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Fundamental limits to single-photon detection determined by quantum coherence and backaction
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Single-photon detectors have achieved impressive performance and have led to a number of new scientific
discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-
matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter.
An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and
the amplification are considered as one quantum system, could have improved performance. Here we develop a
theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum
coherence and amplification backaction in dictating the performance. We show that coherence and backaction
lead to trade-offs between detector metrics and also determine optimal system designs through control of the
quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector
with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.
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I. INTRODUCTION

Modern models of photodetectors and the photodetection
process are rooted in pioneering work in quantum optics
and quantum electronics [1–5] and have not been signifi-
cantly modified or updated since. This is surprising given
the degree to which experimental photodetection technol-
ogy has progressed over the past century. Indeed, single-
photon photodetectors have been developed based on a wide
range of physical processes that range from the photoelectric
effect in semiconductors [6,7] to superconductivity [8–10]
and, moreover, these photodetectors have achieved impressive
performance in terms of efficiency, dark-count rate, and jit-
ter [11,12]. Furthermore, advances in materials science and
nanoscale engineering open up possibilities for not only tuning
the microscopic properties and dynamics of photodetectors,
but also to develop entirely new classes of photodetectors.
Such possibilities motivate a reexamination of photodetec-
tion theory, with a view of understanding the fundamen-
tal limits and trade-offs. In particular, an open question is
whether a photodetector where the electromagnetic field,
light-matter interaction and amplification processes are all
captured within a single quantum-mechanical system could
reveal new regimes of photodetector performance. In this
work we present such a reexamination of photodetection by
developing a fully quantum-mechanical minimal model for
photodetection and examining the fundamental limits that
emerge from this model. Our approach relies on recent ad-
vances in quantum optics theory and quantum measurement
theory.

The operation of most photodetectors can be viewed as
comprising three stages (see Fig. 1): (i) coherent interaction
between the electromagnetic (EM) field and a localized system
(usually some matter degrees of freedom), (ii) evolution of the
state created by the interaction with the EM field according to
the internal dynamics of the localized system (this typically
tends to localize information about portions of the field state),
and (iii) amplification of the information in the internal state(s)

of the localized system to classical and macroscopic degrees
of freedom.

Typically, it is assumed that the physical processes at each
of these stages operate at different timescales and thus are
effectively noninteracting. Such an assumption is implicit in
the traditional theory of photodetection and most subsequent
treatments that treat the light-matter interaction perturbatively.
In this work, we develop a model that makes as few timescale
separation assumptions as possible, in order to describe and
analyze the photodetection process as an integrated whole. We
aim to understand the impact of different internal architectures
[i.e., stage (ii)] on the flow of information between the EM
field and the amplification process and, ultimately, the overall
performance. This allows us to answer several fundamen-
tal design questions, such as what is the best arrangement
of internal states and couplings between them in order to
maximize performance? Is a timescale separation between
the light-matter interaction and subsequent internal dynamics
optimal?

II. MODEL

To simulate the dynamics of photodetection we use an
open quantum systems formalism [13] and develop a master
equation that explicitly accounts for the EM field degrees
of freedom, internal degrees of freedom of the detector, and
amplification of the detector state to classical degrees of
freedom.

We assume that the incoming field contains a single photon
with a Gaussian temporal profile |E(t)|2 = ( 1

2πσ 2 )
1
2 exp(− t2

2σ 2 )
of width σ = 1 ns. This field is resonant with an optically
active transition in the detector and couples detector states
|0〉 and |1〉. To model the response of the detector to this
single-photon wave packet, we utilize the formalism devel-
oped in Refs. [14,15] that treats the field-matter interaction
nonperturbatively, which is essential for accurate treatment of
detection of such weak fields (since the detector dynamics
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FIG. 1. Single-photon detection in a fully coupled detector. (a) Illustration of a photodetector where photon wave packets interact with
the detector (matter) degrees of freedom. The optically coupled excited state can decay into a number of optically inactive states. Information
carriers, e.g., electrons, interact with the matter energy levels and scatter, causing a response that can be monitored through a measurement.
(b) The conventional theory of photodetection assumes that the photon field, the absorption process, and the amplification process occur at
different timescales and can therefore be treated separately. Alternatively, in this work we consider a fully coupled model where the three
subsystems are treated as being part of one quantum system.

