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Ionization waves of arbitrary velocity driven by a flying focus
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A chirped laser pulse focused by a chromatic lens exhibits a dynamic, or flying, focus in which the trajectory of
the peak intensity decouples from the group velocity. In a medium, the flying focus can trigger an ionization front
that follows this trajectory. By adjusting the chirp, the ionization front can be made to travel at an arbitrary velocity
along the optical axis. We present analytical calculations and simulations describing the propagation of the flying
focus pulse, the self-similar form of its intensity profile, and ionization wave formation. The ability to control the
speed of the ionization wave and, in conjunction, mitigate plasma refraction has the potential to advance several
laser-based applications, including Raman amplification, photon acceleration, high-order-harmonic generation,
and THz generation.
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I. INTRODUCTION

Several laser-plasma-based applications rely critically on
the controlled formation and propagation of an ionization
front. The speed of the ionization front can determine a phase
matching condition, as in THz [1–3] or high-order-harmonic
generation [4–7]; the interaction distance, as in photon accel-
eration [8–10]; or the plasma conditions within an interaction
region, as in Raman amplification [11–14]. Conventionally,
a laser-produced ionization front is constrained to travel at
the group velocity. This can severely limit the potential of the
aforementioned applications.

Here we present a method for controlling the speed of an
ionization front based on the recently demonstrated flying
focus [15]. In its simplest implementation, the flying focus
(FF) occurs when a chromatic lens focuses a chirped laser
pulse [15,16]. In a region about the focus, the peak intensity
of the laser pulse propagates at a speed that is decoupled
from its group velocity. Figure 1 illustrates this schematically.
The top row shows the chromatic focusing of a positively
chirped pulse. The red-shifted frequencies lead the blue-shifted
frequencies in time and focus closer to the lens. The resulting
intensity peak travels from left to right, copropagating with
the pulse. The bottom row shows the opposite case of a
negatively chirped pulse. The blue-shifted frequencies lead
in time, but focus farther from the lens than the red-shifted
frequencies. The intensity peak now travels from right to left,
counterpropagating with respect to the pulse. More generally,
the velocity of the intensity peak, or focal velocity, can take
any value, depending on the focal length of the chromatic lens
and the bandwidth and chirp of the pulse.

In a medium, the intensity peak of the FF can trigger
an ionization front that travels at the focal velocity. This
allows for an ionization wave of arbitrary velocity (IWAV) by
adjusting the chirp. Because the velocity can take any value, the
IWAV has the potential to enable a wide range of applications
currently limited or precluded by an inability to phase match
at the group velocity of the laser pulse. The simplicity of
IWAV formation, requiring only a chirp and a chromatic lens,
compares favorably to other schemes, for instance, using the

intersection of two cylindrically focused femtosecond pulses
[17]. Additionally, a FF pulse with negative focal velocity can
create a contiguous IWAV relatively undisrupted by ionization
refraction [18,19]. This property could aid in the extension
of plasma filaments formed through a dynamic balancing
of self-focusing and plasma refraction, complementing other
schemes such as axicon focusing [20], variable wave-front
distortion [21], or the use of short wavelengths [22].

We begin by reviewing the propagation characteristics of
the flying focus, deriving expressions for the trajectory and
velocity of the intensity peak. We show analytically that the
FF pulse exhibits self-similar behavior, largely maintaining
its spatiotemporal profile as it travels through the focal region.
After discussing the FF propagation, we present self-consistent
simulations of IWAV formation. The negative focal velocity
pulses create a sharp ionization front by largely avoiding
plasma refraction. For the parameters considered, the self-
similar behavior persists in the presence of ionization. Finally,
we show that modifications to the power spectrum of the FF
pulse provide an additional avenue for tailoring the IWAV. As
a specific example, we modify the power spectrum to create a
plasma density profile modulated along the optical axis.

II. FLYING FOCUS PROPAGATION MODEL

To model the propagation of a flying focus pulse, we employ
a modified paraxial wave equation (MPE). The MPE evolves
the spatiotemporal envelope of a laser pulse and is equivalent
to solving the paraxial wave equation for each frequency com-
ponent within the envelope. The MPE captures two relevant ef-
fects not accounted for in a monochromatic paraxial equation:
temporal delays due to path length differences within a pulse
and the frequency dependence of diffraction. Both of these
effects play a significant role in the propagation of a FF pulse.

