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Coherent and radiative couplings through two-dimensional structured environments
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We study coherent and radiative interactions induced among two or more quantum units by coupling them
to two-dimensional (2D) lattices acting as structured environments. This model can be representative of atoms
trapped near photonic crystal slabs, trapped ions in Coulomb crystals, or to surface acoustic waves on piezoelectric
materials, cold atoms on state-dependent optical lattices, or even circuit QED architectures, to name a few. We
compare coherent and radiative contributions for the isotropic and directional regimes of emission into the lattice,
for infinite and finite lattices, highlighting their differences and existing pitfalls, e.g., related to long-time or
large-lattice limits. We relate the phenomenon of directionality of emission with linear-shaped isofrequency
manifolds in the dispersion relation, showing a simple way to disrupt it. For finite lattices, we study further details
such as the scaling of resonant number of lattice modes for the isotropic and directional regimes, and relate this
behavior with known van Hove singularities in the infinite lattice limit. Furthermore, we export the understanding
of emission dynamics with the decay of entanglement for two quantum, atomic or bosonic, units coupled to the
2D lattice. We analyze in some detail completely subradiant configurations of more than two atoms, which can
occur in the finite lattice scenario, in contrast with the infinite lattice case. Finally, we demonstrate that induced
coherent interactions for dark states are zero for the finite lattice.
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I. INTRODUCTION

Engineering the coherent interaction between many quan-
tum units is a key ingredient to simulate quantum phases of
many-body systems, whereas radiative interactions is instru-
mental to producing dark states and generating nonclassical
states of light. One of the most advanced platforms for quantum
simulators are, e.g., two-dimensional (2D) Coulomb crystals of
trapped ions [1–3], with vibrational quanta of the ions’ motion
being used as a channel to effectively induce spin-spin inter-
actions with tunable distance dependence. Excellent control of
interactions between atoms and light in one-dimensional (1D)
waveguides has been recently shown [4], leading to observation
of many atoms superradiance [5]. This has spurred theoretical
proposals to use the engineered properties of light to mediate
strong long-range atom-atom interactions both in 1D [6] and
2D photonic crystal (PC) lattices [7–9]. Surface acoustic waves
(SAW) on piezoelectric materials [10] have been recently
proposed as mediators between, e.g., quantum dots, trapped
ions, nitrogen-vacancy centers, or superconducting qubits.
Control of mediators, be it phonons in the ion and SAW cases,
or photons in the PC case, is thus of key importance to shape
interactions to build future quantum simulators, as recently
proposed for many-body physics [6].

Structured environments, in addition to their usefulness to
shape coherent interactions, are a good playground to under-
stand effects of collective dissipation (radiative couplings) of
distant units depending on the properties of the substrate. Un-
derstanding decoherence and dissipation in realistic scenarios
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is of utter importance for the successful realization of quantum
technologies. This is, for example, the case when miniaturizing
ion traps [11] below the micrometer level, where details
of decoherence sources, such as possible correlation lengths
among adatom dipoles [12,13], could become accessible [14].
Architectures of two or more units dissipating collectively

can lead to super- or subradiance [15,16] and allow certain
degrees of freedom to become noiseless [17,18], which is of
interest to realizing noise-free operations. Radiative coupling
between bosonic probes enabling collective dissipation have
been reported in cubic or triangular lattices, either isotropically
decaying or purely directional and long range [19]. This
translates directly into sub- and super-radiant dynamics, as
compared to independent decay rates (no radiative interaction)
between quantum units. Long-range radiative couplings not
only expand the toolbox of quantum optics, but have impor-
tant practical implications for quantum networking [20,21]
or quantum memories [22–24]. Furthermore, understanding
decoherence and dissipation in a broader class of platforms is of
utter importance for the successful realization of quantum tech-
nologies, where environment microscopic details play a key
role, such as, for instance, for miniaturized ion traps [11–13].

Periodic structures can be described as tight-binding models
for photons or phonons, disregarding the specific details of the
materials used, and so allowing to study fundamental features.
We focus on 2D structures because they allow richer features
than 1D lattices and can be implemented in PC lattices [7],
three-dimensional (3D) arrays of (evanescently coupled) light
waveguides whose propagation direction z represents the flow
of simulated time [25,26], 2D Coulomb crystals of trapped
ions [1–3], or superconducting circuits [27–30] to name a few.

In this work we characterize coherent and radiative cou-
plings induced by a 2D periodic (squared lattice) structure, both
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infinite and finite, highlighting their similarities and differ-
ences. The paper is organized as follows: In Sec. I we introduce
the model and its description in terms of a time-dependent
master equation for the infinite-lattice case, where we show the
behavior of coherent and radiative contributions for isotropic
and directional regimes. We analyze finite-time coefficients,
explaining their meaning, and also the relation of long-time
decay rates with known van Hove singularities [31–33]. We
analyze the phenomenon of directional emission, showing how
it can be broken, and highlight some pitfalls related to the
ordering of large-lattice and long-time limits. An analysis on
the validity of the infinite-lattice limit is given, showing it is not
advisable to use it for realistic situations. The decay dynamics
of entanglement between atomic or bosonic units due to the 2D
structure is then studied, showing that it maps with the behavior
expected from the prediction of the master equation. In Sec. II
we introduce the finite lattice and analyze how the divergence
of decay rates due to van Hove singularities is related to the
number of resonant modes in the lattice as a function of time.
We study how to construct dark states of two, three, and four
atoms from the form of the dissipation matrix and show that the
form of the Lamb-shift matrix leaves dark states invariant. We
finish by comparing exact dynamics of two-atom entanglement
in the finite-lattice case with the evolution under the master
equation with time-dependent coefficients highlighting the
inequivalence between the long-time master equation, time-
dependent master equation, and exact dynamics. We thus have
analyzed many details and possible pitfalls that were absent in
previous works in the literature.