strongly modifies the field degrees of freedom in this limit).
The cost of this nonperturbative treatment is that the evolution
equation for the internal state of the detector degrees of
freedom, represented by the density matrix �̂(t), involves
coupling to an auxiliary (unphysical) matrix, ρ̂(t). The coupled
evolution is explicitly [14,15]

˙̂�(t) = M�̂(t) + A�̂(t) + D[L]�̂(t)

+E(t)[ρ̂(t),L†] + E∗(t)[L,ρ̂†(t)], (1)

˙̂ρ(t) = Mρ̂(t) + Aρ̂(t) + D[L]ρ̂(t) + E∗(t)[L,�̂(0)], (2)

where D is the Lindblad superoperator, D[X]A ≡ XAX† −
1
2X†XA − 1

2AX†X, M represents the light-independent sys-
tem dynamics, which may include both unitary and bath-driven
evolution, and A represents the impact of amplification and
monitoring. The operator L = γ |0〉〈1| represents the field-
matter coupling. We assume γ = 1 ns−1/2, which produces the
near-maximal absorption probability of ≈80% for an isolated
and unmonitored two-state system encountering a pulse of the
given width and shape [16]. To compare against this base case,
we keep γ fixed at this value for most of the paper (except
in Sec. IV). In the following we elaborate on the form of the
superoperators M and A.

The optically active internal states of the detector are
coupled to a variable number of other states (that are as-
sumed to not interact with the EM field) either coherently or
incoherently; see the schematic in Fig. 1(a). These internal
states could represent, e.g., excitonic or electronic states of a
solid-state material, or even electronic or conformational states
of molecules. This coupling is captured byM, which describes
the dynamics of the internal states that effectively localizes a
photoexcitation within the detector degrees of freedom and
funnels it away from the optically active state:

Mô(t) = −i[H,ô(t)] +
∑

k

D[�k|eik 〉〈ejk
|]ô(t). (3)

Here, and in the following, ô(t) ∈ {�̂(t),ρ̂(t)} since this super-
operator appears in Eqs. (1) and (2). H is the Hamiltonian

describing the energies of all internal states in the device
(denoted |el〉) and coherent couplings between them; �2

k is the
incoherent transition rate from state ejk

to eik . Any incoherent
transitions are a result of interactions with reservoirs, e.g.,
phonon degrees of freedom; we do not explicitly model these
here and instead capture their net effect on the essential internal
states of the detector.

For the systems under consideration, a designated final
internal state |X〉 is continuously monitored, a process modeled
using a quantum measurement master equation that can be
derived from general principles [17–19]. This monitoring
effectively amplifies information about occupation of that state
by generating a classical measurement record that depends
on the population of the state. The average effect of this
amplification process is modeled as

Aô(t) = D[χ |X〉〈X|]ô(t), (4)

where χ is the amplification strength. Such a Markovian
description of the amplification process is not universal but,
importantly, it captures the fact that any amplification process
must have an associated backaction on the system being
amplified [20,21]. In the Appendix we examine a proposed
physical device for photodetection and show how one can
derive an amplification model like the one used here from the
underlying physical interactions.

An advantage to modeling the amplification process as
a continuous measurement is that we can utilize quantum
trajectory theory [19,22] to “unravel” a measurement master
equation into a stochastic master equation (SME) that enables
simulation of individual photodetection records and associated
dynamics, in addition to the average dynamics given by Eq. (4).
This is achieved by adding to the evolution described by A, the
nonlinear term

H[χ |X〉〈X|]ô(t)
dW (t)

dt
≡ χ [|X〉〈X|ô(t) + ô(t)|X〉〈X|

− 2x(t)ô(t)]
dW (t)

dt
, (5)
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where W (t) is a Wiener process [22] and x(t) = 〈X|�̂(t)|X〉.
Note that this last expectation value, which is what makes this
equation nonlinear in the state of the system, is always taken
with respect to the physical density matrix �̂(t), even when
ô(t) = ρ̂(t).

The associated measurement current, upon which this
stochastic evolution is conditioned, is given by

It =
∫ t

t−tm

χ2�XX(t ′)dt ′ + χdW (t ′),

where tm is the integration time window, and �XX(t) is the
population of the X state given by the physical density
matrix for the detector internal degrees of freedom, �̂(t). In
our calculations, we chose tm values that result in optimal
performance for a given χ .

