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Demultiplexing of photonic temporal modes by a linear system
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Temporally and spatially overlapping but field-orthogonal photonic temporal modes (TMs) that intrinsically
span a high-dimensional Hilbert space are recently suggested as a promising means of encoding information on
photons. Presently, the realization of photonic TM technology, particularly to retrieve the information it carries,
i.e., demultiplexing of photonic TMs, is mostly dependent on nonlinear medium and frequency conversion.
Meanwhile, its miniaturization, simplification, and optimization remain the focus of research. In this paper, we
propose a scheme of TM demultiplexing using linear systems consisting of resonators with linear couplings.
Specifically, we examine a unidirectional array of identical resonators with short environment correlations. For
both situations with and without tunable couplers, propagation formulas are derived to demonstrate photonic TM
demultiplexing capabilities. The proposed scheme, being entirely feasible with current technologies, might find
potential applications in quantum information processing.
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I. INTRODUCTION

Single photons are excellent carriers of quantum informa-
tion, since their interaction with the environment and among
themselves is very weak. There are numerous approaches to
encode quantum information in photon states, including the
use of transverse modes [1] and polarizations [2]. However,
these methods can only store very limited information in each
photon, usually not much more than one qubit due to their
small Hilbert space. Recently, it is found that temporal modes
(TMs) of single-photon states—field-orthogonal broadband
wave-packet states—might possess infinite degrees of freedom
in the continuum of the electromagnetic field even within
the confinement of a one-dimensional (1D) optical fiber or
waveguide. The creation [3], manipulation [4,5], storage [6,7],
and demultiplexing [8–11] of the temporal modes [12–14] then
become the key tasks toward its use in carrying fragile quantum
information over transmission lines in a network.

As precisely explained by Bercht et al., for a single photon,
TM is a coherent superposition over many of its possible
creation times [14], and arbitrarily large sets of orthogonal
TMs can be defined. Apart from the apparent capability of
increasing the channel bandwidth [16] and security [15,17],
TM is also potentially applicable to quantum computation
[18,19]. Contemporarily, the TM shaping of a single photon
has been demonstrated in both optical [3] and microwave [5]
regimes. And the established enabler for the extraction of
information from photonic TM, i.e., demultiplexing or sorting
of TM, is the quantum pulse gate (QPG).

QPG is based on frequency conversion. More specifically,
it operates in the form of a parametrized sum frequency
conversion (SFG). SFG is a process where two photons are
transformed by nonlinear material into a photon of sum energy,
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which is the inversion of the well-known parametrical down-
conversion (PDC). SFG is more easily controlled than PDC
because it has two input channels. When the input of one
channel is a carefully engineered gate pulse, the other channel
can be made into a parametrical up-conversion of specific TM
[20], whereas photons of orthogonal TMs can pass through the
QPG unaffected [21].

In spite of the success that has been accomplished so far,
it remains a focus of interest to improve upon the established
QPG approach in TM demultiplexing. Multiple stages for the
selection of every single mode had been a practical necessity
[22,23], until a recent new idea that employs SFG devices
with multiple pump wavelengths [24–26]. Alternatively, it
has been shown that coherent optical storage systems possess
TM-selective qualities [27–29], which are yet to be formulated
as a demultiplexer implementation for a set of orthogonal TMs.

In this paper, we propose a demultiplexing scheme of
photonic TM using neither nonlinear effect nor frequency
conversion. By simple physical principles and under a couple
of conditions that can be easily satisfied, we will show that
a collection of resonator modes in an arbitrary linear system
(Fig. 1) can be connected one by one to a set of orthogonal TMs
from the input channel. Photons of a specific TM that enter the
system will traverse other modes of the system but eventually
arrive at its corresponding resonator. Therefore, a wide range
of linear systems can be potentially capable of separating
a corresponding set of orthogonal TMs, which would be
much easier to miniaturize than the present schemes based on
SFG. As an example, we will demonstrate TM demultiplexing
with a unidirectional array of duplicative resonators, which is
entirely based on presently available experimental techniques.
Moreover, the method of calculating the corresponding set of
TM for a unidirectional array is given. The effect of several
errors on the demultiplexer fidelity is analyzed as well.

The remainder of this paper is organized as follows. In
Sec. II, we formalize the dynamics of a single resonator, and
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FIG. 1. General illustration of a linear system TM demultiplexer.

deliver the theoretical basis of our proposal in a general frame-
work. The key requirement of a linear TM demultiplexer—the
vanishing condition—is introduced and explained. In Sec. III,
we demonstrate the functioning of the proposed demultiplexer
by calculating the dynamics of the unidirectional system. The
vanishing condition is shown to hold for a broad range of
parameters, and the operation of the TM demultiplexer with
the time-independent linear system is illustrated both with and
without the tunable coupler. In Sec. IV, we investigate the
effect of a variety of errors, such as photon loss, on the fidelity
of the proposed demultiplexer. In Sec. V, the constraint of
uniform coupling is relaxed, and a method to get the coupling
functions to demultiplex a given set of TMs is presented and
demonstrated. Finally, we conclude in Sec. VI.