II. INFINITE LATTICE

We start by analyzing the interaction of a two-unit, bosonic
or atomic, quantum system coupled to a structured substrate
such as that of Fig. 1 (there a PC lattice is represented). Our
analysis holds for periodic, bosonic, linear lattices (modeled
by quadratic Hamiltonians). For a square-lattice symmetry
dispersion is either (we take the lattice spacing a = 1 from
now on)

ω�k = ω0 − 2J (cos kx + cos ky) (1)

for coupled cavities or tight-binding models, or

ω�k =
√

ω2
0 + 8J

(
sin2 kx

2
+ sin2 ky

2

)
(2)

for harmonic (springlike) couplings [34]. It can be seen that
both dispersions have almost the same shape if they are
scaled properly to fit in the range of values. The tight-binding
dispersion ranges from ω0 − 4J to ω0 + 4J , whereas the
harmonic one ranges from ω0 to

√
ω2

0 + 16J , so when we use
the latter we set J = 3ω2

0/16 so that ω�k ∈ [1,2]ω0 (as in Fig. 1).
Of course, we can offset all energies so that the frequency
band lies, e.g., at ω�k ∈ [−1,1]ω0 for both dispersions, the only
important factors being the detuning between emitters and the
resonant pseudomomentum manifold in the lattice. The cases
we study in this paper behave equally for both dispersions,
because the implied resonant manifolds are the same, so we
will interchangeably use both, making the choice explicit only
when we use the tight-binding one.

(a)

(b)

(d)

(c)

FIG. 1. (a) Sketch of a periodic structured 2D lattice, e.g., a PC.
The system is either two harmonic or two-level probes with energy
splitting � which couple locally to the structure at a relative distance
�r . (b) Lattice’s (harmonic) dispersion relation ω�k , which regulates
which manifold of excitations �k� the two dissipative units couple to.
(c) Group velocity with ω0 = 1 and J = 3ω2

0/16. We have drawn
the isoenergy manifold of resonant photon or phonon momenta �k�

for � = 1.01ω0 (orange, central circle), � = √
5/2ω0 (red, rhomb),

and � = 1.98ω0 (white, outer circles). (d) Lamb-shift correction to
the splitting �LS and radiative decay rate �0 induced by the lattice
(without the factor λ2

(2π )2 ), with environment frequencies in the range
ω�k ∈ [1,2]ω0.

The two identical and independent emitters can be either
bosons, HS = �(a†

1a1 + a
†
2a2), or two-level atomic systems

(TLS), HS = �(σ+
1 σ−

1 + σ+
2 σ−

2 ). We consider local coupling
to the structure

Hint = λ(a1A(�r1)† + a2A(�r2)† + H.c.)

or Hint = λ(σ−
1 A(�r1)† + σ−

2 A(�r2)† + H.c.) for TLS. The an-
nihilation operators A(�r) for the light field (atoms interact-
ing with PC) or surface displacement field (SAW case) are
evaluated at the positions of the atoms (bosons) �r1 and �r2.
Interactions extended in space over a range ξ (instead of local)
are known to introduce frequency cutoff functions which limit
interaction strength for lattice frequencies above ∼1/ξ [19].
The interaction between the system and lattice λ is assumed
to be weak, allowing for a Born-Markov treatment [35]. The
dynamics for the environment at T = 0 is given by

ρ̇S = −i[H̃S(t),ρS] +
2∑

j,l=1

�jl(�r,t)
(

ajρSa
†
l − 1

2
{a†

l aj ,ρS}
)

,

with H̃S(t) = HS + HLS(t) the Lamb-shift corrected Hamilto-
nian, HLS(t) = �LS(t)(a†

1a1 + a
†
2a2) + λLS(�r,t)(a1a

†
2 + H.c.)

and �r = |�r1 − �r2|. We define the cross damping �c=̂�12 = �21

(this equality holds for reciprocal media, which is the usual
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case) and the self-damping �0=̂�11 = �22 rates. Using A(�r) =
(2π )−1

∫ π

−π
d2�k exp(−i�k · �r)A(�k) (i.e., infinite lattice), the

spatial dependent coefficients are

λLS(�r,t) = −λ2

(2π )2

∫ π

−π

d2�k 1 − cos[t(� − ω�k)]

� − ω�k
cos(�k�r), (3)

�c(�r,t) = 2λ2

(2π )2

∫ π

−π

d2�k sin[t(� − ω�k)]