In the following, we numerically integrate the above dy-
namical equations by using the order (2.0, 1.5) stochastic
Runge–Kutta algorithm proposed in Ref. [23].

III. TWO INTERNAL CONFIGURATIONS

In this section we study two possible configurations for the
detector’s internal degrees of freedom. Configuration 1, with
the final monitored state |X〉 being the same as the optically
active state |1〉 [Fig. 2(a)], and Configuration 2, with |X〉 being
a long-lived dark state |C〉 to which the optically active state
incoherently decays [Fig. 2(b)]. In the latter configuration we
assume that |1〉 and |C〉 are sufficiently separated in energy so
that thermally excited population transfer from |C〉 to |1〉 can
be neglected. Such a thermal effect can be modeled but would
only yield a trivial decrease in efficiency of this configuration.
In the following, we study both of these configurations by using
the dynamical model described above and quantify detector
performance in terms of efficiency, dark count rates, and jitter.

FIG. 2. The two configurations under consideration. In both
cases, we consider a single-photon Gaussian wave packet (left)
incident on a two-level system, creating a resonant excitation. A
quantum measurement element (vertical purple line) couples to the
internal states and amplifies the signal to the classical domain (right).
In panel (a), the quantum measurement element directly couples to the
excited state and so |X〉 → |1〉, while in panel (b), the population in
the excited state may decay into a third, optically inert state to which
the quantum measurement element is coupled, and so |X〉 → |C〉.

A. Configuration 1

For configuration 1, the dynamical equations (1) can be
written in component form as

ρ̇01 = −iω01ρ01 − γE(t) − γ 2 + χ2

2
ρ01, ρ(0) = 0;

�̇00 = 2γE(t)ρ01 + γ 2�11, �00(0) = 1;

�̇11 = −2γE(t)ρ01 − γ 2�11, �11(0) = 0;

with all other elements zero throughout.
The generation of the coherence between states |0〉 and |1〉 is

damped by both the spontaneous emission back into the photon
mode and decoherence due to backaction from the amplifica-
tion of |1〉; this restricts the development of the excited-state
population. Solving the equations for different values of χ

makes this concrete; stronger amplification noticeably reduces
the excitation probability [Fig. 3(a)], a manifestation of the
Zeno effect [24,25].

Simulating individual trajectories reveals additional aspects
of the trade-off between information gain and disturbance.
Figure 3(b) shows the excitation population and associated
detector output for sample trajectories. For weak amplifica-
tion, Fig. 3(b), the individual trajectories are similar to the
averaged case. Unfortunately, due to the weak coupling, the
current cannot be readily distinguished from the background
noise. Stronger amplification significantly alters population
evolution and produces trajectories that either completely miss
or completely absorb the photon. In this case the current
unambiguously distinguishes photon absorption events, but at
the price of reduced efficiency due to significant perturbation
of the absorption probability.

A more complete picture of impact on photodetection
performance emerges after compiling the results over many
trajectories. Figure 3(c) shows the receiver operating character-
istics (ROC) curve obtained from simulating 1000 trajectories
with a photon and 1000 trajectories without a photon, for each
value of χ . The true positive rate (TPR) corresponds to the
fraction of trajectories when the detector output exceeds a
predefined threshold in the presence of a photon in the field,
while the false positive rate (FPR) is when the detector output
exceeds the threshold without a photon being incident on the
detector. Each point on the ROC curve is for a different value
of the threshold, which decreases from left to right. For large
thresholds, both the TPR and the FPR are low, while for low
threshold both the TPR and the FPR are high. We find a clear
trade-off between TPR and FPR regardless of the threshold
used.