II. FORMALISM

A. Dynamics of a single resonator

For clarity, we begin by formalizing the model of a single
resonator coupled to a half infinitely long dispersion-free
waveguide at one side, which is a basic building block for
a large set of photonic network systems.

Within rotating wave approximation and Markovian ap-
proximation, the Hamiltonian in the interaction picture reads
[31]

V (t) = ih̄

∫
dω

√
κ(t)

2π
[ei[(ω−ω0)t]b̄†(ω)a − H.c.], (1)

where κ(t) is the coupling coefficient between the resonator
and the waveguide, ω0 is the frequency of the resonator mode,
a is the annihilation operator of the resonator, and b̄†(ω) is the
creation operator of the photon mode with frequency ω.

For simplicity, we assume that the coupling κ(t) does not
vary with the frequency of channel modes. The Markovian
input-output relations of a single linear cavity thereby reads
[32]

bO(t) = bI (t) +
√

κ(t)a(t), (2)

ȧ(t) = − 1
2κ(t)a(t) −

√
κ(t)bI (t), (3)

in which, within the rotating frame of resonator frequency,
input and output photon modes in time representation

FIG. 2. Examples of tensor g with T = 10 ns and κ0 = 1 ns−1.
(a) Time-independent system. (b) Tunable coupling system in the
form given by Eq. (27) with Tc = 5 ns.

[33–35] are given by their frequency counterpart b̄(ω,−T )
and b̄(ω,T ), respectively,

bI (t) =
∫

dω√
2π

b̄(ω, − T )e−i[(ω−ω0)t], (4)

bO(t) =
∫

dω√
2π

b̄(ω,T )e−i[(ω−ω0)t]. (5)

In this definition, T � T is a time large enough that the photon
at t = −T or t = T is considered not interacting with the
system of interest.

In the following, we first derive a set of equations that will
be used in our theory, then we present our main theory in next
subsection.

Substituting the input-output relations with operator v(t) =√
κ(t)a(t), which denotes the instantaneous emission of the

resonator, we obtain a new dynamic equation that is easier to
integrate [31],

v̇(t) = f (t)v(t) − κ(t)bI (t), (6)

f (t) ≡ 1
2 [κ−1(t)κ̇(t) − κ(t)]. (7)

Integrating Eq. (6), we have

v(t) = v(0)F (t) −
∫ t

0
dτ

F (t)

F (τ )
κ(τ )bI (τ ), (8)

F (t) ≡ e
∫ t

0 dτf (τ ). (9)

To better understand the linear feature of the dynamics of
the single cavity in the time representation, we introduce an
adapted Einstein notation, αμβμ ≡ ∫ T

0 dμαμβμ, and define

gt
τ ≡ �(t − τ )

F (t)

F (τ )
κ(τ ). (10)

Here �(t − τ ) is the heaviside function. Examining the deriva-
tion from Eqs. (7)–(10), we find that the tensor g is solely
determined by κ(t), and it establishes the relation between
the emission of the resonator and the incident photon. Two
examples of the tensor g is illustrated in Fig. 2 with two given
κ(t) that will be employed in later discussions.

Comparing Eq. (8) with the input-output relations Eqs. (2)
and (3), and defining t = 0 as the initial time and t = T as the
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final time, an integration form of the input-output relation for
the single resonator follows:

bt
O = gt

τ

δτ
0√

κ(0)
a(0) + (

δt
τ − gt

τ

)
bτ

I , (11)

a(T ) = δT
t√

κ(T )
gt

τ

δτ
0√

κ(0)
a(0) − δT

t√
κ(T )

gt
τ b

τ
I , (12)

with bt
O ≡ bO(t), bt

I ≡ bI (t), and δt
τ ≡ δ(t − τ ). Note that, in

this integration form of input-output relation, a(t) does not
appear, except its form at the beginning and final time, i.e.,
a(0) and a(T ). In the next subsection, we will use this new
input-output relation to derive our main theory.

B. Main theory

With other devices like beam splitters, a wide range of
network can be constructed by a group of resonators. We
thereby begin our analysis for temporal mode demultiplexing
by generally considering a linear system consisting of several
boson modes and a single input channel (Fig. 1), in which
the propagation equation takes the following form in the
Heisenberg picture,

am(T ) =
∑

n

αmn(T ,0)an(0) +
∫ T

0
dtBm(t)bI (t), (13)

where am(t) is the annihilation operator of bosonic mode m

in the Heisenberg picture, bI (t) is the annihilation operator
of an input photon at time t , αmn(t,τ ) is the propagator from
resonator n to m during the time between τ and t , and Bm(t)
are complex functions yet to be specified.

