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Control of polarization rotation in nonlinear propagation of fully structured light
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Knowing and controlling the spatial polarization distribution of a beam is of importance in applications such
as optical tweezing, imaging, material processing, and communications. Here we show how the polarization
distribution is affected by both linear and nonlinear (self-focusing) propagation. We derive an analytical expression
for the polarization rotation of fully structured light (FSL) beams during linear propagation and show that the
observed rotation is due entirely to the difference in Gouy phase between the two eigenmodes comprising the FSL
beams, in excellent agreement with numerical simulations. We also explore the effect of cross-phase modulation
due to a self-focusing (Kerr) nonlinearity and show that polarization rotation can be controlled by changing the
eigenmodes of the superposition, and physical parameters such as the beam size, the amount of Kerr nonlinearity,
and the input power. Finally, we show that by biasing cylindrical vector beams to have elliptical polarization, we
can vary the polarization state from radial through spiral to azimuthal using nonlinear propagation.
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I. INTRODUCTION

Vector, or fully structured light (FSL), beams [1–3] have
attracted increasing attention for a number of applications.
These beams consist of a vector superposition of two scalar or-
bital angular momentum (OAM) carrying Laguerre-Gaussian
(LG) eigenmodes with orthogonal polarizations. The resultant
beam has nonuniform spatial intensity, phase, and polarization
distributions. The ability to control both the spatial intensity
and the polarization distribution of the optical field is of use in
material processing [4], in stimulated emission depletion and
confocal microscopy [5–8], in optical trapping and manipu-
lation [9,10], in atomic state preparation, manipulation, and
detection [9,11,12], in optical communications [13,14], and
even in classical entanglement [15–17]. Additionally, novel
focusing properties associated with particular polarization
distributions can lead to tighter focusing [18] and strong axial
field components that are of use in microscopy [5,6], in optical
trapping [9], and as a mechanism for linear accelerators [19].
It is therefore important to understand how the spatial intensity
and polarization distributions can be affected, and potentially
controlled, by linear and nonlinear beam propagation.

It has been shown previously that the polarization distri-
bution of a lower-order Poincaré beam of �L = 0,�R = 1 and
net OAM equal to 1 undergoes a rigid rotation of π/2 as it
propagates linearly from the waist plane to the far-field zone
[2]. Here we derive an analytical expression for the polarization
rotation of any FSL beam during linear propagation. We show
that the observed rotation is due entirely to the difference in the
Gouy phase between the two eigenmodes comprising the FSL
beams and explain apparent inconsistencies in the rotation of
different polarization distributions. Our results are in excellent
agreement with numerical simulations.
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For many applications it is useful to retain a desired
intensity and/or polarization distribution, for example, for
modern optical technologies and high-power laser systems
[20]. Beams carrying OAM are of particular interest due to
their potential to carry an increased information content [13].
Although the effect of beam spreading due to diffraction during
linear propagation can be mitigated, and in some cases exactly
balanced, by using a self-focusing (Kerr) nonlinear medium,
OAM beams are known to fragment into multiple (twice the
OAM) soliton peaks during nonlinear propagation [21,22].
It has been shown that this fragmentation can be inhibited,
without altering the nonlinear confinement, by using vector
beams instead of scalar beams [14,23–25]. Indeed, it has
been shown that cylindrical vector (CV) beams can propagate
in a saturating Kerr nonlinear medium with no change to
their spatial profile or their axially symmetric polarization
distribution for much longer distances than the equivalent
scalar beams [14]. Similar spatial confinement can be seen
for FSL beams, though in this case the nonlinear propagation
will affect the rotation of the polarization structure.

Here we investigate how nonlinear propagation affects
the polarization distribution. We show how the magnitude
and direction of the polarization rotation are affected by the
spatial overlap between the two eigenmodes and how it can be
controlled by modifying the effective nonlinearity via physical
parameters such as the input power, the temperature of the
sample, and the size of the FSL beam waist.