We also show in the inset of Fig. 3(c) the efficiency as a func-
tion of the amplification strength χ for a fixed FPR of 0.01. As
might be anticipated from the average dynamics, the efficiency
is maximized for intermediate amplification strength: too weak
and the signal cannot be reliably separated from the noise; too
strong and excitation is suppressed. Calculation of the rms jitter
[Fig. 3(c)] reveals no trade-off with dark counts: a low FPR is
associated with low jitter. Unfortunately this occurs when the
TPR (efficiency) is low. At the higher efficiency levels, where
intermediate coupling maximizes efficiency, we find that the
same intermediate coupling also gives the lowest jitter.
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FIG. 3. Detection events and performance for Configuration 1. (a) The averaged population dynamics for Configuration 1 with amplification
strengths χ = 0, χ = 1.0 ns−1/2, and χ = 3.3 ns−1/2. The instantaneous current is proportional to χ 2ρ11. (b) Sample trajectories and current
outputs for χ = 0.333 ns−1/2 (top panel) and χ = 3.33 ns−1/2 (bottom two panels). The horizontal dashed lines are examples of current thresholds
used to calculate the ROC curves. (c) ROC curve and jitter vs false positive rate, for several amplification strengths obtained by computing
each for varying current thresholds for detection. The dashed line is the result for “detectors” that simply record random hits at varying rates,
giving equal true positive and false positive rates. In the inset, the efficiency for a false positive rate of 0.01 is plotted as a function of χ ; optimal
detection efficiency is obtained for intermediate amplification strength for a modest rate of false positives and strong amplification strength for
minimal false positives. Stronger coupling also reduces jitter, which increases with the false positive rate.

Ultimately, we find that directly amplifying the optical
excitation interferes with the excitation itself, creating a trade-
off between increasing the signal-to-noise ratio and avoiding
amplification-induced decoherence. See also Ref. [26] for a
similar analysis in a different physical context.

B. Configuration 2

In the case where the excited state decays to a dark state
[Fig. 2(b)], the matrix equations become

ρ̇01 = −iω01ρ01 + γE(t) − γ 2 + �2

2
ρ01, ρ01(0) = 0;

�̇00 = 2γE(t)ρ01 + γ 2�11, �00(0) = 1;

�̇11 = 2γE(t)ρ01 − (γ 2 + �2)�11, �11(0) = 0;

�̇CC = �2�11, �CC(0) = 0;

with all other elements zero throughout. �2 is the incoherent
decay rate from |1〉 to |C〉. We note that the amplification
strength appears nowhere in these equations; since the transfer
from 1 to C is already fully incoherent, no decoherence due
to amplification occurs. Thus, in contrast to Configuration 1,
the average dynamics exhibits no influence from amplification

strength and backaction. Instead, the coupling to the decay state
introduces decoherence in a similar fashion as the amplification
in Configuration 1. As such, it produces a similar trade-off:
there is an optimal value for the decay rate into this state.
As seen in Fig. 4(a), a slow decay rate allows for high
excitation probabilities but low population of the measured
state, while fast decay rates convert more of the excited
population into the measured-state population, but reduce the
excitation probability through decoherence.

Despite the average dynamics being insensitive to the
amplification strength, the relationship between information
gain and disturbance is still affected by the details of the
amplification. In Eq. (5) the normalization term applies a scalar
correction to the entire density matrix; this will condition all
density-matrix elements on the prior record, resulting in a
nontrivial impact on the dynamics of each record, as is clearly
manifested by the the individual trajectories [Fig. 4(b)]. The
strong amplification yields currents that unambiguously signal
absorption or nonabsorption. Moreover, in this configuration,
the long lifetime of the |C〉 state results in a persistent current
when the photon has been absorbed. Interestingly, although
the amplification cannot influence the average populations
(and hence there is no Zeno effect according to traditional
definitions [25]), the amplification does effect the variance in
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FIG. 4. Detection events and performance for Configuration 2. (a) Average population dynamics for different values of the incoherent
transfer rate �2. (b) Sample trajectories and detector output for χ = 0.5 ns−1/2 (top panel) and for χ = 2.0 ns−1/2 (bottom two panels) where
the photon is not absorbed and when the photon induces an excitation. The horizontal dashed lines are examples of current thresholds used to
calculate the ROC curves. (c) ROC curve and jitter vs false positive rate for several amplification strengths. Very high detection efficiency is
obtained for strong amplification at essentially no cost in terms of dark count rate or jitter. The efficiency is plotted against the parameter of
relaxation into the dark state � (inset). There is a clear maximum; faster transfer collects excitation more efficiently but inhibits the excitation
process.

the populations—largerχ yields a larger variance in population
statistics at a fixed time.