� − ω�k
cos(�k�r), (4)

and the onsite coefficients are just �LS(t) = λLS(0,t), �0(t) =
�c(0,t). They are the sum of counterpropagating plane waves,
weighted by their resonance with �. The emission of only one
unit is proportional to the same integral (note that due to the
�k → −�k symmetry we can replace cos by an exponential), and
thus the spatial features of �c give a precise idea of the radiation
pattern of one emitter. We retain, and analyze later, the time
dependence of the coefficients in the master equation, which
accounts for the buildup of a communication channel between
quantum units [36]. This accounts to having performed Born
and first-Markov approximations [35]. Usually in the literature
the second-Markov approximation (long-time t → ∞ limit) is
used:

λLS(�r,∞) = −λ2

(2π )2
PV

∫ π

−π

d2�k cos(�k�r)

� − ω�k
, (5)

�c(�r,∞) = 2λ2

(2π )2

∫ π

−π

d2�k δ(� − ω�k) cos(�k�r). (6)

The dynamics for identical uncoupled probes can be diag-
onalized at all times, in the common and relative coordinates
a± = (a1 ± a2)/

√
2, resulting in two completely independent

dynamics:

ρ̇S =
∑
j=±

−i[Hj,ρS(t)] + �j (�r,t)
(

ajρSa
†
j − 1

2
{a†

j aj ,ρS}
)

,

with H± = (� + �LS ± λLS)a†
±a± and �± = �0 ± �c. The

latter expression indicates that those modes can become noise-
less when �c = ±�0, which is known to lead to preservation
of entanglement at long times [18,19]. When �c = +�0 we
have �− = 0 and thus the mode a− is not dissipating, which
is typically called a common bath situation (CB). With �c =
0 both modes dissipate, the separate baths scenario (SB).
Otherwise, if �c = −�0 so we have �+ = 0 and thus it is the
center-of-mass motion, which is noiseless [13,37]. We termed
this situation anticommon bath (aCB) [13].

The equivalent expressions for the two-TLS case are ob-
tained by substituting aj → σ−

j and a
†
j → σ+

j . The dynamics

is then diagonal in the operator basis σ−
± = (σ−

1 ± σ−
2 )/

√
2,

which has as fixed points |00〉 and |�−〉 for CB (�c/�0 = 1)
with the definition |�±〉 = (|01〉 ± |10〉)/√2. The state |00〉 is
trivial in the sense that the lattice is a T = 0 reservoir. However,
if the system starts with |�−〉, entanglement is conserved
asymptotically. For the aCB case (�c/�0 = −1) it is |�+〉
which is conserved, and none is conserved asymptotically
when SB (|�c| < �0).

A. Finite-time coefficients

The coefficients �LS and �0, equal to their single-unit
counterparts, can be seen in Fig. 1. Both settle to constant
values rather fast, at ω0t ≈ 10, justifying the broadly used
long-time-limit master equations. The single-unit decay rate
�0 also settles quickly to a constant, except for the specific
splitting � = √

5/2ω0 (from now on we will work with the
harmonic dispersion, unless otherwise stated), where it has its
highest value (for J = 3/16ω2

0). The decay rate at this particu-
lar � is divergent, see Fig. 1(d) right, in the long-time limit
�0(t → ∞) ∝ ∫ π

−π
d2�k δ(� − ω�k) = ∫

�k�
d2�k | �∇ω(�k�)|−1. It

is the sum of all inverse group velocities [density of states,
DoS, see Fig. 1(c)] of the manifold of excitations �k� resonant
with �. For � = √

5/2ω0 (red line) it picks up points (black
regions in the plot) where the density of states diverges, known
as van Hove singularities [33]. Due to the periodic structure
of reciprocal space, these singularities are known to appear
generically [38] and lead to logarithmic divergences in 2D.
We also note that other points (not relevant for our work) have
zero DoS at the extrema of the band; here bound states form
and perturbative approaches are no longer valid [39–43].

The most important consequence of retaining time-
dependent coefficients in the master equation, instead of just
using their long-time limits (the usual Markovian master equa-
tion), comes from the cross talk. From Figs. 2, 3, and 4 we see
that it takes a non-negligible time for the coherent and radiative
interactions to become nonzero for distant units. During that
time, the two quantum units see independent environments,
because �c = 0, and only when it becomes nonzero do they
start “seeing” a correlated environment. Take, for example, two
units with � = 1.01ω0, as in Fig. 2, at a distance ∼30: before
ω0t = 1000 they have �c = 0 and thus decay independently,
whereas from that time on they have �c ≈ �0/3, leading to
�−/�+ ≈ 1/2. This means that an initial state |ψ+〉 will decay
twice faster than |ψ−〉, but only from that time onwards.