We express the electric field of the pulse as a plane
wave modulating an envelope: E = 1

2 E0(r,ξ,z)ei(k0z−ω0t) +
c.c., where ξ = ct − z is the moving frame coordinate, ω0

is the central frequency, k0 = ω0/c, and c is the speed of
light in vacuum. In vacuum, the transverse components of the
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FIG. 1. Schematic of the flying focus. A positively (top row)
or negatively (bottom row) chirped laser pulse passes through a
diffractive lens. For the positive chirp, the red frequencies come to
focus earlier than the blue, resulting in a positive focal velocity. For
the depicted negative chirp, the blue frequencies come to focus earlier,
resulting in a negative focal velocity.

envelope, E⊥, evolve according to[
2

(
ik0 − ∂

∂ξ

)
∂

∂z
+ ∇2

⊥

]
E⊥ = 0. (1)

The ξ derivative, which is absent in the monochromatic
paraxial equation, accounts for spatiotemporal delays and
the frequency dependence of diffraction. We note that the
approximations used to derive Eq. (1) break down for focusing
geometries where the f -number, f #, ∼4 or less. In these
situations, a nonparaxial wave equation is required [23].
Accordingly, we limit this investigation to f # > 6. With a
solution of Eq. (1), the approximate axial field can be found
from ∇ · E = 0. For the parameters considered here E0 ≈ E⊥.

The initial condition of Eq. (1), E⊥(r,ξ,0), represents
the envelope just after passage through the chromatic lens.
For specificity, we use a diffractive lens, which produces a
longitudinally extended chromatic focus while minimizing
other aberrations [15]. A diffractive lens has a radially varying
groove density G = k0r/2πf , where f is the focal length for
the wave number k0. This imparts a phase φDL = −k0r

2/2f

to the pulse. Defining the envelope just before the diffractive
lens as El(r,ξ,0), we have E⊥(r,ξ,0) = El(r,ξ,0)e−ik0r

2/2f .
The diffractive lens phase, φDL, while similar to that

imparted by an achromatic lens, differs in several important
features. First, only the central frequency, ω0, will focus at the
location z ≈ f . The lower and higher frequency components
will focus earlier and later respectively, an essential element
of the flying focus. Second, the diffractive lens does not
precompensate for the path length difference between rays
starting at the transverse edge of the pulse and those starting
at the center. This causes the pulse to acquire an intensity
curvature as it approaches focus similar to that discussed in
Ref. [24]. From simple geometric considerations, the temporal
delay as a function of radius in the diffractive lens plane is
δξ (r) = (f 2 + r2)1/2 − f . The delay increases with decreas-
ing f -number and causes a larger relative distortion for a short
pulse than for a long pulse.

Given E⊥(r,ξ,0), one can calculate the envelope at any axial
location using the integral solution of Eq. (1) in the spectral
domain (i.e., the modified Fresnel integral):

Ê⊥(r,δω,z) = kω

2πiz

∫
exp

[
ikω

2z
(r − r′)2

]
Ê⊥(r′,δω,0)dr′,

(2)

where the caret denotes a Fourier transform with respect to
ξ with conjugate variable δω/c and kω = k0 + δω/c. Equiva-
lently, one can perform the ξ -domain integral

E⊥(r,ξ,z) = − (ik0 − ∂ξ )

2πz

∫
exp

[
ik0

2z
(r − r′)2

]

× E⊥

(
r′,ξ − |r − r′|2

2z
,0

)
dr′. (3)

Equation (3) can be interpreted as follows. The field in the
transverse plane at any z results from the superposition of light
emitted from a collection of point sources in the plane z =
0. The first factor in the integrand (the propagator) accounts
for the diffraction of the light emitted from the point sources.
The initial condition E⊥(r′,ξ,0) determines their amplitudes,
phases, and time dependence. The translation of the ξ argument
by |r − r′|/2z accounts for the difference in time it takes light
from point sources displaced transversely in the z = 0 plane
to reach a particular transverse location in any other plane.

In the following, we will analyze Eqs. (2) and (3) for a
FF pulse with a transverse Gaussian profile and a quadratic
spectral phase (i.e., a chirp). Specifically,

Ê⊥(r,δω,0) = Êa exp

[
− r2

w2
0

+ 1

4
iητ 2δω2 − ik0r

2

2f

]
, (4)

where w0 is the initial spot size, τ is a measure of the transform-
limited pulse duration, η is the chirp parameter, and Êa =
Êa( 1

2τδω) is the real, frequency-dependent spectral amplitude.
While a different transverse profile may better represent a
particular laser system, the Gaussian greatly simplifies analytic
calculations using Eqs. (3) and (4), and illustrates the salient
physics. The simulations in Sec. V will consider a different
transverse profile.

