = 3 0 d = 6 0 d = 9 0

FIG. 7. Two-photon correlation after scattering for (a)–(d) TLA, (e)–(h) SOC, and (i)–(l) JCM in the real space (80λ0 × 80λ0). For easy
observation, the correlations in all panels are normalized to their maximums denoted by “Max.” Each column has the same distance d which
is given at the top. Other parameters: ωa = ωc = 1.25ω0, γc = 10−2ω0, γa = 10−3ω0, g = 0.1ω0, kw = 0.1k0, ki = 0.7k0, and w = 0.

The patterns in four corners of each panel correspond to the four
waveguide photon wave functions, namely, the upper right to
ϕrr (x1,x2), lower right to ϕrl(x1,x2), upper left to ϕlr (x1,x2),
and lower left to ϕll(x1,x2). Due to ϕμν(x1,x2) = ϕνμ(x2,x1)
the two-photon correlation meets G(2)

x1,x2
= G(2)

x2,x1
, which is

maintained by all panels in Fig. 7. When d = 0 the incident
wave function ϕi(x1,x2) is circularly symmetric in plane of
x1 and x2. Since there is no effective interaction between the
two photons in the 1DW-SOC, this circular symmetry is kept
by the lower-left circular pattern in Fig. 7(e), corresponding
to ϕll(x1,x2). However, for the 1DW-TLA and 1DW-JCM
the circular symmetry is broken by the TLA-induced photon-
photon interaction [see Figs. 7(a) and 7(i)]. Since there may
exist a group delay for the transmitted and reflected waves
[60], the distances from their packets to the quantum emitters
are commonly different. In Fig. 7 the transmitted waves in the
1DW-TLA and 1DW-SOC and reflected waves in the 1DW-
JCM are group delay. Consequently, when d = 0 the maximum
values of ϕrl(x1,x2) and ϕlr (x1,x2) (one photon is transmitted
and another is reflected) are not on the counterdiagonal lines
of the panels, namely, not on the lines of x1 = −x2 [see
Figs. 7(a), 7(e), and 7(i)]. On the contrary, the states of
ϕrr (x1,x2) and ϕll(x1,x2) have the maximum correlation when
x1 = x2, because the two photons have the same delay or
advancement. As d increases the two-photon correlations for
the 1DW-TLA and 1DW-SOC become more and more similar
[see Figs. 7(a)–7(h)]. It is also because the overlapping between
the two photons decreases for increasing d and so does their
mutual effective interaction. A similar variation behavior for
the mutual influence between the two photons can be found for
the 1DW-JCM, though its two-photon correlation pattern does

not look like those in the 1DW-TLA and 1DW-SOC, which
can be seen more obviously in the reciprocal space.

The two-photon correlations in the reciprocal space,
namely, G(2)

k1,k2
, are shown in Fig. 8 where the panels correspond

to those in Fig. 7 one-to-one. The main difference among the
patterns in Fig. 8 is that when d is small there is a scatter ring
for the TLA and JCM but not for the SOC. This is because the
former two can induce an effective photon-photon interaction
while the latter does not. The radius of the scatter ring is
about

√
2ki = √

2 × 0.7k0 ≈ 0.99k0, which is determined by
the energy conservation. The energy conservation can be
broken by the energy-time uncertainty during the scattering
process, but here the two-photon correlation we are concerned
with is far after the scattering process, i.e., the scattering has
ended. According to Eq. (3) the scatter ring is determined
by 2

√
1 + (ki/k0)2 =

√
1 + (k1/k0)2 +

√
1 + (k2/k0)2, not a

circle, strictly speaking. With increasing d the scatter ring
gradually fades away because the effective photon-photon
interaction decreases. Since the TLA takes over only part of
the JCM, the effective photon-photon interaction induced by
the JCM is weaker than that induced by the TLA (see the first
and third rows in Fig. 8).