If the system frequency is increased reaching the middle of
the band, Fig. 3 (� = √

5/2ω0), it was predicted in [19,44]

FIG. 2. 2D lattice with J/ω2
0 = 3/16 so that ω�k ∈ [ω0,2ω0],

isotropic case � = 1.01ω0. Top: Lamb-shift coupling (left) λLS(�r)
and cross damping (right) �c(�r), normalized by the factor λ2/[(2π )2],
for different times ω0t = 10 (black), 100 (blue, gray), 1000 (orange,
light gray), along the line ry = 0. Bottom: Full space dependence of
λLS(�r) (left) and �c(�r) (right) for ω0t = 1000.
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FIG. 3. Same quantities and color codes as in Fig. 2, but for the
diagonal case � = √

5/2ω0. Figures at the top are drawn along the
rx = ry line.

that it leads to “diagonal-only” propagation of excitations, and
thus to decay of cross damping in all directions except for the
diagonals. This behavior has been checked against the exact
(atom-lattice case) dynamics (see [9,31,32]).

We plot next the Lamb-shift LS (coherent) coupling λLS(�r)
and the cross-damping coefficient �c(�r), without the irrelevant
factor λ2/[(2π )2] for the three cases highlighted in Fig. 1(c),
corresponding to increasing frequency of the units interacting
with infinite planar squared lattices. In the first case (� � ω0)
the system is resonant with the low-momentum manifold of
excitations in the lattice, corresponding to an approximately

isotropic dispersion relation ω�k �
√
ω2

0 + 2J |�k|2, as can be seen
in the spatial shape of the propagation in Fig. 2. The case of
high k (� = 1.999ω0) in Fig. 4 resonates with the “corners”
of the dispersion relation [Fig. 1(c)] and, although apparently

FIG. 4. Same quantities and color codes as in Fig. 2, but for
the high-k case � = 1.999ω0. Figures at the top (shorter times) and
middle (longer times) are drawn along the ry = 0 line.

anisotropic, can be seen to lead also to isotropic decay of the
master equation, with a superimposed alternating oscillation.
Writing for one of the four corners �k = (π − δx,π − δy), we
have cos(�k�r) = cos[π (x + y)] cos(xδx + yδy). Integration of
variables δx,y is again isotropic and thus leads to a J0(|δ||�r|)
decay times the oscillating factor cos[π (x + y)]. Finally, the
“diagonal” case (� = √

5/2ω0) is a peculiar case where the ex-
citations conspire to produce a purely diagonal propagation [9]
as displayed in Fig. 3.

At long times distant points are both coherently and
radiatively coupled with different strengths (orange curves
respectively in Fig. 2, 3, and 4). It is to be noted that the spatial
dependence of coherent and incoherent contributions (for each
case) are rather similar although not equal, see, e.g., the beating
of a long-time Lamb shift as compared to cross damping
(top Fig. 3), or their different decay behaviors (top Fig. 4),
since both consist in integrating cos(�k�r) but with the different
weights [1 − cos(� − ω�k)]/(� − ω�k) and sinc(� − ω�k). Both
weights are most important when � � ω�k but have different
functional behavior, leading to these differences.

B. Radiative directional coupling

The “diagonal” (� = √
5/2ω0 or � = ω0 for the tight-

binding dispersion relation) was highlighted in [19] as dis-
playing purely directional radiative coupling (also radiation
by one emitter). This happens for cubic and triangular lat-
tices [19], and also their higher-dimensional analogs, as well
as for graphene [45], being then present in common geometric
configurations. It has been recently explained as a consequence
of linear-shape isofrequency manifolds in the dispersion re-
lation [9]: a rotation into that momentum coordinate selects
a specific value of that momentum, which produces a plane
wave (or sine) in that direction, and is thus nondecaying.
In the orthogonal coordinate we still sum many momenta,
which gives generically an incoherent sum of waves and thus a
decaying function along the corresponding spatial coordinate.
A simple mechanism breaking the linear shape for a square-
symmetric lattice was proposed in [9], consisting in adding a
hopping term between diagonal neighbors in the lattice. This
results in, e.g., a modified tight-binding dispersion relation
ω�k = ω0 − 2J (cos kx + cos ky) − 4J̃ cos kx cos ky , whose last
term gives curvature to the isofrequency manifold. This is
easily seen in Fig. 5.

Because of the van Hove singularities in this manifold, the
case of directional emission allows inspection of some possible
pitfalls related to the ordering of the large-lattice (N → ∞)
and long-time limits (t → ∞). If we first obtain the analytic
shape of �c(�r) for periodic boundary conditions by taking a
finite lattice with t → ∞ [which exactly selects N/2 modes
on each of the red straight lines in Fig. 1(c)] and taking then the
large-lattice limit N → ∞, it yields �c(�r)/�0 = (x sin πx −
y sin πy)/[π (x2 − y2)], i.e., [sinc(π |�r|) + cos(π |�r|)]/2 at the
diagonals and �c(�r)/�0 = sinc(πry) at rx = 0. This function
has a maximum value 1 at |�r| = 0 and after the sinc(π |�r|)
decays, it has a maximum value 1/2 at the diagonals and is 0
elsewhere. That is, it is a cross-shaped oscillating function of
amplitude 1/2.