III. ANALYSIS OF FLYING FOCUS PULSE PROPAGATION

Equation (2), with the initial condition in Eq. (4), admits
exact solutions. Each frequency component undergoes stan-
dard Gaussian optics diffraction with a slight modification.
To obtain the spot size, curvature, Guoy phase or amplitude
for each frequency, one simply applies the transformation
z → (k0/kω)z to the monochromatic result. Of particular note
is the spot size:

wω = w0

[(
2z

kωw2
0

)2

+
(

1 − k0z

kωf

)2
]1/2

. (5)

Equation (5) shows that each frequency has a different focal
length zω � (kω/k0)f . For a power spectrum of width ∼4/τ ,
this spreads the focal region over a distance ∼4(ω0τ )−1f .
The effective focal length, (kω/k0)f , and angular width,
∼1/kωw0, increase and decrease with frequency, respectively.
The two exactly offset such that each frequency has the same
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FIG. 2. The focal velocity of the flying focus pulse as a function
of chirp parameter and pulse duration for the parameters in Table I. A
positively chirped pulse is limited to positive focal velocities, while a
negatively chirped pulse can have either a positive or negative velocity.

minimum spot size—the diffraction-limited spot of the central
wavenumber, wmin = (2zω/kωw0) = (2f/k0w0).

In addition to focusing at different locations, each frequency
can focus at a different time. The focal time for each frequency,
tω, consists of two contributions. The first results from the
chromatic focusing of the diffractive lens and is simply the
focal length of the frequency divided by the speed of light,
zω/c. The second results from the chirp and corresponds to
the relative time of the frequency within the pulse. Denoting
the spectral phase as φs , the relative time is ∂δωφs = 1

2ητ 2δω.
Using δω = ω0(zω/f − 1) and summing the two contributions
provides ctω = zω[1 + ηcτ 2ω0/2f ] − 1

2ηcτ 2ω0. Upon taking
the derivative with respect to tω, we arrive at the focal velocity

vf

c
=

(
2f

ηcτ 2ω0

)(
1 + 2f

ηcτ 2ω0

)−1

. (6)

The chromatic focusing of the diffractive lens and the temporal
separation of frequencies results in a focal position that moves
in time with the velocity vf . An alternative, approximate
derivation of Eq. (6) appears in Appendix A.

Figure 2 displays the focal velocity as a function of chirp
and pulse duration for the parameters found in Table I. For a
positive chirp, the red-shifted frequencies lead the blue-shifted
frequencies in time. Because the red frequencies focus closer to
the lens, they will necessarily focus earlier in time than the blue
(see Fig. 1). The peak intensity, therefore, moves with positive
velocity from the red to the blue focal points. As the chirp
increases, the red and blue frequencies become more separated
in time. This leads to an increase in time between their foci
and a decrease in the focal velocity. For negative chirp, the
blue-shifted frequencies lead the red. Depending on the value
of the chirp, the blue frequencies can focus later or earlier
in time than the red frequencies. The crossover point occurs
when the time separation (multiplied by c) of the frequencies

TABLE I. Parameters for simulations

Pulse Parameters Value

λ (μm) 1.054
�λ (nm) 9
τ (fs) 230
P (MW) 290
Diffractive lens parameters Value
w0 (cm) 3.6
f (cm) 51
Gas parameters Value
ng (cm−3) 2.7 × 1019

UI (eV) 13.6
T0 (eV) .026

within the pulse equals the separation of their focal points, i.e.,
η = −2f/cω0τ

2. At the crossover point, all of the frequencies
focus simultaneously producing a line focus. This is similar to
an axicon focus, with two important exceptions: all of the light
comes to the line focus simultaneously, and the focal spot is that
of a standard lens. Because of the crossover, negative chirps
allow a wider range of focal velocities and provide greater
versatility.

To aid in the conceptualization of a negative focal velocity,
Fig. 3 displays intensity isocontours of a FF pulse with vf =
−c/3. The figure comprises three snapshots of the intensity in
the laboratory frame, with time increasing from top to bottom.
The spatial advance of the green and blue contours with time

FIG. 3. Intensity isocontours of a flying focus pulse with vf =
−c/3 in the laboratory frame at three times, increasing from top to
bottom. The peak intensity, represented by the dark orange contours,
counterpropagates with respect to the optical axis.
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show that the pulse energy generally propagates in the forward
direction (left to right). The peak intensity, on other hand,
travels backward at vf = −c/3 as traced out by the solid gray
line. This illustrates the principal feature of the flying focus:
the peak intensity travels at vf , not the group velocity. The
simulations used to generate the isocontours are described in
Sec. V and Appendix C.

Unfortunately, exact analytic solutions to Eq. (3) exist only
for either trivial, e.g., a monochromatic Gaussian beam, or
limiting cases. In Appendix B, for instance, we present an
exact, but unwieldy, expression for the on-axis field of the
flying focus pulse. For the remainder of the paper, we make
the simplifying approximation of large chirp, |η| 	 1. For
clarity of presentation in this section, we make an additional
simplifying approximation that is valid over the parameter
range of interest: 4f #cτ |η|/w0 	 1. Physically, this condition
implies that the temporal delays for different path lengths from
the diffractive lens to the focus are small compared to the
chirped pulse duration. We note that the simulations, presented
below, do not make this approximation, but validate its use
here.