Apparently, the above equation is derived for single res-
onators but it is applicable for systems other than the single
resonators. For simplicity, we rewrite Eq. (13) into the follow-
ing form:

am(T ) =
∑

n

αmn(T ,0)an(0) + βmb̃m,

b̃m = 1

βm

∫ T

0
dtBm(t)bI (t), (14)

where βm is a normalization constant that guarantees
[b̃m,b̃

†
m] = 1. The introduced operator b̃m thereby can be

treated as an annihilation operator of a temporal mode, which
is guaranteed solely by the condition that the system has only
a single input channel.

In general, in a 1D optical or microwave channel with a
given single transverse spacial mode, a set of bosonic mode
operators can be defined by the coherent superposition of
time or frequency eigenstates [14], provided that only photons
propagating in one direction is considered,

An ≡
∫

Cn(t)b(t)dt =
∫

C̄n(ω)b̄(ω)dω. (15)

Here Cn(t) and C̄n(ω) are complex functions, each being the
Fourier transformation of the other. [b(t),b†(τ )] = δ(t − τ ),
and [b̄(ω),b̄†(ω′)] = δ(ω − ω′). Therefore, An corresponds to
a set of field-orthogonal bosonic modes, if they satisfy

[Am,An
†] =

∫
Cm(t)C∗

n(t)dt = δmn. (16)

This set of bosonic modes is referred to as orthogonal TMs.

It is worth addressing that a TM photon from the set b̃m is
not yet guaranteed to be fully absorbed by the system, since
βm remains undetermined. Also, this set of modes so far is not
necessarily field orthogonal. Nonetheless, orthogonal states
should remain orthogonal in a unitary evolution. This suggests
that orthogonal excitation states of resonator modes at the final
time should come from orthogonal states in the past. With
this observation, we conclude that a TM demultiplexer can
be realized provided that all resonator modes at the final time
come from states in the channel at the initial time.

Note that if the initial excited states in the resonators do not
evolve to any other excited states of the resonators at the final
time T , the resonator excited states would come only from
the channel. For any pair of resonators m,n in the system, this
requires

αmn(T ,0) → 0, (17)

which we hereby refer to as the vanishing condition. As we
will demonstrate later, this condition can be easily satisfied in
a Markovian system provided the operation time T is long.

To show this point concretely, it is worth pointing out first
that the resonator modes and the input field satisfy

[am(0),bI (t)] = 0,

[am(τ ),a†
n(τ )] = δmn, (18)

[bI (τ ),b†I (t)] = δ(τ − t).

Applying these equations into Eq. (14) yields [30]

[am(T ),a†
n(T )] = δmn =

∑
m′,n′

αmm′ (T ,0)α∗
nn′ (T ,0)δm′n′

+βmβ∗
n [b̃m,b̃†n]. (19)

When the vanishing condition is satisfied, the first term from
the second line of the above equation would vanish, leading the
TM operators defined in Eq. (14) to satisfy

[b̃m,b̃†n] → δmn, (20)

which is the commutation requirement for a set of field-
orthogonal bosonic modes. Likewise, βnβ

∗
n → 1, implying a

full absorption, is also guaranteed.
The vanishing condition thereby ensures the linear system

in question to deliver an incident photon of corresponding
orthogonal TMs into different resonators. Since no assumption
has been made on the particular configuration of this linear
system other than the requirement of a single input channel,
the present theory thereby is applicable to a wide range of
systems.

For concrete systems discussed in the next section, we will
show that the vanishing condition is indeed satisfied.

III. DEMONSTRATION

A. Unidirectional array

We hereby restrict the discussion to a particular configu-
ration of resonator network—unidirectional array. In general,
for both microwave resonator and optical cavity coupled to
waveguides at both sides, excitations inside would relax in
both directions. In order to construct a unidirectional array of
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FIG. 3. Illustration of a unidirectional array of N resonators.

resonators, it is required that the resonators are coupled at only
one side to a waveguide through a circulator [36].

Circulators are nonreciprocal multiport photonic devices in
which an incident photon at one port is routed to exit at the
next port. Here, three-port circulators [37] are employed in the
unidirectional system under consideration; see Fig. 3.

Although this system consists of a waveguide with two
input-output ports, incident photons at the designated exit
port would not be routed through the resonators, separating
the system into two isolated subsystems. The requirement of
possessing a sole input channel is therefore satisfied for the
one that involves the resonators, which is the system of our
interest.