It is a peculiar fact that interchanging the limits gives a
different result. By setting t 
 N and doing N → ∞ in fact
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FIG. 5. Tight-binding dispersion relation without J̃ /J = 0.0
(left) and with J̃ /J = 0.3 (right) next-to-nearest-neighbor hopping.
The manifold of interest, highlighted between darker contour lines,
ceases to be straight and acquires a curvature.

gives a maximum value �c(x = y)/�0 = 1 even far from the
origin. At intermediate N we see a shape similar to directional
radiation but with a region near �r = 0 with almost maximum
cross talk (see Fig. 6), i.e., higher than the 1/2 value obtained
when t � N . In addition, its absolute value is logarithmic-
divergent, as is well known from van Hove singularities [33].
The very different behavior can be explained as follows: in
the first case, t � N , only N/2 modes are resonant, because
the spacing in momentum space goes as 
k ≈ 1/N and t is
so large that the sinc[t(� − ω�k)] function selects a momentum
manifold always smaller than 
k. In that way, we only sum the
contribution of a finite number of modes. In spite of that, see
later discussion on the scaling of the decay rate, the cross talk
diverges as N t . In the second case, it is even worse: for t 

N the amount of resonant modes selected by the sinc[t(� −
ω�k)] is even bigger, and does not have only contributions from
the momentum manifold yielding directionality; it has more
contributions, and this is reflected in the modified cross-talk
shape in Fig. 6.

C. Time scales and modes choice

A comment is in order about time scales. The possibility to
use exponential waves as ansatz for guided modes in a lattice
totally disregards that lattices are always finite, an assumption
that can be perfectly valid within a range of parameters. Take,
for example, the tight-binding dispersion and note that the

FIG. 6. Normalized cross talk as a function of distance, with
J t/N = 10 (tight-binding dispersion), and N = 20,200,1000,5000
(colors: black, blue, green, red; with increasing vertical amplitude).

highest group velocity dω�k/d�k [see Fig. 1(c)] is 2
√

2J . Once
any signal reaches the boundary of the lattice, bouncings and
revivals of the system dynamics are expected to occur. This
happens for times J t ≈ N . The decay dynamics of the system
is however governed by the system-lattice coupling λ, yielding
a decay rate �0 ≈ λ2, and thus significant decay is expected to
happen at times ∼1/λ2. Thus the exponential wave ansatz is
valid whenever the characteristic decay time is at least smaller
than the revival of signals at the boundaries. This implies
1/λ2 < N/J , and thus requires λ2 > J/N . Taking J as energy
scale, and a lattice of N ≈ 100 sites, already implies λ ≈ 0.1J ,
within the strong-coupling regime, as in [31]. For this reason
it is advisable to use finite-lattice mode functions, as we do in
later sections.

D. Entanglement decay

We analyze next how an initial entangled state of the two
bosonic or TLS probes evolves as a result of the interaction

FIG. 7. Spatial dependence of concurrence C when one TLS sits
at {rx,ry} distance from the other, with initial state |�−〉 (dashed lines)
or |�+〉 (continuous lines) possessing maximum entanglement C =
1. The system-environment coupling is λ = 0.01ω0. Top: Isotropic
case � = 1.001ω0 at times ω0t = 103 (black), 104 (blue, gray), 105

(orange, light gray). Note that the solid and dashed lines coincide.
Middle: “Diagonal” case � = √

5/2ω0 at times ω0t = 103 (black),
3 × 103 (blue, gray), 104 (orange, light gray). Bottom: High-k case
� = 1.999ω0 at times ω0t = 103 (black), 5 × 104 (blue, gray), 105

(orange, light gray).
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FIG. 8. Spatial dependence of logarithmic negativity EN when
one oscillator sits at {rx,ry} distance from the other, with an initial
two-mode squeezed vacuum state with squeezing factor r = 2; this
state has EN = 4. The parameters λ, ω0t , the color codes, and the
cases are as in Fig. 7.

with an infinite lattice. We consider a two-mode squeezed
vacuum [46–48] for the oscillator case, and one of the two
maximally entangled Bell states |�±〉 = (|01〉 ± |10〉)/√2 for
the two-TLS case. To quantify entanglement for two TLS,
we use the concurrence C [49] and for the bosonic case
the logarithmic negativity [50]. We start with the dynamics
when the atom-lattice interaction is so weak that the master
equation coefficients can be assumed to reach their constant
asymptotic values, corresponding physically to the regime
where waves between atoms have enough time to become
stationary (i.e., first and second Markov approximations).
We show results for a couple of TLS for different times
ω0t (to be compared with the system-bath interaction time
1/λ2 = 104/ω0) and distances �r in Fig. 7, where we plot the
surviving concurrence for initial states |�±〉. They follow the
qualitative behavior of the cross damping’s spatial dependence,
including the alternating behavior of |�±〉 as the sign of �c

changes.
There is noiseless behavior (total subradiance) only if we

are able to make �r 
 1/|�k�| (low k) for |�−〉, or with � at the
high-k edge of the band, placing the TLS at odd (|�−〉) or even
(|�+〉) distances from each other. It must be noted, though, that
when the units are near the band edges they form atom-photon
(or ion-phonon) bound states which cannot be treated under
Born-Markov conditions [39–41]. The interesting “diagonal”

FIG. 9. Same as in Fig. 8, but the initial state is asymmetrically
squeezed (see text), with (r1,r2) = (4,0) (continuous lines) and
(r1,r2) = (0,4) (dashed lines); this state also has EN = 4 but behaves
more similarly to the atomic Bell states. The parameters λ, ω0t , the
color codes, and the cases are as in Fig. 7.

case features �c(�r)/�0 = 1/2 as maximum values, so it never
produces noiseless dynamics.

