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Self-accelerating shape-invariant beams are attracting major attention, presenting applications in many areas
such as laser manipulation and patterning, light-sheet microscopy, and plasma channels. Moreover, optical
lattices are offering many applications, including quantum computation, quantum phase transition, spin-exchange
interaction, and realization of magnetic fields. We report observation of a class of accelerating and self-healing
beams which covers the features required by all the aforementioned applications. These beams are accelerating,
shape invariant, and self-healing for more than several tens of meters, have numerous phase anomalies and
unprecedented patterns, and can be feasibly tuned. Diffraction of a plane wave from radial phase gratings generates
such beams, and due to their beauty and structural complexity we have called them “carpet” beams. By tuning the
value of phase variations over the grating, the resulting carpet patterns are converted into two-dimensional optical
lattices with polar symmetry. Furthermore, the number of spokes in the radial grating, phase variation amplitude,
and wavelength of the impinging light beam can also be adjusted to obtain additional features. We believe that
radial carpet beams and lattices might find more applications in optical micromanipulation, optical lithography,
super-resolution imaging, lighting design, optical communication through atmosphere, etc.
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I. INTRODUCTION

Producing optical patterns and using them has garnered a
great deal of attention in optics for about four centuries. The
simplest optical pattern is generated through the interference
of two coherent beams. Another easy way to produce optical
patterns is the use of diffraction. One of the fantastic ways of
producing more complex optical patterns is using the Talbot
effect. Also, the use of spatial light modulators (SLMs) is an-
other possibility to produce more complicated optical patterns.
In addition to the linear methods of generating optical patterns,
there are nonlinear light-matter interaction mechanisms such
as the nonlinear wave mixing in which self-generating optical
patterns can be produced [1]. Optical pattern engineering and
architecture for various purposes, such as producing multifocus
beams for multitrapping, have received considerable attention
in recent years. There are many applications for optical pat-
terns, for example, interference patterns are used for producing
periodic structures via photomicrography.

The change of the shape of conventional structured light
patterns under propagation has imposed strict limits on using
them in different propagation distances [2]. There are a number
of nonspreading or nondiffracting beams such as Bessel [3],
Airy [4,5], Mathieu [6], Weber [7], and Pearcey [8] beams
that can be used at different propagation distances for various
applications. It is worth remembering that the use of the
Talbot effect is another way to overcome the spreading effect
of diffraction [9–11]. Almost all nondiffracting beams have
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other interesting properties, such as self-healing [8,12], self-
channeling [13], having phase anomalies [14–16], acceler-
ating [5,7,17,18], and so on. Here, we produce a class of
accelerating nondiffracting beams which have phase anomalies
and are able to form a two-dimensional (2D) optical lattice with
symmetry in the polar system.

In this work, a detailed theory of diffraction from radial
phase gratings with sinusoidal or binary transmission functions
is presented. We show that unprecedented optical carpets
are produced at the transverse plane in the diffraction of a
plane wave from radial phase gratings. The optical carpets
produced can be easily turned into 2D optical lattices with
polar symmetry by tuning the phase amplitude of the gratings.
The generated lattices are characterized in terms of the radial
grating spoke number, amplitude of the phase variation over
the grating, and wavelength of the impinging light beam at
various propagation distances.

We show that the form of the resulting lattice does not
change in propagation, but each intensity spot on the lattice
propagates on a curved path. These optical carpets and 2D
lattices have self-healing properties. The light-beam phase
distribution over the transverse plane has numerous phase
anomalies. We believe that these kinds of optical lattices
might find more applications in optical trapping, beam shaping,
optical lithography, etc.

It is worth mentioning that we have recently reported
the observation of the Talbot carpet at the transverse plane
produced by the diffraction of a plane wave from an amplitude
radial grating [19]. We have shown that for an amplitude radial
grating, the geometric shadow and near-field and far-field
diffraction patterns are observable at planes parallel to the
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FIG. 1. Radial phase gratings and theoretically predicted optical carpets in the diffraction of a plane wave from radial phase gratings with
sinusoidal and binary profiles. (a, b) Illustration of radial phase gratings with sinusoidal and binary transmission functions, respectively. Both
patterns have the same number of spokes, m = 10. (c) Calculated diffraction patterns for three radial phase gratings having sinusoidal profiles
with m = 10, m = 30, and m = 50 spokes at a distance 100 cm from the gratings. (d) Enlarged phase (left) and intensity (right) patterns for
the grating with m = 30. (e) An inset of (d). (f–h) Corresponding patterns for phase gratings with binary profiles. The grating parameters are
the same as (c–e). The amplitude of the phase modulation for all of the gratings is γ = π/2. Real size of the patterns is 15.6 mm × 15.6 mm
(see also Movies 1a–1d).

grating plane and are continuous at distances from the grating.
As a consequence of turning a conventional grating into a
radial grating with a central singularity, it was shown that the
plane boundaries between the optical regimes have acquired
curvature. In another work, an intensity-based method for
measuring alteration of the topological charge by the aid of
diffraction of vortex beams from amplitude sinusoidal radial
gratings was recently reported [20]. Also, the propagation
of azimuthally periodic light fields produced by the aid of
petal patterns was used for generating azimuthally modulated
circular superlinear Airy beams [21]. That work is based on
the diffraction of truncated circular Airy beams having an
azimuthal phase periodicity. As the initial complex ampli-
tude of the diffracted beam has a base structure including

an Airy function, this limits the variety of the resulting
patterns.