Again, we can summarize the influence of various parame-
ters by aggregate performance statistics [Fig. 4(c)]. The detec-
tion efficiencies are significantly higher than for Configuration
1; moderate amplification is sufficient to guarantee optimal
efficiency with negligible dark counts and no trade-off must
be negotiated. Indeed, Fig. 4(c) shows that, for high threshold
values, the TPR exceeds 0.8 while the FPR is 0.001. Similarly,
jitter is much less sensitive to the detection threshold. In
contrast to Configuration 1, amplification does not adversely
affect optical excitation; no trade-off exists, and both efficiency
and jitter are optimized by stronger rather than intermediate
amplification.

IV. AN IDEAL DETECTOR

In the above, we have taken the optical coupling γ to be in
the regime that provides optimal excitation probability for the
isolated two-state system [16]. This optimum occurs due to the
trade-off between excitation rate and emission rate. However,
the introduction of an amplification mechanism adds both
additional decoherence and protects against emission back
into the field mode. This suggests that the detector may be
able to take advantage of strong optical coupling. In addition,

since our results indicate that relaxation into the |C〉 state
should occur at a similar rate as the excitation, increasing the
optical coupling means that the relaxation rate ought to be in-
creased as well, further enhancing decoherence and providing
protection against emission. Indeed, we find that, in contrast
to the unmonitored system, the optimal optical coupling is
arbitrarily high; the detector can actually achieve near perfect
efficiency if both γ 2 
 1/σ and γ = �, as shown in Fig. 5.
Essentially, the pulse is absorbed as quickly as possible and the
resulting excited-state population is shunted to the dark state as
soon as it develops, preventing re-emission. Additionally, the
amplification can be made arbitrarily strong, since the coherent
field-matter interaction is decoupled from its backaction by the
incoherent decay process, so that dark counts can be essentially
eliminated. Performing 50 000 simulations with and without a
photon using γ 2 = �2 = 0.1 ps−1, we find that a wide range of
thresholds yields 50 000 hits, 0 dark counts, and 1.05 ns of jitter,
where 1.0 ns of jitter is the lower limit set by the wave-packet
width σ . Furthermore, almost-perfect detection is possible for
a wide range of single-photon pulse widths—e.g., for the value
γ 2 = �2 = 0.1 ps−1, such ideal performance holds for pulses
as short as 100 ps (see Appendix for additional trajectories).
For shorter pulses, efficiency is reduced (Fig. 5) because
absorption no longer occurs rapidly enough to collect the entire
pulse.

033836-5



YOUNG, SAROVAR, AND LÉONARD PHYSICAL REVIEW A 97, 033836 (2018)

FIG. 5. The average dynamics of Configuration 2 with γ 2 =
�2 = 0.1 ps−1. Strong optical coupling means that excitation occurs
rapidly compared with the pulse duration, and a matched rate of
incoherent transfer converts excited-state population to dark-state
population as soon as the former develops. Consequently, regardless
of the strength of the quantum measurement, the measured state |C〉
attains 100% probability and the excited state |1〉 is nearly unoccupied
throughout.

This demonstrates that trade-offs in photodetection can
be circumvented through detector design, and that an ideal
detector is in principle possible.

V. DISCUSSION

At the most general level, the two models discussed
here represent all detectors of the kind presented in Fig. 1.
Configurations that are complicated by adding intermediate
states that are coherently coupled to the absorbing system and
the amplification process will exhibit behavior qualitatively
similar to that of Configuration 1; the coherent nature of the
couplings will ensure that amplification backaction will be
propagated back to the absorbing system, limiting performance
in the fashion shown for Configuration 1, as well as exposing all
states to the impact of spontaneous emission. For Configuration
2, additional states in the relaxation pathway will not impact
the absorption process since the absorbing system will be
insulated from the effects of any amplification dynamics after
the first incoherent decay. Furthermore, provided all final
states are amplified and monitored, multiple decay states
and/or extended decay pathways will not qualitatively alter
the results. However, for any configuration, the presence
of decay processes to unmonitored states (e.g., additional
spontaneous emission back to the ground state) will obviously
and straightforwardly limit performance.