For simplicity, we consider the circulators to be ideal and
ignore the channel dispersion. In this case, the output field of
one resonator is the same as the input field of the next resonator.
To be able to address frequency mismatch later, our formalism
of unidirectional array begins as follows:

b̄n(ω,T ) = b̄n+1(ω, − T ), (21)

which is independent of the rotating frame but within the in-
teraction picture of the channel propagation. By using Eqs. (4)
and (5), we have

bI
n+1(t) = bO

n (t)ei
ωnt , (22)

in which 
ωn = ωn+1 − ωn is the frequency mismatch be-
tween two neighboring resonators. Also, a time realignment
is assumed so that the phase effect from propagation between
resonators vanishes.

In the absence of frequency mismatch, i.e., 
ωn = 0, by
sequential iteration of Eq. (11) and using Eq. (12), we arrive at

am(T ) =
m∑

n=1

αmn(T ,0)an(0) − δT

√
κ(T )

g(I − g)m−1bt
I ,

αmn(T ,0) =
⎧⎨
⎩

δT√
κ(T )

g δ0√
κ(0)

, m = n;

− δT√
κ(T )

g(I − g)m−n−1g δ0√
κ(0)

, m > n,
(23)

where indices that cannot cause confusion are omitted by
assuming matrix product rules, and hence δ function becomes
identity operator I if both indices are omitted. Apparently, this
resonator array system conforms with the general formulation
of Eq. (14), which enables it to potentially be a demultiplexer
of a specific set of orthogonal TMs.
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FIG. 4. Numerical demonstration of the vanishing condition for
a time-independent array of four resonators with κ0 = 1 ns−1. (a)
The vanishing initial excitation in the network. (b) The integrations
Smn ≡ ∫ T

0 dt Bm(t)B∗
n (t).

B. Vanishing condition

From Eq. (23), the complex function characterizing photon
absorption of each resonator in the array, as previously derived
in Eq. (13), follows:

Bn(t) =
⎧⎨
⎩

− δT√
κ0

gt , n = 1;

− δT√
κ0

g(I − g)n−2(It − gt ), n > 1.
(24)

It remains far from obvious or perhaps counterintuitive for
a network of duplicative resonators with the same coupling
coefficient at any moment. However, provided that the van-
ishing condition is satisfied, the general analysis in Sec. II
tells us that these complex functions would be normalized and
orthogonal. These functions then would become the rotating
frame wave functions of a set of orthogonal TMs, and the array
of resonators would therefore become a demultiplexer for this
set of TMs.

Given the general formulation for the unidirectional array
of duplicative resonators, we first examine the properties of a
time-independent system defined by κi = κ0, which gives

gt
τ = �(t − τ )e− κ0

2 (t−τ )κ0. (25)

As shown in Fig. 4(a), for an array of four resonators and
under condition κ0 = 1, the vanishing condition is roughly
satisfied with T > 20 ns. And thereby, as expected, Fig. 4(b)
shows that the complex functions Bi(t) corresponding, respec-
tively, to the resonators become normalized and orthogonal as
the vanishing condition is met.

Of course, excitation in the array cannot be fully evacuated
in a finite time, but the probability to remain in the array is very
small and can be negligible. In fact, for the Markovian array,
full evacuation of any resonator in the array can be achieved
provided T is large.

C. TM demultiplexing

With the vanishing condition guaranteed, Fig. 5(a) shows
the orthogonal TMs corresponding to the four resonators in the
array, each is determined by a complex function of time,

b̃n =
∫ T

0
dtBn(t)bI (t), (26)
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FIG. 5. Rotating frame wave function of orthogonal TMs (a) for
a time-independent array of resonators with κ0 = 1 ns−1, and the
corresponding dynamics of the array upon their entry (b)–(e).

in which bI (t) is the annihilation operator of an input photon of
the array at time t in the rotating frame defined by the resonators
in the array. For later discussions, note that bI (t) = bI

1(t)
holds only if the first resonator is not detuned from other
resonators.

Figures 5(b)–5(e) show the dynamics of the array with
a single photon of each TM entering the array. Apparently,
one resonator eventually absorbs the corresponding incident
photon entirely. Also, as shown most evidently in Fig. 5(e),
although resonators in the way are temporarily excited during
the operation, a TM photon will not end up in the wrong
resonator at the terminal time.

One can also see in Fig. 5(a) that the first resonator
corresponds to a TM of inverting pulse [38,39]. As expected, all
the rest of these resonators are the same as the first, whereas
at final time they only capture the incident photon of their
corresponding TMs, which are all orthogonal to each other.

This can be understood as follows. As a photon being
reflected by a resonator, its TM is expected to be transformed.
These orthogonal TMs are to be transformed into inverting
pulse in a specific number of encounters with resonators.