In the following sections, we present detailed analytical,
computer simulation, and experimental works of the diffraction
of a plane wave from radial phase gratings having sinusoidal
and binary profiles by using the Fresnel-Kirchhoff integral.
Theoretical calculations are done in the polar coordinates. The
resulting diffraction patterns by each of the mentioned ways
are similar and they verify each other.

II. DIFFRACTION FROM RADIAL STRUCTURES

Here, the theory of diffraction from radial structures is
briefly reviewed. A structure is defined as a radial structure
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when there is not radial dependency in its transmission
function [19]. We use (r,θ ) for the polar coordinates. The
transmission function of a radial structure, t(θ ), can be written
by

t(θ ) =
+∞∑

n=−∞
tne

inθ = t0 +
+∞∑
n=1

(tn einθ + t−ne
−inθ ), (1)

where tn is the nth Fourier series coefficient. By passing
a coherent plane wave through this structure, the complex
amplitude of the diffracted light beam after a propagation
length of z can be written as [19]

ψ(r,θ ; z) = eikz

{
t0 + ReiR2

+∞∑
n=1

√
π

2
(−i)

n
2 +1(tne

inθ

+ t−ne
−inθ )

[
J n+1

2
(R2) + iJ n−1

2
(R2)

]}
, (2)

where k = 2π
λ

is the wave number, J n±1
2

is the n±1
2 th Bessel

function of the first kind, and R is a dimensionless quantity

determined by R =
√

π
2λz

r .

The diffraction from 2D radial structures can be calculated
by Eq. (2). In the following, we calculate diffraction of plane
waves from radial phase gratings having sinusoidal and binary
profiles.

III. DIFFRACTION OF A PLANE WAVE FROM A RADIAL
PHASE GRATING HAVING A SINUSOIDAL PROFILE

Here, we present the diffraction of a plane wave from a radial
phase grating with a sinusoidal profile, which is illustrated in
Fig. 1(a). The grating’s transmission function can be written by

t(θ ) = eiγ cos(mθ) =
+∞∑

q=−∞
(i)qJq(γ )eiqmθ , (3)

where γ and m are the amplitude of the phase variation and the
number of spokes of the grating, respectively, and the Jacobi-
Anger expansion is used [22]. By using J−n(x) = (−1)nJn(x)
we can rewrite t(θ ) as

t(θ ) = J0(γ ) +
+∞∑
q=1

(i)qJq(γ )[eiqmθ + e−iqmθ ]. (4)

Comparing Eqs. (4) and (1), one can deduce that t0 =
J0(γ ), tn=mq = tn=−mq = (i)qJq(γ ), q = 1,2,3, ... ., and all
other coefficients are zero. By using these coefficients in
Eq. (2), the complex amplitude at z is given by

ψ(r,θ ; z) = eikz

⎧⎨
⎩J0(γ ) + ReiR2 ×

+∞∑
q=1

ψq

[
J qm+1

2
(R2)

+ iJ qm−1
2

(R2)
]

cos(qmθ )

⎫⎬
⎭, (5)

where ψq = √
2π (−i)( m

2 −1)q+1Jq(γ ). As the diffracted com-
plex amplitude is an explicit function of R, the form
of the produced optical pattern remains invariable during
propagation.

For a radial phase grating having a sinusoidal profile,
by using Eq. (5) the diffraction pattern at a given z can
be calculated by I (r,θ ) = ψ(r,θ )ψ∗(r,θ ), where ∗ denotes a
complex conjugate.

In Fig. 1(c) calculated diffraction patterns of three radial
phase gratings with different numbers of spokes m = 10,
m = 30, andm = 50 are illustrated. The amplitude of the phase
modulation for all of the gratings is γ = π/2. In Fig. 1(d) the
diffracted phase and intensity distributions from a sinusoidal
phase grating with m = 30 are shown symmetrically at the left
and right sides, respectively. An inset of Fig. 1(d) is shown in
Fig. 1(e). The phase distributions are obtained by calculating
the quantity arg[ψ(r,θ ; z)] of Eq. (5). The Supplemental Ma-
terial (SM) Movies 1a and 1b [23] show calculated diffracted
intensity and phase patterns for a sinusoidal phase grating
with m = 30 and γ = π/2 at different propagation distances,
respectively. In the calculation of the phase profile during
propagation, as in Movie 1b, the term exp(ikz) of Eq. (5) is not
taken into account. Movie 1a shows that the calculated intensity
pattern is shape invariant under propagation, and the observed
diffraction pattern originates from the center of the grating
in the vicinity of z = 0. We notice that the phase profiles of
Figs. 1(d) and 1(e) and Movie 1b consist of numerous jumps
with an absolute value of about π over the azimuthal paths.
We call an abrupt phase change with an absolute value of
about π a phase anomaly. A more detailed study of the phase
anomaly of the light field is presented in a following section.
We think that these phase anomalies guarantee an invariant
intensity distribution under propagation. Due to the amazing
beauty and structural complexity of the resulting patterns we
call them “optical carpets.”