A large chirp admits use of the stationary phase approxi-
mation when performing the Fourier transform to find the ξ -
domain profile from Eq. (4). Specifically, we have E⊥(0,ξ,0) ≈
αÊa(ξ/cT ) exp[−iη(ξ/cT )2], where α = (1 + i)(η/2πT 2)1/2

and T = ητ . For a super (or regular) Gaussian power spectrum
of order g, Eq. (3) reduces to

E⊥(r,ξ,z)

= k0F(ξ )

2πiz̃

∫
exp

[
ik0

2z̃
(r − r′)2 − ik0r

′2

2f
− r ′2

w2
0

]
dr′, (7)

where F(ξ ) = Ea exp[−(ξ/cT )g − iη(ξ/cT )2], Ea is a con-
stant amplitude, and

z̃ =
(

1 + 2ηξ

ω0cT 2

)−1

z. (8)

The integrand in Eq. (7) is nearly identical to that of
a monochromatic Gaussian beam, but with the prop-
agation distance scaled by a ξ -dependent factor: z →
(1 + 2ηξ/ω0cT

2)−1z. Expressions for the curvature and Guoy
phases can be obtained by evaluating the monochromatic
Gaussian beam results at z̃ instead of z. The resulting spot
size w = w0[(z̃/ZR)2 + (1 − z̃/f )2]1/2, where ZR = k0w

2
0/2,

reproduces Eq. (5) with the frequency shift substitution dis-
cussed in Appendix A.

By writing Eq. (7) in terms of the scaled axial distance,
z̃, an important property emerges: within the focal region,
the envelope, and therefore the intensity, has a self-similar
form that depends on ξ and z only in the combination
(1 + 2ηξ/ω0cT

2)−1z. The intensity peak propagates with
a velocity vf and a near-constant shape over a distance
∼4f (ω0τ )−1—a distance that can readily exceed the Rayleigh
length of the diffraction-limited spot. On axis, the inten-
sity peak takes the simple form I = 1

2ε0cE
2
a (w0/w)2, with

temporal and spatial widths �ξ = 2η(cτw−1
0 )2f and �z =

(vf /c)�ξ = 2(1 + 2ηf/ω0cT
2)−1f 2/ZR , respectively. Out-

side of the focal region, |z − f | > 2f (ω0τ )−1, (ξ/cT )2 > 1,
and the ξ dependence of the pulse amplitude, |F (ξ )|, breaks

the self-similar form. A visual illustration of this will appear
in the simulations presented below.

IV. IWAV MODEL

As discussed above, the flying focus decouples the velocity
of the intensity peak from the group velocity. By manipulating
the speed of the peak, an ionization wave of arbitrary velocity
(IWAV) can be produced. Aside from controlling the velocity
of the ionization front, the ability to counterpropagate the
intensity peak relative to the group velocity can mitigate the
deleterious effects of ionization refraction.

A self-consistent model of IWAVs must include the prop-
agation of the flying focus pulse, the ionization dynamics of
the background gas, and the resulting plasma refraction and
depletion of pulse energy. Extending Eq. (1) to include these
effects, we have[

2

(
ik0 − ∂

∂ξ

)
∂

∂z
+ ∇2

⊥

]
E⊥ = k2

pE⊥ − Q. (9)

where kp = (e2ne/mec
2ε0)1/2, ne is the free electron density,

e the fundamental unit of charge, me the electron mass, and Q
a function accounting for depletion, which we return to below.
The FF pulses of interest here propagate through a tenuous,
singly ionizable gas, such that (kp/k0)4 
 1 consistent with
the approximations used to derive Eq. (9).

At every spatial location, the gas starts un-ionized. Optical
field ionization occurs throughout the pulse freeing electrons
from the gas atoms. Once freed, the electrons can multiply
by collisionally ionizing additional gas atoms. Eventually, the
electrons recombine through radiative or three-body mecha-
nisms. Noting that the ion density ni = ne in a singly ionizable
gas, the electron density evolves according to

c∂ξne = νFIng + αCIneng − αRn2
e − β3Bn3

e, (10)

where ng = ng0 − ne and ng0 is the initial gas density. The
field ionization rate, νFI, depends on the local value of the
envelope, E⊥, while the rates for collisional ionization, αCI,
radiative recombination, αR, and three-body recombination,
β3B, depend on the local electron temperature, Te. In the
simulations presented below, the cycle-averaged Ammosov-
Delone-Krainov (ADK) rate is used for νFI [25], while the
other rates are calculated as in Ref. [26].