The lesson then from studying these systems is that any sys-
tem where the amplification acts on the absorbing subsystem,
directly or via a coherent chain, will necessarily face a compro-
mised absorption process, sharply limiting the performance,
and answering the question of whether preserving coherence
up to amplification yields any improvements. Additionally, if
irreversible decay occurs from the optically active subsystem
to an optically inactive subsystem, as in Configuration 2, one
can decouple the amplification process from the light-matter
interaction and achieve performance arbitrarily close to ideal.
However, in this case one has to engineer the rate of the first

relaxation process to match to the optical coupling strength,
which itself must be high compared with the inverse of the
pulse durations one desires to detect.

Finally, we believe that current high-performance single-
photon detectors are operating in regimes that are close to that
described by Configuration 2. Both avalanche photodiodes and
superconducting detectors rely on rapid incoherent decay from
an optically excited coherent state to optically inert intermedi-
ate states before amplification. Our results clearly show why
these types of detectors offer the superior performance they are
known for and suggest that, in principle, this class of detectors
may be tuned to operate perfectly. Moreover, recent proposals
and prototypes of single-photon detectors in the microwave
regime operate by using internal detector structure that is
very similar to Configuration 2 [27,28]. Thus the fundamental
trade-offs and limiting mechanisms we have identified can
provide design principles for guiding future efforts to engineer
new photodetector types regardless of the underlying physical
mechanisms.
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APPENDIX A: EXAMPLE DERIVATION OF MASTER
EQUATION FROM PHYSICAL SYSTEM

In this section we derive a stochastic master equation
representing a concrete physical system to illustrate the general
formalism presented in the main text. Figure 6 shows a
schematic of the “device” for which we write a dynamical

|0

|1

|C
Γ1→C

FIG. 6. A schematic of a molecular photodetection device. Pho-
tons are absorbed by the molecular system (internal structure shown),
and the detection event is amplified by electronic transport in the
carbon nanotube. A quantum measurement master equation for the
dynamics of this device is developed in this section.
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model. It consists of a photoactive molecule positioned near a
short-channel (e.g., 10 nm) carbon nanotube (CNT) connected
to leads. There are three relevant states in the molecule:
the ground state |0〉, an excited state |1〉 optically connected
to the ground state, and an optically dark state |C〉 that
represents the state of the molecule after photon absorption,
such as can arise from photoisomerization. The static dipole of
the molecule is different (in magnitude and direction) in states
|1〉 and |C〉 and this change induces a change in the electrostatic
potential of the CNT and, as a result, the current across it. Such
systems have been previously studied experimentally [29].

To develop a model for this device, we approximate
the transport of electrons across the nanotube as a tunnel-
ing process, which is justified by the short channel length.
The tunnel barrier is set by the energy levels in the nan-
otube. Given this simplification, we can model the system
by using the Hamiltonian H = Hf + Hf-m + Hm + Hm-CNT +
HCNT, where Hf,Hm and HCNT are the bare electromagnetic
(EM) field, molecule and CNT Hamiltonians, respectively.
Hf-m is the field-molecular interaction, and Hm-CNT is the
molecule-CNT interaction. Explicitly, these Hamiltonians are

Hm = h̄ω0|0〉〈0| + h̄ω1|1〉〈1| + h̄ωC |C〉〈C|,
HCNT =

∑
k

(
h̄ωL

k a
†
LkaLk + h̄ωR

k a
†
RkaRk

)

+
∑
k,q

(Tkqa
†
LkaRq + T ∗

qka
†
RqaLk),

Hm-CNT =
∑
k,q

|C〉〈C|(χkqa
†
LkaRq + χ∗

qka
†
RqaLk). (A1)

We leave Hf and Hf-m unspecified at this point. In the above,
h̄ω0, h̄ω1, h̄ωC are the energies of the respective states of
the molecule. h̄ωL

k and h̄ωR
k are the energies of left and right

reservoir states at wave number k, and aLk , aRk are (fermionic)
annihilation operators for these states. Tkq is the tunneling
matrix element between states k and q in the left and right
reservoir, and χkq is the perturbation to this element due to the
molecule being in state |C〉. Note that this effectively means
that the tunneling amplitude goes from Tkq to Tkq + χkq when
the molecule is in the |C〉 state.