Despite the apparent capability of TM demultiplexing in
principle, the design stated above is still prevented from
being practically usable. The figures clearly indicate that the
efficiency of TM photon absorption depends highly on the final
time T , which is an issue to resolve in the following.
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FIG. 6. Rotating frame wave function of orthogonal TMs (a) for
an array of resonators with tunable coupling under κ0 = 1 ns−1 and
Tc = 20 ns, and the corresponding dynamics of the array upon their
entry (b)–(e).

D. Employing tunable coupler

Since a transfer or measurement on the information carrier
would need time, retaining the TM modes in resonators
is therefore highly desired. This task can be implemented
by the proposed scheme via modulating the couplings. In
superconducting systems, a tunable coupler can be constructed
using two fixed inductors and one superconducting quantum
interference device (SQUID) [40], which can be applied to
the connection between a resonator and a transmission line
[41–43].

As an illustration, we assume that all resonators are the same
and they’re coupled to the waveguide with a uniform coupling
function that reads

κ(t) =
{

κ0, t < Tc;

κ0 · eκ0(Tc−t)[2 − eκ0(Tc−t)]
−1

, t > Tc,
(27)

which leads to a cutoff of couplings asymptotically in the long
time limit, T � Tc, and subsequently the resonator retains
the TM photon. For Tc < 20 ns, the system remains time
independent, and as previously guaranteed by Fig. 4(a), any
initial excitation would roughly vanish within this time period.
Tedious but straightforward analysis shows that

F (t) =
{

e− κ0
2 t , t < Tc;

e
κ0
2 t [2eκ0t − eκ0Tc ]

−1
, t > Tc.

(28)
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The corresponding TMs of this design is then determined and
shown in Fig. 6(a), and so is their corresponding absorption
process in subsequent figures. Apparently, for t ′,t ′′ � Tc, due
to κn → 0 we have an(t ′) → an(t ′′), for which the absorption
of TM photons is no longer susceptible to the final time of
operation.

IV. FIDELITIES

The presented scheme may find potential applications in
quantum information processing. Here we formalize and cal-
culate errors introduced by a variety of means and demonstrate
their effect on the fidelity of the proposed TM demultiplexer
within the chosen paradigm.

A. Average fidelity

Consider a scenario where a quantum digit (qudit) of a given
state, which is allowed to have a Hilbert space of more than two
dimensions, is processed by a subject system. The output qudit
is subsequently measured in an eigenbasis that includes the
ideally expected final state. Suppose the possibility of a given
qubit is evenly distributed on the unite sphere in its Hilbert
space; the expectation of the measurement yielding the result
of ideal expectation is referred to as the average fidelity of the
subject system [44], which reads

F =
∫

|〈ψ |U †
T U |ψ〉|2dV (ψ), (29)

in which UT is the intended evolution operator, U is the
evolution operator of the subject system, and V describes the
possibility distribution of input qudits.

Given U
†
T U being a linear operator, it has been shown that

[45]

F = T r(UU †) + |T r(U †
T U )|2

d(d + 1)
, (30)

in which d is the dimension of the qudit.
In the context of a TM demultiplexer, UT is simply the

identity operator I . We consider an ideal incident single-photon
TM qudit, and U describes the transfer from the qudit state to
a single excitation state of the resonator array. U is thereby
linear, but nonunitary [46] in the case of photon loss.

B. Time mismatch with the sender

Time synchronization across long distance is known to be
challenging, hence we begin our discussions of error scenarios
with a simple time mismatch between the sender of a TM
photon and the party who controls the demultiplexer.

Consider an ideal single photon qudit enters a TM demul-
tiplexing array equipped with tunable coupler and satisfying
κ(t) → 0 as t → T , and suppose the qudit arrives later than
expected by a small delay 
t . This situation can be simply
treated as a uniform time displacement between an ideal
TM photon and the actual incident TM photon. We thereby
straightforwardly obtain the transfer matrix from photonic TM
qudit to the resonator array single excitation mode,

Umn =
∫∫

dtdτB∗
n (t)Bm(τ )δ(t − τ − 
t)

= Bm
t Dt

τ (
t)Bτ
n , (31)
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(b)

FIG. 7. Effect of time error on the average fidelities Fd of the
demultiplexer, where d is the dimension of the TM qudit. Tunable
coupling in the previously given form is used with κ0 = 1 ns−1. (a)
The time mismatch between the demultiplexer and an ideal sender.
(b) Delay of operation by the tunable coupler of the first resonator.

in which the single-photon TM wave function is formalized
by vectors Bn

t ≡ Bn(t) and Bt
n ≡ Bn

∗(t), the time shift is
introduced as Dt

τ (
t) ≡ δt−
t
τ = δt

τ+
t , and the global phase
is ignored.