Electron-ion collisions convert the laser pulse energy to
electron thermal energy (i.e., inverse bremsstrahlung heat-
ing). For short, high-intensity laser pulses, the heating can
occur rapidly, resulting in the loss of local thermodynamic
equilibrium between the electrons and ions. We denote the
electron and ion thermal energy densities as �e = 3

2nekbTe and
�i = 3

2nekbTi , respectively, where Ti is the ion temperature.
Their modifications are described by

c∂ξ�e = 2ω2
0(

ω2
0 + ν2

ei

)νeineUp − αCInengUI

− 3
me

mi

νeinekb(Te − Ti) (11a)

c∂ξ�i = 3
me

mi

neνeikb(Te − Ti), (11b)
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where νei is the standard electron-ion collision frequency
[26], Up = me(e|E⊥|/2meω0)2 is the cycle-averaged kinetic
(ponderomotive) energy of an electron within the pulse, UI

the ionization potential, and mi the ion mass. In order, the
terms on the right-hand side (RHS) of Eq. (11a) correspond
to inverse bremsstrahlung heating, the energy expended by
free electrons during collisional ionization, and electron-ion
thermal relaxation.

Field ionization and inverse bremsstrahlung deplete the
pulse energy as it propagates through the gas or plasma. We
express Q as a sum of the two contributions: Q = QFI + QIB.
For every electron the pulse frees from a gas atom, it must
expend the ionization energy, UI . This loss is captured by

QFI =
(

ik0 − ∂

∂ξ

)
UIνFIng

I
E⊥, (12)

where I = 1
2ε0c|E⊥|2 is the intensity. The inverse

bremsstrahlung contribution,

QIB =
(

ik0 − ∂

∂ξ

)
ω2

p

ω2
0 + ν2

ei

c−1νeiE⊥, (13)

balances the energy gained by the electrons through the first
term in Eq. (11a).

While Eq. (9) accounts for dispersion in the plasma,
dispersion in the background gas has been neglected. Of
potential importance for the flying focus is group velocity,
or second-order, dispersion (GVD). GVD modifies the time
separation of different colors within the pulse either reducing
(compressing) or increasing (stretching) the chirp (duration).
The modified time separation could, in turn, modify the focal
velocity. In Eq. (2), GVD would appear as the additional
phase φGVD = [(∂2k/∂ω2)|ω0 ]δω2z/2. By comparing φGVD

with the quadratic spectral phase, ητ 2δω2/4, one can show that
GVD becomes important for propagation distances zGVD ∼
ητ 2[(∂2k/∂ω2)|ω0 ]−1/2. For typical gases at atmospheric den-
sities and the pulses of interest here, zGVD ∼ 10 km—a prop-
agation distance far greater than we consider. However, even
if the propagation distance were longer, one could adjust the
initial chirp to compensate for GVD: if η produces the desired
focal velocity in vacuum, ηGVD = η − 2f [(∂2k/∂ω2)|ω0 ]/τ 2

would produce the same focal velocity in the presence of GVD.

V. FF AND IWAV SIMULATIONS

To demonstrate the propagation of the FF pulse and IWAV
formation, we perform simulations that solve Eqs. (9)–(13)
for the parameters displayed in Table I. Appendix C provides
an overview of the method. Additional details about the
corresponding experimental setup can be found in Ref. [15].
The simulated pulses model the output from the frontend of the
Multi-Terawatt laser (MTW) at the University of Rochester,
Laboratory for Laser Energetics. MTW uses an optical para-
metric chirped pulse amplifier (OPCPA) front end to pump a
100 J-class Nd:glass final amplifier. The OPCPA produces lin-
early polarized pulses with a central wavelength λ0 = 2π/k0 =
1.054 μm and 9.2 nm of bandwidth, full width at half maxi-
mum. The pulses have a nearly flat power spectrum over the
entire bandwidth with a transform-limited duration of∼1.6τ ∼
370 fs. Numerically, we implement the flat power spectrum as a

FIG. 4. Intensity and electron density as a function of axial
location and time for a flying focus pulse with vf = −c. The pulse
creates a sharp ionization front that also travels at −c.

super-Gaussian of order 8 (SG8). The initial transverse profile,
also an SG8, has a spot size, w0, equal to the radius of the
diffractive lens used for the experiments in Ref. [15]. Explicitly,
Êl ∝ exp[−(rw−1

0 )8 − ( 1
2τδω)8 + 1

4 iητ 2δω2]. As in Ref. [15],
the diffractive lens has a focal length f = 0.51m at λ0.

The pulses propagate through either ½ atmosphere of H2

(ng0 = 1 atm of H atoms) or, for reference, vacuum. Unless
otherwise stated, the peak power is fixed at 290 MW, which
corresponds to energies ranging from 4.1–12.4 mJ depending
on the chirp. The power was chosen so that the peak intensity
moderately exceeds the ionization threshold. If the power were
too low, the pulse would not ionize at all. If, on the other hand,
the power were too high, the leading edge of the pulse could
fully ionize the gas before the peak of the flying focus pulse
arrived. At such a high power, the IWAV would travel at the
group velocity, not the focal velocity.