In addition to these coherent dynamics, the different con-
formational states |1〉 and |C〉 are connected by an incoherent
rate �2

1→C (and we assume the backward transition rate �2
C→1

is negligible).
This model for the CNT and molecule-CNT interaction are

similar to the model used for quantum-point-contact–based
measurement in Ref. [30]. Following that reference, we can
now derive a master equation describing the dynamics of the
molecule and light degrees of freedom only by integrating out
the continuum of reservoir states:

�̇(t) = − i

h̄
[Hf + Hf-m + Hm,�] + �1→CD[|C〉〈1|]�(t)

+D[T+ + X+|C〉〈C|]�(t)

+D[T ∗
− + X ∗

−|C〉〈C|]�(t)

≡ − i

h̄
[Hf + Hf-m + Hm,�] + Lt �, (A2)

where� is the density matrix for the molecular and field degrees
of freedom only. In this equation, D is a superoperator defined
as

D[A]ρ = AρA† − 1
2 A†Aρ − 1

2 ρA†A. (A3)

Before specifying the coefficients T± and X± we repeat
from Ref. [30] all the assumptions that go into deriving this
master equation:

(1) The left and right reservoirs and leads are thermal-
equilibrium free-electron baths.

(2) Weak coupling between molecule and CNT, which
effectively means that we can restrict ourselves to a second-
order expansion in χkq, Tkq .

(3) The transport through the channel (CNT or QPC) is in
the tunnel junction limit—i.e., low transmissivity.

(4) The initial state of the molecule and CNT are uncorre-
lated and factorizable.

(5) Fast relaxation of the reservoirs—i.e., the degrees of
freedom in the reservoirs relax to equilibrium much faster than
any system timescales.

(6) Markovian approximation of the reservoir.
(7) If eV is the external bias applied across the transport

channel, and μL,μR are the chemical potentials in the left
and right reservoirs (i.e., eV = μL − μR), then |eV |, kBT �
μL(R).

(8) Energy-independent tunneling amplitudes and density
of states over the bandwidth max(|eV |, kbT ).

Under these approximations, the dynamics of the system is
described by the above master equation, with the coefficients
determined by

|T±|2 = 2πe

h̄
|T00|2gLgRV±,

|T± + X±|2 = 2πe

h̄
|T00 + χ00|2gLgRV±, (A4)

where T00, χ00 are the energy-independent tunneling ampli-
tudes near the average chemical potential, and gL, gR are the
energy-independent density of states in the left and right reser-
voirs, respectively. The finite-temperature effective external
bias is

eV± ≡ ±eV

1 − exp
(∓eV

kBT

) . (A5)

At first approximation, we can work in the limit of low
temperature and ignore the thermally activated current in
the reverse direction, and set V− = 0, which will effectively
remove the third term in Eq. (A2).

Equation (A2) can be interpreted as a measurement master
equation giving the averaged dynamics when the population
in the state |C〉 is continuously monitored [30]. Conditioned
dynamics, based on particular values of the current can also
be derived from the corresponding stochastic master equation
[22]:

d�(t) = − i

h̄
[Hf + Hf-m + Hm,�]dt + Lt �dt

+ H[T+ + X+|C〉〈C|]�(t)dW+(t)

+ H[T ∗
− + X ∗

−|C〉〈C|]�(t)dW−(t),

033836-7
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FIG. 7. The average dynamics of the three-state system with γ 2 = �2 = 0.1 ps−1 for wave packets of widths (a) 1 ns, (b) 500 ps,
(c) 250 ps, and (d) 100ps. We see that in all cases the photon is collected 100% of the time.

where H[A]� ≡ A� + �A† − 〈A + A†〉��, and dW+(t) and
dW−(t) are Wiener increments. Increments in the forward and
reverse current consistent with this evolution are given by

dI+(t) = 〈T+ + X+|C〉〈C|〉�dt + dW+(t),

dI−(t) = 〈
T ∗

− + X ∗
−|C〉〈C|〉

�
dt + dW−(t).

APPENDIX B: QUANTUM TRAJECTORIES
FOR IDEAL DETECTOR

In this section we present additional trajectories for the
“ideal photodetector” for different values of the photon wave
packet width. Figure 7 shows that, for pulse widths ranging
from 100 ps to 1 ns, the collection efficiency is 100%.
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