IV. DIFFRACTION PATTERN OF A RADIAL PHASE
GRATING HAVING A BINARY PROFILE

The phase profile induced on a plane wave by a radial phase
grating having a binary profile and the number of spokes m

[Fig. 1(b)] is given by

t(θ ) = eiγ sgn[cos(mθ)], (6)

where sgn indicates the signum function. The period of t(θ ) is
2π
m

, and it can be written in one period by

t(θ ) =
{
eiγ for −π

2m
< θ< π

2m

e−iγ for −π
m

< θ < −π
2m

and π
2m

< θ < π
m

. (7)

By using the above expression one can calculate the Fourier
expansion of t(θ ) as follows:

t(θ ) = cos(γ ) +
∞∑

l=−∞
l �=0

i sin(γ )sinc

(
lπ

2

)
eilmθ

= cos(γ ) +
∞∑
l=1
odd

2

lπ
il sin(γ )(eilmθ + e−ilmθ ), (8)

where sinc(x) = sin(x)
x

and the “odd” under the summation
indicates that l is an odd number in the second summation.
Moreover, we used the fact that sinc( lπ

2 ) vanishes for even
values of l and it equals to 2

lπ
i(l−1) for the odd values of l.
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FIG. 2. Shape-invariant carpet beams under propagation, experimentally recorded and simulation results. Simulated and experimentally
recorded diffraction patterns from radial phase gratings having (a) sinusoidal and (b) binary profiles, with m = 10, m = 30, and m = 50 spokes
at different distances 100 cm, 150 cm, and 200 cm from the structures. The experimentally recorded and simulated patterns are shown by the
green and red colors, respectively. The real size of all patterns is 15.6 mm × 15.6 mm. The phase modulation amplitude of the gratings is
γ = π/2.

By comparing the second row of Eq. (8) with Eq. (1) one
can deduce that t0 = cos(γ ), tn=ml = tn=−ml = 2

lπ
il sin(γ ), l =

1,3,5, . . . , and all other coefficients are zero. The determined
coefficients are replaced in Eq. (2), then the complex amplitude
at z is given by

ψ(r,θ ; z) = eikz

{
cos(γ ) + ReiR2

∞∑
l=1
odd

ψl

[
J lm+1

2
(R2)

+ iJ lm−1
2

(R2)
]

cos(lmθ )

}
, (9)

where ψl = 2
l

√
2
π

sin(γ )(−i)( m
2 −1)l+1.

Equation (9) specifies the diffracted complex amplitude
from a radial phase grating having binary profile. Using Eq. (9),

calculated diffraction patterns for three typical binary phase
gratings are shown in Fig. 1(f). Calculated phase and intensity
patterns for the grating of m = 30 with a magnification in size
are shown with a mirror symmetry in the left and right sides
in Fig. 1(g), respectively. An inset of Fig. 1(g) is shown in
Fig. 1(h). The intensity values are normalized to the intensity
value of the incident beam. The SM Movies 1c and 1d
show calculated diffracted intensity and phase patterns for a
binary phase grating with m = 30 and γ = π/2 at different z,
respectively.

As is illustrated in Figs. 1(g) and 1(h) and seen in Movie
1c, for a binary phase grating when γ = π/2, the number of
spokes on the resulting intensity pattern is doubled and equals
2m, while the spatial period of the phase pattern is still the
same period of the grating. This interesting feature stands for all
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FIG. 3. Calculated intensity profiles for two carpet beams having zero value of intensity in the central area. (a) Calculated intensity of the
diffraction pattern from a sinusoidal phase grating with m = 50 and γ = 2.4048 rad at z = 100 cm. Here, the intensity of the central area is
zero. The real size of the pattern is 15.6 mm × 15.6 mm. (b) The same pattern for a binary phase grating with γ = π/2 and m = 30 (see also
Movies 2a–2f [23]).

propagation distances. This effect has a beautiful mathematical
interpretation. A very close effect also occurs in the near-
field diffraction from one-dimensional periodic structures, but
only at the quarter-Talbot distances. A detailed mathematical
interpretation of this effect was recently presented in Ref. [10].

V. METHODS, SIMULATION,
AND EXPERIMENTAL WORKS

In addition to the analytical works, we simulate the diffrac-
tion patterns from different radial phase gratings at different
propagation distances using the free-space transfer function
and MATLAB programming. Also, for a number of radial
phase gratings with different spokes the diffraction patterns
are experimentally recorded. Movies containing calculated
patterns can be found in the Supplemental Material [23].