Figure 4 displays the on-axis (r = 0) intensity and electron
density as a function of time and space for vf = −c, corre-
sponding to the red circle in Fig. 2. To guide the eye, a white
dashed line demarcating a trajectory moving at −c has also
been plotted. The FF pulse created a sharp ionization front, i.e.,
an IWAV, that moves backwards at vf . The on-axis intensity
in Fig. 4 appears to have a shorter duration than would be
expected from the chirp and power spectrum. This apparent
shortening results from plasma refraction. The ionization rate
has a highly nonlinear dependence on the electric field. As
a result, ionization predominately occurs near the peak of
the pulse, localizing the plasma to the center of the spot.
The corresponding refractive index has a sharp gradient that
strongly refracts the back of the pulse. The repercussions of
plasma refraction can be observed more clearly in Fig. 5.
Figure 5 displays the spatiotemporal profile of the FF pulse
at three different locations in the lab frame. The profiles in H2

are shown above the gray line, and, for reference, the vacuum
profiles are shown below. The refraction of the back of the
pulse is apparent.

The insets in Fig. 5 magnify the region around the peak
intensity in each frame. The region about the peak intensity
looks almost identical in all three frames. As discussed above,
the FF pulse has a self-similar profile when propagating in
vacuum. Surprisingly, a self-similar structure persists in the
presence of the ionization refraction, albeit slightly modified.
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FIG. 5. Spatiotemporal intensity profiles of a flying pulse with vf = −c at three axial locations. The profile in H2 is plotted above the dashed
line, and, to emphasize the effect of plasma refraction, the vacuum profiles are plotted below. The insets illustrates that, near peak intensity, a
self-similar structure persists in both H2 and vacuum as the flying focus traverses the focal region.

Figure 6 shows lineouts of the on-axis intensity at the same
locations. Within the focal region, the on-axis intensity, and
resulting plasma, has nearly the same temporal profile. Note
that most of the ionization occurs behind the pulse. At the pulse
powers considered here, optical field ionization provides the
initial seed electrons for collisional ionization. Throughout its
duration, the pulse heats the electrons, which allows collisional
ionization to persist after the pulse has passed.

While Fig. 5 clearly demonstrates an effect of ionization
refraction, the disruption to propagation was relatively be-
nign: by counterpropagating the focus with respect to the
group velocity, the brunt of ionization refraction was avoided.
Figure 7 illustrates the advantage of moving the laser pulse
backward with respect to the group velocity. The figure
displays a comparison of IWAVs created by FF pulses with
vf = −c/2 and vf = c/2 on the left and right, respectively.
The two velocities correspond to the red (right) and blue (left)
squares in Fig. 2. For vf = −c/2, the blue-shifted frequencies
focus earlier and further from the lens, initiating the ionization
wave. As the red-shifted frequencies come to focus and ionize,
they do so closer to the lens, behind (in space) the already
generated plasma. This allows the peak intensity to propagate
backward relatively unimpeded. For vf = c/2, the red-shifted

FIG. 6. The on-axis intensity of a flying pulse with vf = −c at
three axial locations. The persistence of a self-similar intensity profile,
even with ionization dynamics, is evident.

frequencies focus earlier and closer to the lens. As the blue-
shifted frequencies come to focus, they propagate through the
plasma created by the red-shifted frequencies. This exacerbates
the ionization refraction, leading to a drastically lower electron
density with an intermittent, disjointed profile as observed on
the right in Fig. 7. In both cases, the depletion of pulse energy
is less than 4% and has little affect on the propagation.

VI. ADVANCED FF AND IWAV TECHNIQUES

In the previous section, we considered a laser pulse with
a quadratic spectral phase focused by a diffractive lens. The
peak intensity of the pulse, and the resulting ionization front,
traveled at a constant velocity determined by the coefficient of
the spectral phase (i.e., the chirp). By using a more complex
spectral phase, the peak intensity can be made to travel with
a dynamic velocity [16]. Following the procedure in Sec. III,
the trajectory of the peak satisfies

ct = z + f

ω0
∂zφs, (14)

where we have used δω = ω0(z/f − 1) to write φs in terms of
z. For a desired z(t), one can invert Eq. (14) to find φs . As a
practical example, one could accelerate or decelerate the speed
of an IWAV to modulate the THz emission in the two-color
optical Cherenkov mechanism [2,27].

FIG. 7. Intensity and electron density as a function of axial
location and time for flying focus pulses with vf = −c/2 and vf =
c/2 on the left and right, respectively. The vf = −c/2 pulse creates a
sharp, clean ionization front, largely avoiding plasma refraction. The
vf = c/2 pulse suffers significant plasma refraction, producing an
intermittent, disjointed ionization front.

033835-6



IONIZATION WAVES OF ARBITRARY VELOCITY DRIVEN … PHYSICAL REVIEW A 97, 033835 (2018)

FIG. 8. Intensity and electron density as a function of axial
location and time for a flying focus pulse with a modulated power
spectrum and vf = ∞, i.e., a simultaneous line focus. The diffractive
lens has mapped the modulation in the power spectrum to a spatial
intensity modulation. A modulated plasma density profile results.