In addition to self-focusing, a Kerr medium also induces
a cross-phase modulation between the two eigenmodes of the
vector beam. We show that as the coupling tries to maximize the
spatial overlap, the rotation of the polarization structure is no
longer rigid. Note that, although we do not propagate our beams
to the point of fragmentation, one effect of this homogenization
is that the beams will fragment into equal-sized solitons.

Finally, we show that the nonlinearity not only changes the
amount of polarization rotation for beams with a net OAM, but
that it can also induce a rotation in beams with zero net OAM
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if there is an amplitude difference between the two modes. By
biasing CV beams such that they have elliptical polarization,
we can vary the polarization distribution from radial through
spiral to azimuthal during nonlinear propagation.

II. FULLY STRUCTURED LIGHT BEAMS

Fully structured light beams, or Poincaré beams, are con-
structed from a vector superposition of two scalar OAM
carrying spatial transverse eigenmodes with orthogonal po-
larizations

�E(r,φ,z) = EL(ρ,φ,z) �el + ER(ρ,φ,z) �er , (1)

with

EL = cos(γ )LGL, ER = eiβ sin(γ )LGR, (2)

where γ and β give the relative amplitudes and phase,
respectively, of the two modes. Throughout this paper we have
adopted the circular polarization basis and we assume that each
of the spatial modes takes the form of a Laguerre-Gaussian
beam with radial index p = 0 [26],
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describes the linear diffraction of the beam, and (|�| + 1)η(z),
withη(z) = tan−1(z/zR), is the Gouy phase [27]. If eitherEL or
ER is zero, then the resultant beam is a scalar LG mode with
spatially uniform right- or left-handed circular polarization,
respectively. If the two modes have equal amplitude and the
same OAM, the resultant beam will have spatially uniform
linear polarization. If they have equal amplitude and equal
but opposite OAM, however, the resultant CV beam [1,3] can
have spatially varying linear polarization distributions that are
radial, azimuthal, or spiral, depending on the phase difference
β. The polarization of the beam will be axially symmetric
about the beam’s propagation axis and span the equator of the
Poincaré sphere. If the two modes have different magnitudes
of OAM, such that the resultant FSL beam carries a net
OAM, the polarization will vary in both the angular and radial
coordinates and covers all polarization states on the Poincaré
sphere [2]. Note that we are working in the paraxial regime
throughout, which is an excellent approximation as we are
considering beam sizes that are larger than the wavelength,
and that our analysis is based on vector superpositions of
Laguerre-Gaussian modes, which are solutions of the paraxial
wave equation in cylindrical coordinates [26]. Extension to
the nonparaxial regime is nontrivial as in this case the beam
polarization is a local property and changes on propagation
[28]. Moreover, during propagation, a nonparaxial vortex
mode will acquire a nonintegrable topological phase with no
simple analytical form [29]. This tends to the Gouy phase, on
which our analytical calculations are based, when the paraxial
approximation is valid.

0.0

1.0

FIG. 1. Polarization distributions at the beam waist (propagation
distance z = 0) for FSL beams with “lemon” polarization, �R =
1,�L = 0 (left), and “web“ polarization, �R = −3,�L = 0 (right).
White, red (light grey), blue (dark grey) lines correspond to right
circular, linear, left circular polarization, respectively.

In order to map the polarization distribution on the trans-
verse plane we use the Stokes parameters that, in the circular
polarization basis, are given by [30]

S0 = I = |ER|2 + |EL|2, S1 = 2 Re(E∗
REL),

S2 = 2 Im(E∗
REL), S3 = |ER|2 − |EL|2, (4)

where I is the intensity, the subscripts R,L denote the right and
left circular components, respectively, ER ≡ (Ex − iEy)/

√
2,

and EL ≡ (Ex + iEy)/
√

2). We can then calculate the ellip-
ticity χ and orientation ψ of the polarization at each point on
the transverse plane using [31]
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(5)

which give
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Typical examples of polarization distributions of FSL beams
are given in Fig. 1.