Ideally, we should have Dt
τ (−
t)Dτ

t ′(
t) = δt
t ′ and

D(−
t) = D†(
t) as the matrix. However, as a result of
numerical cutoff at t = 0 and t = T , time shift causes an issue
of premature cutoff, which is made obvious by

Dt
τ (−
t)Dτ

t ′(
t) = δt
t ′�(T − 
t − t)�(t − 
t). (32)

Fortunately, this issue can be resolved by expanding the
operation cutoff time and secure a large border area with
no dynamics. Note that for our tunable coupling model, the
TMs are fixed in temporal space by parameter Tc under 0 

Tc 
 T .

With transfer matrix determined, fidelity can therefore be
calculated. As shown in Fig. 7(a), the numerical result with
greatly expanded operation time is produced for up to an array
of 16 duplicative resonators. As qudit dimensions increase, res-
onators in the unidirectional array are sequentially employed.
As expected, greater demand on accuracy of synchronization
is imposed for greater qudit dimensions, while for minor time
mismatch, the effect on fidelity appears tolerable.

C. Delay within the array

Another obvious source of error is the inaccuracy in the
operation within the demultiplexer network. The possibilities
of this kind of error are numerous; we therefore investigate a
situation that also involves time, where one resonator suffers
a delay of control by 
t . This scenario can be formalized as
follows:

κn(t) → κn(t − 
t), (33)

which is most easily characterized by a time displacement in
the output-to-input connection between resonators, which we
formulate with

gn → D(
t)gnD(−
t). (34)

We then restrict our discussion to the delay of the first
resonator in an array of duplicative resonators. The transfer
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matrix thereby reads

Umn =
{
B1D(−
t)Bn, m = 1;

Bm−1D(
t)(I − g)D(−
t)Bn, m > 1,
(35)

in which all time indices are omitted by assuming matrix
product rules.

Strikingly, with our choice of tunable coupling, as indicated
in Fig. 7(b), qudits of higher dimensions are averagely less
sensitive to the delaying or expediting of the first resonator.
Also, delaying appears to be relatively less disruptive than
expediting. We can explain this as follows. Forms of TMs
corresponding with each resonator rely differently on the first
resonator in terms of the coupling coefficient of different
moments, which change differently in delaying and expediting.
However, note that no general assertion can be made for all
forms of tunable coupling.

D. Frequency mismatch within the array

As an example of formalizing the effect of frequency
mismatch within the interaction picture, we introduce the
frequency mismatch of a single resonator from the array in
relative terms. Suppose the first resonator is detuned from the
second one by 
ω; Eq. (22) leads to the following substitution:

gt
τ → D̃t

t ′(−
ω)gt ′
τ ′D̃

τ ′
τ (
ω), (36)

in which tensor D̃t
τ (
ω) ≡ δt

τ e
−i
ω(t−T ) describes frequency

mismatch. Note that by matrix rules, it satisfies D̃(−
ω) =
D̃†(
ω) and D̃(−
ω)D̃(
ω) = I .

Similarly, the transfer matrix with nonzero detuning of the
first resonator reads

Umn =
{

B1D̃(
ω)Bn, m = 1;

Bm−1D̃(−
ω)(I − g)D̃(
ω)Bn, m > 1.
(37)

With the transfer matrix calculated, we can derive fidelity
for any given incident qudit state, and two noteworthy obser-
vations can be made.

First, as shown in Fig. 8(a), average fidelity at the final time
oscillates as detuning increases. Detuning of the first to other
resonators results in an instability in the case where coherent
superposition with the first eigenstate appears in the system,
which is clearly visible in the transfer matrix; see Fig. 8(c).
Also, the detrimental effect of frequency mismatch does
not end with the demultiplexing process of the qudit; phase
shift would continue to be produced during the storage time.
However, demultiplexing of TM eigenstates, which is all that
matters with an implementation in classical communication,
would not suffer from phase instability.

Second, comparing Fig. 8(a) with Fig. 8(b), we find that
fidelities of eigenstate demultiplexing vanish while average
fidelity does not. As detuning becomes significantly large, the
first resonator is effectively removed, leading to a photon of the
nth TM to be captured by the (n + 1)th resonator. Such an error
would make the fidelity of eigenstate transfer vanish. Whereas
for their superposition state, overlap between the actual and
resulting state may still exist.
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FIG. 8. Numerical results with frequency mismatch of the first
resonator. Tunable coupling in the previously given form is used with
κ0 = 1 ns−1. (a) Average fidelities Fd of the demultiplexer, where d

is the dimension of the TM qudit. (b) Fidelities F ′
n for the transfer

of a single photon in a TM eigenstate associated with resonator n.
(c) Four transfer matrix elements as functions of detuning.