One can also control the spatiotemporal properties of the
IWAV by modifying the power spectrum. Recall that each
frequency focuses at a different location on the optical axis
and, with the exception of the line focus, a different time. As
a result, the spectral amplitude of each frequency determines
the peak intensity at each location and time. By adjusting the
relative amplitude of each frequency, the trajectory of the peak
intensity can be controlled independently of the focal velocity
and chirp.

Here we consider the simplest case of a line focus,
where all of the frequencies focus simultaneously at different
locations on the optical axis. Because the diffractive lens
maps frequencies to axial locations, one can ramp or mask
the power spectrum to vary the intensity, and hence the
ionization and heating, along the optical axis. To illustrate
this, we apply a periodic modulation to the power spectrum:
Êa ∝ [1 + cos( 1

2Nπτδω)]2 exp[−( 1
2τδω)8]. When focused,

the spectrum produces an intensity profile that oscillates along
the optical axis with a period 4f/Nτω0. Figure 8 shows the on-
axis intensity and electron density resulting from a modulated
power spectrum with N = 6. The peak power and energy of the
pulse were 650 MW and 6.9 mJ, respectively. Similar profiles,
created with axicons, have been used to enhance a variety of
plasma-based applications, including THz radiation, betatron
x rays, and electron acceleration [28–31]. The FF, however,
has several advantages over an axicon: (i) at each longitudinal
location, the FF has a minimum spot size nearly equal to that
of an ideal lens; (ii) for a flat power spectrum, the peak, on-axis
intensity of the FF does not vary within the focal region; and
(iii) the FF largely avoids the plasma refraction that limits the
intensity achievable by an axicon [32].

VII. SUMMARY AND CONCLUSIONS

We have examined the formation of ionization waves of
arbitrary velocity (IWAVs) by flying focus pulses. A dynamic,
or flying, focus occurs when a chromatic lens focuses a laser
pulse with a nonlinear spectral phase. In a region about the
focus, the peak intensity of the laser pulse follows a time-
dependent trajectory along the optical axis. Generally, the
trajectory depends on the details of the spectral phase. For

the special case of a quadratic spectral phase (i.e., a chirp),
the peak intensity travels with a constant velocity that is
distinct from the group velocity of the pulse. This distinct
focal velocity can be tuned through the chirp such that the
peak co- or counterpropagates with respect to the optical axis.
In either case, the peak propagates self-similarly through the
focal region with a near-constant spatiotemporal profile. The
length of the region, determined by the bandwidth of the pulse
and focal length of the lens, can readily exceed the Rayleigh
range of the diffraction-limited spot.

In a medium, the flying focus pulse field ionizes the
constituent atoms and heats the resulting electrons along
the trajectory of its peak intensity. The leading edge of the
ionization, both field and collisional, follows the trajectory of
the peak intensity. Thus by adjusting the chirp, an ionization
front can be made to travel at an arbitrary velocity along
the optical axis. This property has the potential to enable a
wide range of applications currently limited or precluded by
an inability to phase match at the laser pulse group velocity,
such as THz generation, high-order-harmonic generation, and
photon acceleration. From a practical standpoint, a negative
focal velocity pulse can create a clean ionization front relatively
unimpeded by plasma refraction. As a more exotic example,
one can mask or ramp the power spectrum to further control the
propagation of the FF pulse and tailor the plasma formation,
for instance creating modulated plasma density profiles.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
FOCAL VELOCITY

Equation (6) accurately predicts the focal velocity for an
arbitrary chirp [15,16]. For an alternative, rough derivation
of the flying focus velocity, we consider the limit of large
chirp. In this limit, the stretched pulse duration, T [e.g.,
T = (1 + η2)1/2τ for a Gaussian power spectrum], far exceeds
the transform limited duration. We can then write the frequency
shift in zω as its ξ -domain representation: δω(ξ ) � 2ηξω/cT 2.
The focal location for each frequency becomes

zω

f
�

(
1 + 2ηf

cω0T 2

)−1(
1 + 2ηtω

ω0T 2

)
, (A1)

with the corresponding velocity vf � (1 + 2ηf/cω0T
2)−1

(2ηf/ω0T
2). For large chirp T ≈ |η|τ , and this expression

reproduces Eq. (6).
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APPENDIX B: ON-AXIS FF SOLUTION

In this appendix, we find an exact solution to Eq. (3)
evaluated on the propagation axis, r = 0, for a spatiotemporal
Gaussian pulse shape. Using a Gaussian power spectrum and
Fourier transforming Eq. (4) to the ξ domain, we have

E⊥(r,ξ,0) = Ea exp

[
− r2

w2
0

− ik0r
2

2f
− ξ 2

c2τ 2(1 − iη)

]
,

(B1)

where Ea is a constant amplitude. Inserting this expression into
Eq. (3) and setting r = 0, provides

E⊥(0,ξ,z) = Ea(k0 + i∂ξ )

2πiz
F (ξ )

∫
exp[−qr ′2 − pr ′4]dr′,

(B2)

where F (ξ ) = Ea exp[−(1 + iη)ξ 2/c2T 2], T = (1 + η2)1/2τ ,
p = (1 + iη)/4c2T 2z2, and

q = k0

2z

[(
2z

k0w
2
0

− 2ξ

k0c2T 2

)
− i

(
1 − z

f
+ 2ηξ

k0c2T 2

)]
.