We used a conventional SLM extracted from a video projec-
tor (LCD projector KM3, model no. X50) to prepare the desired
pure phase gratings. The maximum amplitude of the phase
modulation was limited by γ = π/2, where it was considered
in Figs. 1(a) and 1(b). In the experiments, the entire area of
the SLMs are fully illuminated by a uniform laser beam. The
active area of the SLM is 11 mm × 15 mm, and we have used a
square area of 11 mm × 11 mm for producing phase gratings.

In the experiment, a collimated wavefront of the second
harmonic of a Nd:YAG diode-pumped laser beam having a
wavelength of λ = 532 nm is propagated through the SLM
and the phase grating profile is imposed on it. At different
distances from the SLM, we record the diffracted patterns by
a camera (Nikon D100). We record the diffraction patterns
directly over the active area of the camera by removing the
imaging lens of the camera. The active image area of the camera
is 23.4 mm × 15.6 mm.

In Fig. 2(a), simulated and experimentally recorded diffrac-
tion patterns for three radial sinusoidal phase gratings with
different numbers of spokes m = 10, m = 30, and m = 50
are illustrated. In the figure, green and red color patterns

correspond to the experimentally recorded and simulated
patterns, respectively. The same patterns for three typical radial
phase gratings with binary profiles are illustrated in Fig. 2(b).

As can be deduced from Figs. 2(a) and 2(b), the light-
field distributions are shape invariant under propagation, and
due to the radial symmetry, amazing beauty, and structural
complexity of the corresponding intensity patterns, we call the
diffracted light beams from the radial phase gratings “radial
carpet beams.”

(c)

(a) (b)

FIG. 4. Self-accelerating property of radial carpet beams. (a, b)
Calculated phase and intensity profiles for the diffracted complex
light field passing through a sinusoidal phase grating with m = 50
and γ = π/2 at z = 100 cm. (c) Calculated propagation paths for six
given intensity rings. Radii of the selected rings at z = 100 cm are
shown over the first row’s profiles.
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VI. SPECIFICATION OF THE PRODUCED CARPET
PATTERNS AND THE NONDIFFRACTIVE

RADIAL CARPET BEAMS

As is apparent from Figs. 1 and 2 over a given transverse
plane, three different areas can be recognized. The first area is a
“patternless area” that appears in the vicinity of the z axis, and
we relate it to the far-field diffraction region. The second area
with intermediate radial distances is related to the near-field
diffraction region. The area with larger values of the radial
coordinates is considered as the geometric shadow. Here the
term “shadow” is used for imaging of the phase pattern over
the grating. As is apparent from Fig. 1 and from Movies 1a–1d
(see SM [23]) the geometric shadow and near-field and far-field
diffraction patterns are observable at all transverse planes.
This means that the geometric shadow, and the near-field and
far-field diffraction regimes, are mixed at various propagation
distances. Also, we see that the outer radii of the patternless
and near-field diffraction areas increase by propagation. As we
have turned a conventional grating into a radial grating with
a central singularity, the plane boundaries between the optical
regimes are now curved. In other words, similar to the case of
amplitude radial gratings, here again the space splits into geo-
metric shadow and far-field and near-field diffraction regimes
with nonflat border surfaces (see Fig. 7 of Ref. [19]). Also,
it was shown that in the plane-wave diffraction from radial
amplitude gratings, in a given transverse plane the realization
of the Talbot effect and the conventional Talbot carpet are
possible. For more details in this regard and the other aspects
of the Talbot carpet at the transverse plane, see Ref. [19].

Unlike the case of diffraction of a plane wave from
amplitude radial gratings, here due to a more complicated
manipulation of the complex amplitude of the impinging beam
by the radial phase gratings, we no longer observe the Talbot
effect and are not able to realize it even in the transverse plane.

One of the interesting observations is the nondiffractive
behavior of the produced optical carpets. As it is illustrated
in Movies 1a and 1c and also in Figs. 2(a) and 2(b), each
optical carpet is shape invariant under propagation. Movies 1a
and 1c [23] show that the transverse size of the optical
carpet at the beginning of the propagation expands rapidly;
nevertheless, the rate of expansion decreases by propagation. In
the following, we show that unlike the conventional diffraction
where the angular form of the far-field diffraction pattern
remains unchanged under propagation, here the angular form
of the resulting carpets converges by propagation.