E. Photon loss

In this subsection, we address the effect of photon loss on the
paradigm demultiplexer. To such end, we introduce additional
input-output channels for each resonator. In general, the revised
input-output relations read

ȧ = −1

2

(∑
l

κl

)
a −

(∑
l

√
κlb

I
l

)
, (38)

bO
l (t) − bI

l (t) = √
κla(t). (39)

These equations can be rewritten in the following form:

ȧ = −1

2
κ̃a − √

κ̃ b̃I , (40)

bO
l (t) − bI

l (t) = rl(t)
√

κ̃(t)a(t), (41)

which is similar to that for a single channel. Here we have
defined κ̃(t) = ∑

l κl(t), and the effective input photon field
reads b̃I (t) = ∑

l rl(t)bI
l (t), with

rl(t) =
√

κl(t)

κ̃(t)
. (42)

As we consider only the photon loss, the environment
has no contribution to the photon input, we thereby have
b̃I (t) = r(t)bI (t) and κ̃(t) = κ(t) + γ , where γ denotes the
decay rate of the resonator. Following the derivation from
Eq. (4) to Eq. (9), we arrive at a set of equations that takes
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the photon loss into account,

a(T ) = δT
t√

κ̃(T )
g̃t

τ

δτ
0√

κ̃(0)
a(0) − δT

t√
κ̃(T )

g̃t
τ r(τ )bτ

I , (43)

bt
O = δt

τ b
τ
I + r(t)g̃t

τ

δτ
0√

κ̃(0)
a(0) − r(t)g̃t

τ r(τ )bτ
I , (44)

in which g̃ is determined by κ̃ by the same chain of equations
as their lossless counterparts g and κ .

It is clear that system modes come from the outside (not
within any of the resonators), as long as the vanishing condition
holds. However, with photon loss, the revised propagation
function then took the form an(T ) = b̃n + b̃′

n, where operator
b̃′

n are on the loss channels. In this revised system, the vanishing
condition gives

[b̃m + b̃′
m,b̃†n + b̃′

n

†] = δmn. (45)

Since loss channels don’t overlap with the input channel, i.e.,
[b̃′

m,b̃
†
n] = 0, we then have [b̃m,b̃

†
n] = δmn − [b̃′

m,b̃′
n
†], which

indicates that photon loss cannot introduce crosstalk.
In practice, the decay rate of each resonator can be measured

relatively easily, we therefore assume that the input TM photon
wave functions are engineered to adapt. We then use the
normalization of the input channel part of the transfer function
as the input photon wave function. Under uniform coupling
functions, they read

B̃n(t) =
⎧⎨
⎩

− δT

βn

√
κ̃(T )

grt , n = 1;

− δT

βn

√
κ̃(T )

gt (I − rg̃r)n−2(It − g̃rt ), n > 1,
(46)

in which rt
τ = δt

τ r(t). The transfer matrix of these TM photons
therefore reads

Umn = βnB̃
m
t B̃t

n, (47)

where the normalization factor βn is defined as a positive real
number.

To gain some simple insight in the effect of photon loss,
we first analytically address the situation of time-independent
coupling function. Denoting the decay rate of each resonator
as γ , we then have a time-independent channel weight. Also,
an ideal demultiplexer using κ + γ as a coupling rate certainly
satisfies the vanishing condition provided with sufficient oper-
ation time. By comparing with such an ideal demultiplexer and
identifying added analytical items, the fidelity of the transfer
of each mode therefore simply reads

F ′
n = βn =

(
κ

κ + γ

)n− 1
2

. (48)

A more complicated situation is then addressed numerically.
Figure 9 presents the average fidelity of TM demultiplexing,
with qudits of multiple dimensions, using a uniform coupling
function of Eq. (27), and photon loss is introduced by κ̃(t) =
κ(t) + γ . Apparently, despite that the input TM photons are
adapted in shape to the effect of photon loss on the transfer
equation, TM demultiplexing is very sensitive to the photon
loss of each resonator.
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FIG. 9. Effect of photon loss on the average fidelities Fd of the
demultiplexer, where d is the dimension of the TM qudit. Tunable
coupling in previously given form is used with κ0 = 1 ns−1. TM
photons are assumed as designed with photon loss considered.

V. ARBITRARY MODES

For simplicity, the discussion so far has been under the
constraint of uniform coupling functions. However, if this
artificial constraint is relaxed, the proposed demultiplexer
configuration can be customized to work for a wide range of
orthogonal TMs.

For unidirectional array and with a given set of orthogonal
TM wave functions, an established approach can be employed
to find the tunable coupling functions required, that is, a
sequential iteration of the so-called zero-dynamic principle
[47,48] on each resonator under the single excitation scenario.