At this point, one may already discern that (2w0z/k0)|q| has the
appearance of the spot size. Indeed, we recover our ξ -domain
expression for the spot size from Sec. III when |η| 	 1, i.e.,
when we drop the second term in q. Completing the integral
in Eq. (B2) yields the envelope of the FF pulse evaluated on
axis:

E⊥(0,ξ,z) = π1/2Ea

4izp1/2
(k0 + i∂ξ )F (ξ )eq2/4perfc

(
q

2p1/2

)
,

(B3)

where erfc is the complimentary error function. As expected,
Eq. (B3) recovers the monochromatic Gaussian optics result in
the limit T → ∞. Equation (B3) appears somewhat unwieldy,
motivating our use of simplifying approximations and simula-
tions in Secs. III and V, respectively.

APPENDIX C: DISCUSSION OF SIMULATION METHOD

Numerical solutions to Eq. (1) or Eqs. (9)–(13) can be
obtained by applying standard pseudospectral split step meth-
ods [33]. In these methods, one makes many small advances
in z, alternating between diffraction steps in Fourier space
and nonlinear or refractive steps in real space. If initialized
at the diffractive lens plane, these methods can come with
great computational expense. One must resolve the largest
wave number imparted by the diffractive lens (equivalent to
resolving the spot size at focus), while making the transverse
simulation domain large enough to contain the initial spot

size. Denoting the transverse resolution by �x and the do-
main size as N�x, these requirements can be expressed as
�x < 2πk−1

0 f # and �x > 2w0/N respectively. The resulting
number of grid points can be extremely large: N ∼ k0w0/πf #.
Consider 1 μm wavelength light focused through a 3.6 cm
radius diffractive lens with an f # = 7. The bare minimum
number of grid points—one cell in a vacuum spot—in a single
transverse dimension would be N ∼ 9800. In terms of Eqs. (2)
and (4), the first requirement amounts to resolving the rapidly
varying phase appearing in the kernel: k0w0�x/f < 1.

We can avoid such an onerous computation by recogniz-
ing that (i) the dynamics of interest occur near focus and
(ii) near focus, the rapidly varying phase of the kernel is
nearly cancelled by the phase applied by the diffractive lens.
Using Eq. (2) to find the envelope near focus decouples the
numerical grids at z = 0 and z ∼ f , and greatly relaxes the
requirements on the number of grid points. Convergence of
the integral requires k0w0�x ′|L−1 − f −1| < 1, where �x ′ is
the transverse resolution in the diffractive lens plane. This
significantly reduces the number of grid points required in one
transverse direction N ′ ∼ |1 − L/f |(k0w0/πf #). Meanwhile,
the transverse domain in the z plane needs only to contain the
spot size at z, and can have whatever resolution is desired
(for a rough estimate of the domain size one can simply
use the spot size predicted by Gaussian optics). With these
requirements met, the integral in Eq. (2) can be performed
using standard numerical techniques, and the temporal profile
found by performing a fast Fourier transform (FFT) with
respect to δω.

In the simulations presented here, Eq. (2) is used to
propagate the flying focus pulse from the diffractive lens to
a location before focus where the intensity is just below the
ionization threshold, z = zi. As discussed above, this greatly
relaxes the requirements on the numerical grid. From z = zi to
z = zf , where the intensity is above the ionization threshold, a
pseudospectral split step method is used to solve Eq. (10).

Figure 3 was generated from the output of a 2D + t

cylindrically symmetric simulation that used a discrete Hankel
transform in the transverse direction. The numerical imple-
mentation of the Hankel transform was found to be highly
dissipative, failing to conserve the energy of the pulse. Because
Eq. (1) is linear, this was not an issue for examining FF pulse
propagation in vacuum. However, the dissipation can cause
spurious results when looking at the nonlinear problem of
IWAV formation: the ionization rate depends strongly on the
local intensity. To avoid this, the remaining figures, (4)–(8),
were generated from the output of 2D + t Cartesian simula-
tions that used FFTs. The energy and power were calculated
using a scale factor for the ignorable transverse coordinate.
The scale factor was chosen to ensure that the peak intensity
in vacuum at z = f was equal to its value in three dimensions.
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