As is apparent from Eqs. (5) and (9), the complex amplitude

of a carpet beam at a given z is a function of R =
√

π
2λz

r;

therefore the whole pattern expands with a factor
√

z during
propagation, and the rate of the pattern size increment is

1
2
√

z
. This rate is a descending function of z. It means that

although the size of the pattern increases by a factor
√

z, its
angular size decrease by the propagation. This fact reflects the
nondiffractive nature of the produced beams. We know that the
angular distribution of the far-field diffraction pattern for the
convectional apertures remains invariant and the rate of the pat-
tern size increment respect to z is constant [2]. Therefore, the
above-mentioned fact is in contradiction with the conventional
rules of diffraction optics. The singularity of the radial grating

causes this violation from the conventional rules of diffraction
optics. As the diffraction of the carpet beams is less than the
diffraction of conventional beams such as the Gaussian beams,
we have used the nondiffractive term for them.

Another interesting aspect is the focusing of the intensity.
As it is shown in Figs. 1(e) and 1(h), the main lobes over each
of the calculated diffraction patterns have the maximum value
of intensity, with a value about 7 times the intensity of the
impinging beam.

Let us present some analytical predictions by considering
some approximations of Eq. (5). Similar approximations can
be considered for the binary phase gratings using Eq. (9). For
large values of R, the Bessel function can be written as [22]

Jm(R2) →
√

2

πR2
cos

(
R2 − mπ

2
− π

4

)
. (10)

Now, for large values of r , by using this approximation,
Eq. (5) reduces to

ψ(r,θ ; z) = eikzeiγ cos(mθ ′), (11)

which is the geometric shadow of the phase profile of the
grating. It means that the phase distribution at large radial
distances is the shadow of the phase pattern just after the
structure, see Movies 1b and 1d [23].

In the vicinity of the optical axis, when R goes to zero, by
using

Jm(R2) → 1

�(m + 1)

(R2

2

)m

, (12)

Eq. (5) reduces to

ψ(r,θ ; z) = eikz

⎧⎨
⎩J0(γ ) + eiR2

+∞∑
q=1

ψqRqm

×
[

R2 + i(qm + 1)

2( qm−1
2 )(qm + 1)�( qm+1

2 )

]
cos(qmθ )

⎫⎬
⎭. (13)

For small values of r , or equally in the vicinity of the optical
axis in which R < 1, the intensity gets a constant value of
J0(γ ). An interesting result is obtained when γ is equal to the
first zero of J0, where in this case the intensity of the patternless
area is zero. In Fig. 3(a) the carpet pattern for a radial sinusoidal
phase grating with m = 50 and γ = 2.4048 rad at z = 100 cm
is shown. It has a zero value of intensity over the patternless
area, and the maximum value of the intensity on the main lobes
is about 11 times that of the incident beam intensity. In Fig. 3(b)
the carpet pattern of a radial binary phase grating with m = 30
and γ = π/2 at z = 100 cm is shown, where the value of
intensity over the patternless area is zero. Movies 2a and 2b [23]
show the intensity and phase profiles for the carpet beams of
sinusoidal phase gratings with γ = π/2 and different values
of m at z = 100 cm, respectively. Movies 2c and 2d show the
same profiles for the carpet beams of sinusoidal phase gratings
with γ = 2.4048 rad and different values of m at z = 100 cm,
respectively. Movies 2e and 2f show corresponding profiles for
the binary phase gratings with γ = π/2 and different values
of m at z = 100 cm, respectively. In fact, each of the resulting
beams with a given value of m can be considered as a mode of
the carpet beams.
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FIG. 5. Architecture of radial carpet beams by tuning the amplitude of phase variation of the grating. (a, b) Calculated intensity and
phase distributions of the diffracted field for a sinusoidal phase grating with m = 50 and different value of γ at z = 100 cm, respectively.
(c, d) Show corresponding patterns for a binary phase grating, see also Movies 3a–3d [23].

VII. ACCELERATING SPOT BEAMS

Here, theoretically and experimentally, we show that each
part of an optical carpet pattern propagates as an accelerating
beam. As is apparent from Fig. 2 and Movies 1a and 1c [23],
the form of the carpet patterns remains constant during propa-
gation. Here we show that a given point on the intensity pattern
propagates over a curved path.

Equations (5) and (9) show that the diffraction patterns for
both sinusoidal and binary cases are explicit functions of R.
Therefore, by chasing a given point on the pattern with a given
value of R, the trace of the point during propagation can be

determined. As R =
√

π
2λz

r , for a point on the pattern with a

radius of r0 at a given propagation distance of z0, its radius r

at an arbitrary propagation distance of z can be calculated by

R =
√

r0
z0

=
√

r
z
, and the trace of the point is given by

r(z) = r0√
z0

√
z. (14)

This means that the propagation path of a given point on the
intensity pattern is a nonstraight line. A similar behavior has
been observed for the amplitude radial grating [19].

In Figs. 4(a) and 4(b), quarter parts of the calculated phase
and intensity profiles for the diffracted light beam from a
sinusoidal phase grating with m = 50 and γ = π/2 at z =
100 cm are shown, respectively. In Fig. 4(c), calculated paths
for six given intensity rings are plotted. Radii of the selected
rings at z = 100 cm are shown over the patterns of Figs. 4(a)
and 4(b). There is a similar self-accelerating behavior for the
carpet beams of binary gratings.