The case of a bosonic two-mode state is, in comparison,
insensitive to the distinction between CB and aCB, as can be
seen in Fig. 8. (In some sense each degree of freedom acts as
each Bell state, but now both are present in the two-particle
dynamics.) This leads to similar although faster decay. In
order to see a behavior similar to atomic Bell states, we
need to initialize the state as |r〉+ ⊗ |0〉− (or |0〉+ ⊗ |r〉−),
the equivalent of |ψ+〉 (or |ψ−〉, respectively), with the mode
corresponding to operator a+ squeezed and the other in vacuum
(or vice versa). In comparison, the two-mode squeezed state
is |r〉+ ⊗ | − r〉−. In this asymmetrically squeezed case, the
dynamics is qualitatively similar to atomic Bell states, as can
be seen in Fig. 9.

III. FINITE-SIZE LATTICES

Finite-size PC lattices typically need finite-element calcu-
lations to compute the guided modes [51] and are leaky at their
boundaries. However, we can use guided modes coupled to the
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atoms: these modes have evanescent tails at the outside of the
crystal. Also, we could enforce Dirichlet boundary conditions
for all allowed modes (i.e., also guided resonance modes which
are within the light cone and thus can interact with the outer
modes, allowing extraction of light [52]) with Bragg mirrors
at the boundaries [53]. Assuming that in practice this can
be achieved with enough precision, traveling waves are then
replaced by standing waves,

f�n,�k = 2

N + 1
sin(kxnx) sin(kyny),

with kx,y = πlx,y/(Nx,y + 1), nx,y ∈ [1,Nx,y], and the same
for lx,y . Nx,y is given by the amount of dielectric function
changes in each direction, typically associated with holes made
in a dielectric slab, or pillars above it [51]. For the finite-size
lattice we will take the tight-binding dispersion relation, which
is as before ω0 − 2J (cos kx + cos ky). A unitary transforma-
tion of the Hamiltonian removes the irrelevant offset ω0, which
from now on we take as zero. Now the damping coefficients
become

�0 = 2λ2
N∑

kx ,ky=1

sin[t(� − ω�k)]

� − ω�k
|f�n,�k|2,

�c = 2λ2
N∑

kx ,ky=1

sin[t(� − ω�k)]

� − ω�k
f�n,�kf�n′,�k ,

and accordingly, the LS coherent contributions.

A. Number of resonant modes

Once a discrete spectrum is assumed, consistent with the
finite size of the lattice, one can understand the divergence in
the decay rate as a scaling of the number of resonant modes
as follows. Let us take for simplicity the case of periodic
boundaries, so f�n,�k = e−i�k·�n/2π and |f�n,�k|2 = (2π )−2. The
decay rate in this case is

�0(t) = 2λ2t

(2π )2

∑
�k

sinc[t(� − ω�k)]. (7)

For long times, this sum approximately counts how many
modes in the crystal are resonant with �, because for them
the sinc function is 1, and 0 elsewhere. In Fig. 10 we can
see that for frequencies � �= 0, at the beginning all modes are
resonant, but as time grows, the number of resonant modes
quickly reaches a scaling t−1, making the decay rate tend
to a constant already for J t ≈ 10, consistent with Fig. 1(d).
This is a common situation, justifying the use of long-time
master equations (Markov 2 approximation [35] with constant
coefficients). However, for � = 0 we see that the number of
resonant modes scales as t−0.8, and thus the decay rate scales
as t0.2. At long times it saturates at a value 4 × N/2 and does
not fall more, because the resonant manifold defined by the
red square in Fig. 1(b) (N/2 modes in each of the four lines)
perfectly fits the sinc function in Eq. (7), whatever t . From this

FIG. 10. Number of modes resonant (i.e., selected by the sinc
function, with � = 0 (blue, upper dots) and � = 2J (beige, lower
dots) as a function of time with N = 400. Fits with t−1 (beige, lower
continuous line) and t−0.8 (blue, upper continuous line) are drawn for
comparison.

time on, the decay rate scales as Nt , diverging for N → ∞ as
expected from a van Hove singularity.

B. Multiatom dark states

Dark states (perfect subradiance) can arise among distant
atoms in 1D but not in 2D isotropic environments. In the
following we show that the “diagonal” case with its linear
radiation pattern can be used to construct subradiant states, in
analogy with the 1D case where �(1D)

c /�0 = cos(k�x) [5,19],
i.e., it makes |�±〉 subradiant for specific distances between
atoms due to coherent cancellation of waves. It is easy to
see geometrically in an open 2D configuration that, because
both atoms radiate with a cross pattern, only one of the lines
(the one which joins their positions) can cancel. As noted
recently [31,32], no subradiant 2D configuration of two atoms
exists in infinite planar settings. Geometrically again, we see
that if we can join the remaining two lines, total cancellation
can occur [9]. Indeed, this is the case for reflecting boundaries,
as seen in Fig. 11(a). Only four positions for the two atoms will
yield total cancellation (equivalently, �c/�0 = 1, red points):
placing two atoms on any of those points with a state |�−〉
yields total subradiance, up to retardation effects. We stress
that these dark states can be created at arbitrary distances,
depending on the offset from the center of the PC slab.