A. Zero-dynamic principle

Here we briefly introduce the zero-dynamic principle. When
it is applied on a storage subsystem, it is assumed that the
subsystem in question produces no outgoing light throughout
the absorption process, i.e., bO(t) = 0. Also, within the single
excitation situation, a perfect absorption naturally gives

〈a(t)a†(t)〉 =
∫ t

−∞
|B(τ )|2dτ. (49)

With the above formulas, Eq. (2) shall then lead to an explicit
equation of κ(t),

κ(t) = |B(t)|2
〈a(0)a†(0)〉 + ∫ t

0 |B(τ )|2dτ
. (50)

In practice, the initial population of the resonator 〈a(0)a†(0)〉
is most conveniently a small arbitrary offset to eliminate
singularities at t = 0. Also, note that this formalism assumes
the input photon wave function is real and positive; phase
shifting of the tunable coupler would be required to handle
more the complicated input photon.

Treating each resonator in the unidirectional array as a
storage subsystem, the coupling functions of each resonator in
the array can then be obtained iteratively as shown in Fig. 10.

B. Schmidt modes

As an example, we demonstrate the demultiplexing of
temporal Schmidt modes [49,50], the wave functions of which
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FIG. 10. Flow chart for solving the coupling functions to the
demultiplexing of arbitrary orthogonal TMs.

read

Bn(t) = λ−1ϕn−1(λ−2t),

ϕn(x) = (2nn!
√

π )−
1
2 e− x2

2 Hn(x), (51)

in which Hn are the Hermite polynomials, and the parameter
λ controls the scale of the Schmidt photon wave pack length,
which makes λ−2t dimensionless.

For simplicity, we limit the demonstration to the first
four Schmidt photons and address their demultiplexing task
numerically. As shown in Fig. 11, under carefully designed
nonuniform coupling functions, four orthogonal Schmidt mode
photons are near perfectly absorbed by corresponding res-
onators. Note that we have manually truncated some fluctu-
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FIG. 11. Demultiplexing of Schmidt modes with nonuniform
coupling functions. Parameter λ controls the pulse length of Schmidt
modes. (a) First four Schmidt modes in dimensionless time represen-
tation. (b) The rotating frame wave function of each Schmidt mode
photon upon arrival of the corresponding resonator. Bnm denotes the
output photon wave function of the mth resonator when the input
photon is the nth Schmidt mode. (c) Coupling function of each
resonator. (d) Population of each resonator in the absorption of its
corresponding Schmidt single photon.

ations that came out of Eq. (50) by overwriting the early part
of these coupling functions with zeros.

Strikingly, each of these photons was transformed into
roughly the same positive shape by the previous resonators
it had traversed when it arrived at its destination, which means
that phase shifting of the tunable coupler wouldn’t be neces-
sary. Also note that a resonator fully absorbing a TM photon au-
tomatically means it won’t absorb its orthogonal TMs, because
am(T ) → b̃m and [b̃m,b̃

†
n] = δmn gives [am(T ),b̃†n] → δmn.

VI. DISCUSSION AND CONCLUSION

As the orthogonal TM photons are being absorbed and
secured, separately but coherently, by the resonators, sub-
sequent measurement, transfer, or another kind of operation
on them can then be easily carried out. In the unidirectional
design, since resonators are only coupled at one end within the
demultiplexer, the other end of each resonator is then available
to be coupled with another system. For it to not affect the
demultiplexing process, the other coupling has to be turned
off during the demultiplexing process, which means tunable
coupling has to be employed as well. For an implementation
on the superconducting chip, which is the one physical system
where the tunable coupler has been realized, this other system
could preferably be a small-scale quantum processing circuitry
within the same chip.

Of course, additional coupling, even a switched-off tunable
coupler, would contribute to the photon loss of the res-
onators within the demultiplexer, the effect of which has been
discussed.

In conclusion, we have presented a proposal to demultiplex
photonic TMs in a microwave system. Instead of relying on
frequency conversion, we have shown that a linear system,
e.g., an array of identical resonators, is intrinsically capable of
separating photons of different orthogonal TMs, provided that
the system has only one input channel and that it guarantees
all pre-existing excitations in the resonators would vanish at
the final time.

A specific demultiplexer configuration, a unidirectional
array of resonators, is studied in detail. In this system, circulator
and tunable couplers are employed, both of which are cur-
rently within grasp of experimental technology due to recent
progress in microwave systems. The demultiplexing capability
is demonstrated first in the time-independent scenario, then
with a uniform time-dependent coupling function.

We also examined the effect of several errors on the average
fidelity of the proposed demultiplexer. As expected, precision
in time and frequency, as well as the quality factor of the
resonators, are important to the performance of the purposed
TM demultiplexer.

Finally, with the constraint on constant coupling lifted, a
general approach was presented to demultiplex a given set of
orthogonal TM photons, which we demonstrated numerically
with Schmidt modes.
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