VIII. ENGINEERING OF THE CARPET PATTERNS,
MODE SELECTION

The physical characteristics of the phase gratings can be
easily adjusted to obtain various carpet beams. Here, we
investigate some possible ways to achieve different carpet
beams that we name “modes.” Accessing a large number of
modes can be used in different applications such as in optical
communications. Also, this feature can be a useful tool in
lighting design technologies.

There are different possibilities for mode tuning. Different
modes of the carpet beams can be defined and produced
through different values of the spoke number m and the phase
variation amplitude γ of the phase sinusoidal and binary
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(a) (c)

(b) (d)

FIG. 6. Phase anomalies of carpet beams. The intensity and phase profiles (a) along three different azimuthal paths and (b) along two
different radial paths for the phase pattern of Fig. 5(b) with γ = π/2. Unwrapped phase profiles of (b) are shown in the last row. (c, d) Show
corresponding plots for the binary phase grating of Fig. 5(d) with γ = π/2.

gratings. A carpet beam of a radial phase grating, having given
values of m and γ , can be considered as a mode of the carpet
beams.

Movies 2a and 2b [23] show intensity and phase patterns
of successive modes of radial carpet beams generated by
tuning the value of m of a sinusoidal phase grating with
γ = π/2 at z = 100 cm, respectively. Movies 2c and 2d show
the same patterns for γ = 2.4048 rad. Movies 2e and 2f show
the same patterns for a binary phase grating with γ = π/2 at
z = 100 cm.

Now, we show that the form of carpet beams is also sensitive
to the value of γ . In Figs. 5(a) and 5(b), calculated diffracted
intensity and phase patterns for a sinusoidal phase grating with
m = 50 at z = 100 cm for different values of γ are shown.
In Figs. 5(c) and 5(d) the same patterns for a binary phase
grating with the same parameters are shown. As is apparent
from Figs. 5(a) and 5(c), the forms of intensity patterns are very
sensitive to the value of γ . Therefore, another way for defining
different modes for the carpet beams can be established by

certain values of γ . Movies 3a–3d show the dependency of the
intensity and phase distributions to the value of γ for sinusoidal
and binary phase gratings. Also, Movies 3a and 3c show that
the maximum values of intensities over the main lobes depend
on the value of γ .

As the carpet beams are self-healing and are easily switch-
able through different values of m and γ , they are well-suited
for optical communication through atmosphere. Atmospheric
turbulence distorts conventional optical beams propagating
through it and imposes a major limit in free-space optical
communications. By encoding the data on different modes of
carpet beams the limit can be bypassed.

IX. PHASE ANOMALIES OF THE PRODUCED
LIGHT CARPETS

A well-known phase anomaly for the light field occurs in the
passing of a plane wave through a positive lens, on the optical
axis in the vicinity of the focal point [24,25]. This interesting
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FIG. 7. Radial carpet beams as a 2D optical lattice with a polar symmetry. 2D optical lattice formation by laser beam self-channeling after
propagating a plane wave through a radial phase grating with a binary amplitude. (a) Calculated diffraction pattern for a radial phase grating
having a binary profile with m = 20 spokes at a distance of 100 cm from the grating with a value of γ = π/2. (b, c) Two different illustrations
of the intensity profile of a sector of the introduced pattern in (a). (d) An experimentally recorded 2D optical lattice produced by a binary phase
grating with the same parameters and at the same distance from the grating of (a). (e) An inset of (d). (f) 3D illustration of the main lobes of
(a) under propagation (see also Movie 4 in the Supplemental Material [23]).
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FIG. 8. Self-healing of carpet beams, self-reconstruction of a removed main lobe under propagation. (a) Self-healing of a diffracted beam
from a radial phase grating with a sinusoidal profile when one of the main spots is blocked at a distance of z = 100 cm from the grating.
z = 100 cm or equally z′ = 0 shows the position of the blocking plane. The first and third columns show experimentally observed intensity
profiles and the corresponding numerical simulations at different distances from the blocking plane for a radial phase grating having a sinusoidal
profile with m = 10 spokes and a value of γ = π/2, respectively. The insets of the patterns are maximized in the second and forth columns.
The corresponding patterns for a binary phase grating are shown in (b).

feature of the light fields is also observed in the conventional
Talbot light carpets [16]. A similar behavior is observed over
the phase distributions of the diffracted light fields from the
radial gratings. In this section we illustrate this fascinating
feature of the carpet beams. The existence of abrupt phase
changes for a light field prepares amazing behaviors for the
corresponding intensity distribution under propagation. Here,
the phase anomaly of the carpet beams is briefly presented.

The phase profile of the diffracted field from a sinusoidal
phase grating shown in Fig. 5(b) has a considerable number
of phase jumps with an absolute value near π . Also, Movie
3b shows the dependency of the phase anomalies on the value
of γ .