Polarization rotation during linear propagation

We can calculate the orientation of the polarization at any
transverse point in the field by using Eqs. (2) and (3) to re-write
ψ(z), Eq. (6), in terms of the constituent modes:

ψ(z) = 1
2 [(�L − �R)φ − (|�L| − |�R|)η(z) − β]. (7)

From this it is clear that the initial orientation of the polarization
at any point ψ(0) = 1

2 [(�L − �R)φ − β] depends only on the
difference in OAM of the two eigenmodes, together with any
fixed initial phase difference β, and is independent of z. We
note that in the case of scalar beams, where either EL or ER is
zero, the polarization is right or left circular and so there is no
direction of polarization orientation.

As the beam propagates from z = 0, the net polarization
rotation is simply

�ψ(z) = ψ(z) − ψ(0) = 1
2�|�R,L|η(z), (8)
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FIG. 2. Polarization rotation calculated using (8) for linear prop-
agation from a beam waist z = 0 to the far field z = 20zR for FSL
beams (solid lines). Dashed lines give the equivalent numerical results
for z = 0 to z = 6zR using (12) with μ = 0. Here �|�R,L| = 1 (red,
cyan, bottom curves), 2 (green, orange, middle curves), and 3 (blue,
magenta, top curves). Note that rotation is plotted in units of π/4 to
clarify the asymptotic behavior.

where �|�R,L| = |�R| − |�L|. This depends only on the differ-
ence in the magnitudes of the OAM of the two modes and the
Gouy phase η(z). Note that both the polarization orientation
and rotation are independent of the amplitudes of the two
modes and that the amount of rotation is the same for every
point in the transverse plane. This reduces to

�ψ = π

8
�|�R,L| (9)

for a beam propagating from a waist plane z = 0 through a
Rayleigh range z = zR and asymptotes to

�ψ = π

4
�|�R,L| (10)

as the beam propagates into the far field [since tan−1(z/zR) →
π/2 as z → ∞].

Figure 2 shows the polarization rotation during linear
propagation given by (8) for a number of FSL beams with
different values of �|�R,L| propagating from a beam waist
z = 0 to z = 20zR (solid lines). As expected, the rotation
asymptotes to π

4 �|�R,L|. We note that this result depends
only on the difference in the magnitudes of the two OAM
eigenmodes, not on their particular values, and that there is
no polarization rotation for cylindrical vector beams as both
modes have the same magnitude of OAM and hence experience
the same Gouy phase.

Figure 3 shows the polarization distributions at z = 20zR

for beams with �R = 1,�L = 0 ⇒ �|�R,L| = 1 (left) and
�R = −3,�L = 0 ⇒ �|�R,L| = 3 (right). Note that diffraction
corresponds to a global scaling according to w(z) that has been
neglected for clarity.

Comparing these to the initial polarization distributions at
the beam waist (Fig. 1), it appears that the polarization distribu-
tion on the left has rotated rigidly counterclockwise by π/2, as
observed in [2], while the polarization distribution on the right
has rotated rigidly counterclockwise by π/4. Although these
results seem to contradict the predicted rotations of π/4 and
3π/4, respectively, on closer inspection one can see that while

0.0

1.0

FIG. 3. Polarization distributions at z = 20zR for FSL beams with
�R = 1,�L = 0 (left) and �R = −3,�L = 0 (right). White, red, and
blue lines correspond to right circular, linear, and left circular polar-
ization, respectively. Note that beam expansion due to propagation has
no effect on the polarization distribution and so has been neglected
for clarity.

the polarization at each point on the transverse plane is indeed
as predicted by (8), the apparent rotation of the polarization
structure as a whole depends on the rotational symmetry of the
pattern.

We also model linear propagation of the FSL beams numer-
ically using the paraxial equation normalized to dimensionless
quantities ρ = r/w0 and ζ = z/(2zR), where w0 is the beam
waist and zR is the Rayleigh range of the beam [21–23]

∂EL,R

∂ζ
= i

2
∇2

⊥EL,R. (11)

HereEL,R are the left- and right-circularly polarized beams and
∇2

⊥ is the Laplacian in the transverse (x,y) plane. As Fig. 2
shows, we find excellent agreement between the analytical
and numerical results until the beam diffraction is too large
to accurately track the polarization rotation (approximately
z = 5zR). Note that the effect of diffraction is more pronounced
for higher-order FSL beams, resulting in increased noise as
the propagation distance increases. Propagation of radial and
azimuthal components of a paraxial beam along the optical
axis of a uniaxial anisotropic crystal has been investigated in
[32] and references therein.