The reflection of (photonic or phononic) waves can be
used to build peculiar radiation patterns of multiunit archi-
tectures. In Figs. 11(b)–11(d) we show the cross damping
�c/�0 of one atom with respect to another atom at position
(rx,ry): one unit (green) shares a partial subradiant condition
(�c/�0 = 1/2) with another unit (red), the red unit shares
partial subradiance with the blue unit (�c/�0 = 1/2), but the
green and blue units radiate independently. We have plotted
the cross talk of each of the atoms with the rest of the
possible atomic positions in the crystal, to make it more
understandable. In this particular case the decay rate matrix
would be �i,j = {1,1/2,0},{1/2,1,1/2}{0,1/2,1}}, with the
slowest decay channel corresponding to state |ψ〉 = (|100〉 −√

2|010〉 + |001〉)/√2 (with atom notation |green, red, blue 〉)
radiating 5.8 and 3.4 slower than the other two orthogonal
states of three atoms.
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FIG. 11. “Diagonal” case � = ω0 = 0. (a) Cross damping (in a
200 × 200 lattice), e.g., between a particle at (100,110) and another at
(rx,ry). The four points display �c/�0 = +1 (red, drawn circles). If
we place one atom in each of these four points we get three completely
subradiant and one superradiant states. Case with 3 atoms (in a 100 ×
100 lattice): probe 1 is green (center), probe 2 is red (top, left), and
probe 3 is blue (top, middle); in (b) we have plotted the cross damping
felt between the red particle and another particle sitting at (rx,ry), i.e.,
�c(red; rx,ry)/�0. In (c) and (d) the same quantity for green and blue
particles, respectively.

Another interesting case is to put four atoms, e.g., each in
the points highlighted in Fig. 11(c) (rhomboid configuration).
This leads to �i,j = 1, ∀i,j and thus to one superradiant
state with decay 4�0, |ψsuper〉 = (|1000〉 + |0100〉 + |0010〉 +
|0001〉)/2, or simply |ψsuper〉 = 1

2 (1,1,1,1) (expressed in the
basis {|1000〉,|0100〉,|0010〉,|0001〉}, with atom notation |up,
bottom, left, right〉). Also to completely subradiant states of
two (e.g., (1,0,0,−1)/

√
2), three (e.g., (−1,0,2,1)/

√
3), and

four atoms (e.g., (1,−3,1,1)/2
√

3; see also [9]). Notice that
one can keep several of the atoms in the ground state and
they will not affect the subradiance of the remaining excited
atoms. In contrast, in infinite lattices the decay rates have the
same superradiant state with lower decay rate 2�0, a totally
subradiant four-atom state [31,32] |ψ1〉 = 1

2 (−1,−1,1,1), and
the states of two or three atoms now radiate with �0. These
examples show the potential of this platform to explore the
exotic scenarios arising when all sites are filled with atoms in
different architectures.

C. Lamb-shift coupling

One could worry about the stability of dark states because
of the Lamb-shift coupling, which in principle could modify
the phases of dark states turning them into bright. For the most
interesting “diagonal” case, and in contrast with the infinite-
lattice scenario, the values of λLS are far smaller than the
radiative coupling �c. In spite of both having the same spatial
shape (see Fig. 12, now taking the tight-binding dispersion), we
observe (not shown) that the ratio λLS/�c grows linearly with
a rate ∼10−6, i.e., it takes J t ≈ 105 to reach λLS/�c ≈ 0.1.

FIG. 12. Comparison of normalized Lamb-shift coupling
λLS/�LS (left) and cross talk �c/�0 (right) between an atom at
position (25,30) and another atom at position (rx,ry) (abscissa
and ordinate in the plots, respectively) with a tight-binding lattice
Nx = Ny = 49, at times J t = 105. This corresponds to one of the
cases studied in [9]. In absolute values λLS 
 �c, though.

In addition, let us place four atoms in the four special points
of maximum �c in a subradiant state. Because the matrix of
Lamb-shift couplings λLS(�ri,�rj ) (with λLS(�ri,�ri) = �LS,i) has
the same signs and structure as the decay rate matrix �(�ri,�rj ),
it is easy to show that it does not perturb dark states [9]. This
is because dark states are eigenstates of the decay rate matrix
with eigenvalue 0, and thus also of the Lamb-shift matrix.