In Fig. 6(a), for a sinusoidal phase grating with m = 50
and γ = π/2 at z = 100 cm, the quantity arg[ψ(r,θ ; z)] of
Eq. (5) is plotted in terms of θ at three constant values of r .
The corresponding intensity profiles are also plotted for better
illustration of the phase jump locations. In Fig. 6(b) the phase
and intensity profiles along two radial directions with different
values of θ are presented. In the last row, the corresponding
unwrapped phase profiles after removing 2π jumps are shown.

In Fig. 6(c) for a binary phase grating with m = 50 and
γ = π/2 at z = 100 cm, the phases of the carpet beam in terms
of θ at three different values of r are illustrated. As is apparent
from Figs. 6(a) and 6(c) along a given azimuthal path with a
constant r , there are phase jumps between all the neighboring
intensity lobes. In Fig. 6(d) the phase and intensity profiles
along two radial directions with different values of θ for the
binary grating are presented. In the last row, the corresponding

unwrapped phase profiles after removing 2π jumps are shown.
Here, we see that in the azimuthal direction the sinusoidal
phase profile of the sinusoidal phase grating shown in Fig. 1(a)
by propagation is turned to a binarylike profile, and for the
binary phase grating of Fig. 1(b), its binary phase profile is
still binary in the azimuthal direction but at different radial
distances they do not have the same bias. For both sinusoidal
and binary phase gratings, their phase profiles along the radial
direction are remarkably changed by propagation, as seen in
the last row of Fig. 6.

X. SELF-CHANNELING OF RADIAL CARPET BEAMS,
CHARACTERIZATION OF 2D OPTICAL LATTICES

Due to diverse applications of optical lattices in various
branches of science, they are attracting great attention. For
example, optical lattices are used in the realization of magnetic
fields [26], exploration of quantum phase transitions [27], con-
trolling spin-exchange interactions [28], realization of quan-
tum computation [29], and so on. The most simple and early
introduced one-dimensional optical lattice is the interference
pattern of two coherent beams. Another way for generating
optical lattices even in three dimensions (3D) is the use of the
self-imaging effect of the 2D periodic structures [11]. By the
aid of interference- and diffraction-based methods lattices with
limited forms can be produced. In recent years, many optical
lattices with a variety of structures have been introduced by the
aid of nondiffracting beams, such as the azimuthally modulated
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FIG. 9. Self-healing of carpet beams, self-reconstruction of a removed sectoral area under propagation. (a) Green and red color patterns
show experimental and simulation results, respectively, at different distances from the blocking plane, z′ = 0, for three sinusoidal phase gratings
with m = 10, m = 30, and m = 50 and γ = π/2. The corresponding patterns for binary phase gratings are shown in (b).

Bessel and circular Airy beams, and combination of parabolic
beams [21,30–32].

It is worth mentioning that the laser beam channeling
also occurs by the filamentation of ultraintense laser pulses
in transparent dielectrics [18,33,34], where the formation of
filaments results by the dynamic balance between various
linear and nonlinear processes.

Optical lattice are also formed by the interference of two
light beams on materials showing nonlinear refractive index
dependency on light intensity. These photonic lattices have
been extensively discussed, since they can be erased and
controlled by the beam properties [35].

Unlike filamentation of the conventional laser beams that
occurs only in transparent media [34], self-channeling of
nondiffracting beams may well occur even in free space. For a
radial carpet beam we showed that there are numerous phase
anomalies over the diffracted beam in the azimuthal direction
at all propagation distances. These phase anomalies provide a
self-channeling property for the light beam under propagation.

In this section, formation of a 2D optical lattice by laser
beam self-channeling in the propagation of a plane wave
through a binary phase grating is investigated. Self-channeling
of the diffracted beam is investigated both via computer
simulation and experimental work. These lattices are very
easily tunable by changing the values of m and γ of the grating.
We believe that this kind of 2D optical lattices can be very

useful for the lensless laser patterning and laser manipulation
techniques, light-sheet microscopy, controllable generating
of multiple filament plasma channels in the field of plasma
physics, etc.

In Fig. 7(a), formation of a 2D optical lattice by propagation
of a plane wave through a binary phase grating having m = 20
and γ = π/2 at z = 100 cm is illustrated. Figures 7(b) and 7(c)
show the intensity profile over a sector of Fig. 7(a) by two
different ways. Figure 7(d) shows an experimentally recorded
2D optical lattice produced by the same grating at the same
propagation distance. In Fig. 7(e) an inset of Fig. 7(d) is shown.
Figure 7(f) illustrates the 3D form of the central lobes of a given
radial carpet beam produced by the same grating.

As it is seen from Fig. 7(f), the transverse size of the main
lobes is almost constant during propagation. The SM Movies
4a–4d show shape-invariant behaviors of the carpet patterns of
sinusoidal and binary phase gratings during propagation from
z = 2 m to z = 3 m. Movie 4c shows that the radial dimensions
of the patternless area at z = 2 m and z = 3 m are 2.2 mm and
2.35 mm, respectively. This means that the radial dimension
of the carpet beam in that range increases 6 %. For large values
of propagation distances, this percentage of the size increases
towards to zero.