III. NONLINEAR PROPAGATION

As mentioned earlier, it is possible to counteract the effect of
diffraction and to control the spatial profile of the beam using a
self-focussing (Kerr) nonlinearity. The usual fragmentation of
scalar vortex (OAM) beams in Kerr media can be inhibited
by using vector vortex or FSL beams. It has been shown
that CV beams can additionally propagate with no change to
their axially symmetric polarization distribution, while lower-
order (� = 0,1) FSL beams experience a polarization rotation
[14]. We note that azimuthally polarized, spatial, dark-soliton
solutions of Maxwell’s equations without OAM have been
demonstrated in [33].

In order to investigate the effect of nonlinear propagation
on the polarization we numerically simulated propagation of
FSL beams through a Kerr medium using two coupled (2+1)-
dimensional nonlinear Schrödinger equations with saturable
self-focusing nonlinearity under the slowly varying envelope
and paraxial approximations and normalized to dimensionless
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FIG. 4. Polarization rotation during nonlinear propagation from
a beam waist z = 0 to z = 3zR using (12) with μ = 257.5 and
σ = 19.8 for FSL beams with �R = ±1, ± 2, ± 3 and �L = 0 (dashed
lines). Solid lines give the corresponding analytical results for linear
propagation using (8). Here �|�R,L| = 1 (green, orange, bottom
curves), 2 (red, cyan, middle curves), and 3 (blue, magenta, top
curves).

quantities ρ = r/w0 and ζ = z/2zR ,

∂EL,R

∂ζ
= i

2
∇2

⊥EL,R + iμ
|EL,R|2 + 2|ER,L|2

1 + σ (|EL,R|2 + 2|ER,L|2)
EL,R,

(12)

where the parameters of importance are the nonlinear param-
eter μ and the saturation parameter σ given by

μ = 2k2
0n2P0

3n0
, σ = 4P0

3Isatw
2
0

, (13)

where k0 is the free-space wave number, n0 and n2 are the linear
and nonlinear refractive indices (n2 > 0 for self-focusing),
Isat is the saturation intensity, and P0 is the power of the
incident laser beam. If one neglects the beam rescaling due
to diffraction, we can see from Eq. (12) that the first effect of
the medium is an additional phase shift φNL

R,L to the orthogonal
modes proportional to the nonlinear term. This results in an ad-
ditional rotation �ψNL(z) ∝ (φNL

L − φNL
R ). As the nonlinear

phase shift depends on the spatial intensity of the two modes
and on the cross-phase modulation, we expect the nonlinear
rotation to be dependent on the magnitude of the OAM of
each mode (and not just the difference in the net values). We
also expect the rotation to be spatially dependent, except for
the CV beams which have the same magnitude of OAM and
hence the same spatial profile. We show the effect of the spatial
dependence in more detail at the end of section III A, but the
fact that the polarization rotation is spatially dependent then
begs the question of how to measure it. An overall sense of
the polarization rotation can be found either by considering
a point that remains at the peak intensity of the FSL beam
or by taking an average over a number of points across the
beam. In cases where both eigenmodes have nonzero OAM,
these two approaches are in good agreement. However, when
one of the eigenmodes is a Gaussian, the transverse position
of the peak changes a great deal during propagation and so the
averaging method gives the best sense of the rotation behavior.
For that reason we use this method for all of our nonlinear
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FIG. 5. (a) Polarization rotation during nonlinear propagation
from a beam waist z = 0 for three Rayleigh ranges z = 3zR for FSL
beams with a beam waist w0 = 100 μm and �|�R,L| = 2. The cyan
line (top curve) corresponds to �R = ±2,�L = 0 at low nonlinearity
(n2 = 8). Dashed lines correspond to �R = ±3,�L = ±1 at n2 = 8
(green, lower middle curve) and n2 = 12 (purple, upper middle
curve). The red line (bottom curve) is the equivalent linear result
for all superpositions. Also shown is the cross section of the spatial
intensity during propagation for the FSL beams of �R = ±3,�L = ±1
at (b) n2 = 8 and (c) n2 = 12.