Although we cannot prove in general that the shape of both
matrices coincides, we have observed it both in the infinite- and
finite-lattice cases (Figs. 2, 3, 4, 12, and others not shown),
and can be understood as follows: The LS and dissipative
contributions are the integral of plane waves of all momenta
with different weighting functions, see Eqs. (3) and (4). Such
functions, for moderately long times, contribute mostly “very
close to” and “exactly at” the resonant frequency � (whence
the principal value and δ functions in the t → ∞ limit), and
thus are mediated by approximately the same manifold of
excitations, having thus directional character and very similar
properties. It is thus no surprise that their spatial shape is
almost the same. In the case of 1D optical waveguides, the
LS and dissipative terms are just the real and imaginary parts
of a single exponential exp[−ik�(r1 − r2)] (at the resonant
frequency), and thus one cancels at atom distances where the
other is maximal. In 2D though, a continuous manifold of
waves contributes nontrivially, and thus 1D phenomenology
is not exportable to 2D.

D. Entanglement decay: Perturbative vs exact

We finish by comparing the validity of our master equation
with time-dependent coefficients and the exact dynamics of
the model in the one-excitation sector [9,31]. Take two atoms
in the configuration of Fig. 12, at positions �r1 = (25,20),
�r2 = (25,30), with initial Bell states |ψ±〉. Since at those points
�c/�0 = +1, we should, and do, observe no decay of the
concurrence for |ψ−〉 and fast decay for |ψ+〉. While the shapes
are not exactly the same, the master equation faithfully captures
the time it takes for the cross talk to build up. During this
time, both Bell states decay because �c has not yet reached
its final value. This time period cannot be described by the
time-independent (long-time limit) Markovian equation. From
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FIG. 13. Dynamics of concurrence of initial states |ψ−〉 blue
(gray) and |ψ+〉 black, with � at the middle of the band, as in
Fig. 12 (see main text). Continuous lines represent the exact dynamics,
while dashed lines are the predictions of our time-dependent master
equation. The system-lattice coupling is λ/J = 0.01 (top), λ/J =
0.05 (middle), and λ = 0.1J (bottom). In the middle and bottom
cases, a build-up time for the cross talk is clearly observed.

that time on, only one of the Bell states decays further. This
time can be estimated as follows: In the diagonal propagation
the waves have a group a velocity ∼J , so in order to reach one
emitter from the other, they travel r ≈ 80 lattice sites (notice
that the waves follow the bouncing path in Fig. 12), thus taking
J as the unit, and the time is J t ≈ 80. This can be perfectly seen
in Fig. 13. If we would assume naively a decay of dark state
entanglement as C(t) ≈ C(0)e−λ2t , we obtain 0.99,0.82,0.45
for the cases in Fig. 13 (top, middle, bottom), rather close
to reality. In any given experimental realization, we should
basically check the time it takes for signals to reach between
emitters t ≈ r/J and compare to the time it takes for emitters
to decay t ≈ 1/λ2. If the latter is much larger, then we can
safely use the long-time Markov master equation.

It is also interesting to see that once the concurrence of |ψ+〉
has fallen to zero, it can never go up. This is a clear effect of
the Born approximation, which takes the state of the lattice to
always be the T = 0 thermal state (vacuum). Because of this,
no excitation can ever go back to the atoms. We also observe
that our master equation underestimates decay, as compared to
the exact dynamics which gives oscillatory behavior (revivals).

Finally, for system-lattice strong coupling λ = 0.1J we start
observing more pronounced differences in the dynamics. This
is a very interesting subject for future studies.

E. Experimental issues

Apart from the finite-time propagation issue when con-
structing dark states in an experiment, there are other possible
issues to be taken into account, such as disorder in the
position of emitters. This would lead to imperfect subradiance
and thus a finite-time lived dark state. In cold atoms and
trapped ion configurations, there cannot be any disorder in the
position of emitters, because emitters are related to degrees of
freedom of the “sites” themselves. In particular for ion-trap
experiments, it would be interesting to analyze the existence
of directional phononic emission, since the geometry of the
lattice is triangular but with a nonhomogeneous lattice spacing
(more compressed near the center of the Coulomb crystal).
In photonic crystal configurations, optical traps for atoms that
propagate through the crystal can be used [7]. The trapping
positions would very well coincide with holes bored in the
dielectric material, which also coincide with the lattice “sites”
for guided modes, except for finite temperature displacements
of atoms from their equilibrium positions. More problematic
would be issues related to emission losses, already analyzed
in [32], which need to be addressed on a case-by-case basis.

IV. CONCLUSIONS

We have studied the interaction of two probes induced by
a 2D structured periodic environment. The physics of this
problem is generic enough that it can be applied to, e.g., a
2D Coulomb crystal of trapped ions [1–3], PCs with nearby
trapped atoms [4–7], 3D printed photonic circuits [25,26],
trapped ions near piezoelectric substrates [10], or even circuit
QED architectures [27–30], requiring only translational invari-
ance of the lattice and weak system-lattice coupling. Coherent
(Lamb-shift) and incoherent (radiative) couplings are studied
both for finite and infinite lattices, analyzing many details and
possible pitfalls. We show the usefulness of the master equation
description, in terms of radiative couplings between quantum
units, by showing that it directly translates into the behavior of
entanglement decay of two units. Further, for more than two
units, we show how to use the radiative coupling matrix to
build dark states.
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