Whend is large enough the two-photon transmission spectra
for three quantum systems gradually tend to their single-photon
transmission spectra. Since there exist transmission dips at
the eigenfrequencies of the quantum emitters, the two-photon
correlation approaches zero at the eigenfrequencies, as denoted
by “TD” in Figs. 8(d), 8(h), and 8(l). The corresponding
wave vectors are 0.75k0 for the TLA and SOC and are
0.57k0 and 0.9k0 for the JCM. Since there is a transmission
peak for the JCM between the two transmission dips, the
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FIG. 8. Two-photon correlation after scattering for (a)–(d) TLA, (e)–(h) SOC, and (i)–(l) JCM in the reciprocal space (2.4k0 × 2.4k0). The
panels (a)–(l) correspond to Figs. 7(a)–7(l), respectively. The denotations of “RR,” “RL,” “LR,” and “LL” correspond to the states of ϕrr , ϕrl ,
ϕlr , and ϕll , respectively. “TD” and “TP” represent the transmission dip and peak, respectively. Other indication and parameters are the same
as those in Fig. 7.

two-photon correlation also approaches zero at the position
of the transmission peak, i.e., 0.75k0, denoted by “TP” in
Fig. 8(l). Without ambiguousness the lines denoted by “TD”
and “TP” can be called zero-correlation lines. Obviously, these
zero-correlation lines always exist for the SOC no matter the
value of d [see Figs. 8(e)–8(h)]. On the contrary, due to the
effective photon-photon interaction they disappear for the TLA
and JCM when d takes small values [see Figs. 8(a)–8(d) and

8(i)–8(l)]. These phenomena confirm that the TLA can really
induce an effective photon-photon interaction and the SOC
cannot. As a result, the TLA and JCM can induce the scatter
ring for the two-photon state.

Figure 9 shows the two-photon correlation after scattering
for the JCM in the real and reciprocal spaces with the non-δ
coupling between the cavity and 1DW. In the real space
the two-photon correlation for the non-δ coupling is similar

FIG. 9. Two-photon correlation after scattering for the JCM in (a)–(d) the real space (80λ0 × 80λ0) and (e)–(h) the reciprocal space
(2.4k0 × 2.4k0). Other indications and parameters are the same as those in Figs. 7 and 8, except w = 0.6λ0.
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to that for the δ coupling, comparing Figs. 9(a)–9(d) with
Figs. 7(i)–7(l), respectively. However, in the reciprocal space
the two-photon correlations show an obvious difference in
Figs. 9(e)–9(h) as compared with Figs. 8(i)–8(l). The amplitude
of the non-δ coupling function, i.e.,Vk = V0e

−k2w2/16 withw =
0.6λ0, is not larger than that of the δ coupling function, i.e.,
Vk = V0, so that the scatter rings for the non-δ coupling become
more slender but have a longer tail [compare Figs. 9(e)–
9(h) with Figs. 8(i)–8(l)]. The long tail occurs because the
non-δ coupling can connect two more-distant photons with
respect to the δ coupling. In addition, the transmission dips
for the JCM are blueshifted for the non-δ coupling, and so
do the zero-correlation lines in Fig. 9(h). From the numerical
results, we find that their corresponding wave vectors are
0.62k0 and 0.94k0 for the transmission dips and 0.76k0 for
the transmission peaks when w = 0.6λ0. Therefore, the non-δ
coupling between the cavity and 1DW shows potential for
controlling the correlation between two distant photons.

V. CONCLUSION

The transmission and correlation properties of the two-
photon pulse were studied in the 1DW coupled with the TLA,
SOC, and JCM. For the TLA the coupling is a δ type, while for
the SOC and JCM the coupling can be non-δ type. Since a pulse
contains many plane-wave components, a nonlinear waveguide
dispersion is used instead of the linear one. Comparing with
the δ coupling the non-δ coupling is able to induce a blueshift

for the transmission dips, and the blueshift value first increases
and then decreases for increasing the coupling width. When the
pulse width in the reciprocal space increases, the two-photon
transmission becomes flatter and flatter because more plane-
wave components are included. Since a double occupation is
forbidden in the TLA, the TLA cannot fully antiresonantly
scatter the two-photon state, while the SOC can because it has
the double-occupation state. The two-photon correlations were
also studied in the real and reciprocal spaces. A scatter ring can
be observed for the 1DW-TLA and 1DW-JCM, while it cannot
for the SOC. Different from the SOC, the TLA and JCM can
induce an effective photon-photon interaction. With increasing
the distance between the two incident photons the scatter ring
fades away. The transmission dips and transmission peaks are
responsible for the zero-correlation lines on the scatter rings.
By the effective interaction induced by the 1DW-TLA and
1DW-JCM they can be used to evaluate the overlap of the two
incident photons. As a result, it may be possible to evaluate
the single-photon series by the 1DW-TLA and 1DW-JCM.
In addition, the non-δ coupling between the quantum emitter
and 1DW shows potential for controlling the two-photon
correlation.
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