results, unless otherwise stated. Obviously, for more exact
measurements, the rotation can be measured and compared
at many points across the beam. In the simulations reported
below, we have selected P0 = 7.4 mW, Isat = 5 W cm−2,
n2 = 8 × 10−6 cm2/W, and λ = 780 nm, which reproduce the
experimental configuration given in [14]. We use a beam waist
of 100 μm throughout (unless explicitly stated otherwise),
corresponding to a Rayleigh range of approximately 4 cm.
We performed numerical integrations of the propagation (12),
using the split-step method with fast Fourier transforms.

A. Comparison with the linear case

To investigate the effect of the propagation in the nonlinear
medium we first numerically integrated Eq. (12) for FSL beams
with �R = ±1, ± 2, ± 3 and �L = 0, giving �|�R,L| = 1,2,3,
respectively, with the parameters given above. Note that in
order to avoid the numerical errors that occur when the
beams have diffracted significantly, we present only results for
propagation up to 3zR throughout the remainder of the paper.

As Fig. 4 shows, in the nonlinear medium the polarization
rotation no longer asymptotes but instead increases almost
linearly with propagation distance. For completeness, we note
that there is again no rotation for cylindrical vector beams as
both modes have the same magnitude of OAM and the same
spatial intensity and so they experience the same Gouy and
nonlinear phase shifts.

Effect of beam composition

Unlike in the linear case, where the polarization rotation
depends solely on the difference in the magnitudes of the
OAM of the two eigenmodes, in the nonlinear medium the
phase shift, and hence polarization rotation, depends on the
spatial overlap of the eigenmodes and the cross-phase mod-
ulation between them. To demonstrate this we repeated our
simulations for a number of different mode superpositions with
the same difference in the Gouy phase, i.e., a fixed value of
�|�R,L| = |�R| − |�L|.
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FIG. 6. (a)–(d) Cross section of modes (�R = 3, red dashed, and �L = −1, blue solid) with a beam waist w0 = 100 μm showing the spatial
overlap at various points during nonlinear propagation at low nonlinearity (n2 = 8). Shown on the right is the corresponding polarization rotation.
Magenta and blue lines correspond to points close to the outer edge and center of the FSL beam, respectively. The green line corresponds to
the position of the peak intensity.

In Fig. 5 we show the polarization rotation for �|�R,L| = 2.
The red line is the analytical linear result for all superpositions,
as in Fig. 2, while the cyan line is the nonlinear result
for a beam with �R = 2,�L = 0, as in Fig. 4. The dashed
green line shows the equivalent result but for a beam with
�R = 3,�L = −1 (green). Note that similar behavior is seen
for the beam with �R = 4,�L = −2, but this is omitted for
clarity. We see a significant change in the behavior of the
polarization rotation between the lowest-order FSL beam
�L = 0 and the higher-order beams |�L| > 0. In particular, we
note that the higher-order beam experiences less polarization
rotation overall: There are regions during the propagation
where the polarization rotation seems to stop, or even change
direction, and the rotation appears to asymptote with increasing
propagation distance.

There are two important phenomena affecting the behavior
of the polarization rotation: the intensity of the modes and their
spatial overlap. In Fig. 5 we plot the cross section of the beam
intensity of the �R = 3,�L = −1 mode at two different values
of the nonlinearity, n2 = 8 (top) and n2 = 12 (bottom). It is
clear that there is still significant diffraction for n2 = 8, and the
corresponding reduction in intensity results in less of a nonlin-
ear phase shift and leads to the asymptotic behavior of the ro-
tation [green line in Fig. 5(a)]. At n2 = 12, however, the beam
is quite well confined and there is also a more consistent mode
overlap. In this case we almost recover the rotation experienced
by the lowest-order mode [dashed purple line in Fig. 5(a)].