It is worth noting that there is an increasing interest in un-
derstanding the nonlinear propagation of accelerating beams,
e.g., Airy beams [36]. The beam properties and propagation can
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FIG. 10. Effect of an exaggerated cancellation on the self-healing and nondiffracting properties of the carpet beams. (a) Illustration of
the entire beam propagation. Insets show enlarged intensity profiles of three main lobes at different propagation distances. (b) Simulated and
(c) experimentally recorded intensity profiles at different distances from a suitable mask, z′, where a main lobe is isolated by passing through
the mask installed at distance z = 300 cm from a binary phase grating. Insets again show enlarged intensity profiles of the main lobe at different
propagation distances.

be modified by the nonlinear light-matter interactions, such as
the light self-focusing that leads to the formation of spatial
soliton. In the case of radial carpet beams, such study may
show some specific properties of these beams under nonlinear
propagation.

XI. SELF-HEALING PROPERTIES OF THE
PRODUCED OPTICAL BEAMS

Here, we investigate both by numerical simulation and
experimental observation the self-healing properties of the
produced optical carpet beams. We show that this kind of
beam tends to reform during propagation in spite of the severity
of the imposed perturbations. We investigate this behavior by
blocking one of the main spots of the beams and by blocking
a sectoral area of the beams. Our observations are in excellent
agreement with the numerical simulations.

In addition, we investigate the effect of m and γ of the phase
grating on the self-healing and autofocusing properties of the
beams. We show that for larger value of m and γ = π/2 the
self-healing is efficient.

In Figs. 8(a) and 8(b), self-healing of a diffracted beam is
illustrated when one of the main lobes is blocked at a distance
of 100 cm from two gratings with sinusoidal and binary phase
profiles, respectively. In Figs. 9(a) and 9(b), self-healing of
a diffracted beam is shown where a sectoral area is blocked
at a distance of 100 cm from two gratings with sinusoidal
and binary phase profiles, respectively. As is apparent from

Figs. 8 and 9, there is a good agreement between results of
experimental observations and numerical simulations.

Now let us examine the effect of an exaggerated cancellation
on the self-healing and nondiffracting properties of the carpet
beams. For this purpose, one of the main lobes is isolated with
a suitable mask installed at a given distance from the grating.
For better comparing propagation of the isolated lobe with the
case where it propagates with the whole beam, in Fig. 10(a), the
intensity profiles of the whole beam at different propagation
distances are shown, and in the insets three central main lobes
are enlarged. As is apparent, because these lobes propagate
with the whole beam, their sizes and intensity profiles are
invariant under propagation. In Fig. 10(b), transformation of
an isolated main lobe at different propagation distances from
the mask is simulated, where the mask is installed at a distance
of z = 300 cm from the grating. Corresponding experimental
results are shown in Fig. 10(c). In Figs. 10(b) and 10(c), the
insets show the intensity distribution of the main lobe with a
magnification in size at different propagation distances. Both
simulated and experimental results show that a lobe diverges
very rapidly when it propagates alone.

The above-presented experimental works and simulated
results of the self-healing behavior of the radial carpet beams
indicate that there are transverse energy flows between the
individual light structures as propagation increases. The self-
reconstruction or self-healing of the produced beams can be
interpreted through their possible internal transverse power
flow. The same result can also be deduced due to the curved
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light trajectories of the beams. Further considerations in this
regard need to take into account a detailed study on the
Poynting vector of the beams, and calculate the transverse
components of the phase gradients of the light beam under
propagation. Theoretical investigation of the observed self-
healing properties and the robustness of these optical patterns
in scattering and turbulent environments are under study. Sim-
ilar self-healing properties were previously observed for the
other kind of nondiffractive beams such as the Airy beams [12].

XII. CONCLUSION

A class of accelerating and self-healing light beams was
produced by diffraction of a plane wave from radial phase
gratings. Unprecedented optical carpets at the transverse plane
and tunable 2D optical lattices in the polar coordinates were
observed. The name “carpet” stands for the peculiar intensity
profiles of the generated beams. We believe that these beautiful
optical carpets and optical lattices have led to exciting new
applications and many intriguing ideas. We think that radial
carpet beams are a class of direct solution of the Maxwell
equations. This theoretical work is under study. We also think

that the same carpet beams can be generated and amplified
directly by a laser source if the same radial constraints are
imposed on the mirrors of the laser cavity. Investigation of
the nonlinear propagation of radial carpet beams is another
interesting study. Finally, the fusion of the diffraction proper-
ties of the radial gratings with singular optics is an interesting
subject. Although we have recently presented some interesting
results of the diffraction of vortex beams from conventional
radial amplitude gratings [20], the diffraction of a vortex
beam from phase radial gratings and the diffraction of vortex
beams from radial gratings, having any additional out-of-center
singularities [37,38], are under study.
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