As mentioned earlier, the nonlinear polarization rotation
also depends on the cross-phase modulation and hence on the
spatial overlap of the eigenmodes. An overall sense of the
behavior of the polarization rotation can usually be found by
tracking the polarization at a point that remains at the peak in-
tensity of the FSL beam. However, when one of the eigenmodes
is a Gaussian, the transverse position of the peak changes
significantly during propagation and so a better method is to
average the results over a number of points across the beam. For
applications requiring more exact knowledge of the polariza-
tion state at each point on the transverse plane, the polarization
rotation can be compared at various points across the beam. To
demonstrate the effect of the cross-phase modulation term we

consider a beam with eigenmodes of �R = 3 and �L = −1.
As the cross-phase modulation term is asymmetric unless
|�R| = |�L| and contains a saturating term, the mode sizes will
oscillate during propagation with corresponding variations in
the spatial overlap. The polarization rotation at each point will
therefore depend on its location on the transverse plane. This
is demonstrated in Fig. 6 for propagation of a FSL beam with
�R = 3,�L = −1 at low nonlinearity (n2 = 8). At the start of
the propagation [see Fig. 6(a)], points on the outer edge of
the beam (magenta) see more right-circularly polarized light
while points closer to the center (blue) see more left-circularly
polarized light and thus their polarizations rotate in opposite
directions. When the modes overlap exactly [Fig. 6(b)] the
modes experience the same nonlinear phase shift and so there
is no net nonlinear rotation. If the beams remain locked like
this there is a corresponding plateau in the rotation curve (see,
for example, Fig. 5, green line). As the modes oscillate net
left- or right-circularly polarized light can swap, resulting in
polarization rotation changing direction [Fig. 6(c)]. Note that
as the beam continues to propagate the effect of the nonlinearity
is to try to maintain the spatial overlap of the two modes. The
locked beams then propagate with a constant small rotation
depending on the overlap until they fragment into solitons
[21,22] [Fig. 6(d)].

B. Control of polarization rotation

In addition to understanding how the state of polarization
is affected by propagation, it may be useful to be able to
control it. Linearly the polarization rotation can be controlled
by choosing the eigenmodes of the FSL beam to give a
specific difference in the magnitudes of the OAM (�|�R,L|),
as shown in Fig. 2, and by choosing the beam size to control
the Rayleigh range.

Nonlinearly, the amount and direction of the nonlinear
polarization rotation also depends on the spatial overlap and
intensity of the eigenmodes. These can be controlled both
by the choice of eigenmodes (see Fig. 5) and by changing
experimental parameters such as the power of the FSL beam,
the temperature of the medium [14], and the size of the FSL
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FIG. 7. Polarization rotation of �R = 1 and �L = 0 beam during
nonlinear propagation from a beam waist z = 0 to z = 3zR for FSL
beams with input powers of 5 mW (purple), 7.5 mW (blue), 10.0 mW
(green), 15.0 mW (orange), and 50.0 mW (red), where the referenced
curves are in order from bottom to top.

beam to control the nonlinear parameter μ and the saturation
parameter σ [Eq. (13)] and hence the confinement of the beam.

For example, Fig. 7 shows how the polarization rotation
of the �R = 1 and �L = 0 beam changes as we increase the
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FIG. 8. Polarization rotation during nonlinear propagation for
FSL beams with �|�R,L| = 1,2 and waists of 100 μm (dark - blue
lower solid, cyan - upper solid) and 200 μm (green - lower dashed,
magenta - upper dashed): (a) rotation versus number of Rayleigh
lengths and (b) rotation versus distance (cm). In both cases μ = 257.5
and σ = 19.8.
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FIG. 9. Nonlinear polarization rotation for propagation of a cylin-
drical vector beam with |�R,L| = 1 over 3zR . The parameter γ in (2)
is chosen such that |ER|:|EL| is 4:1 (red, top curve), 2:1 (blue, upper
middle curve), 1:1 (green, middle curve), 1:2 (cyan, lower middle
curve), and 1:4 (magenta, bottom curve).

input power P . This increases both the nonlinear response and
the saturation parameter leading to an enhanced polarization
rotation at the output.

As before, the size of the FSL beam can also be used to
control the Rayleigh range. In Fig. 8 we plot the polarization
rotation during nonlinear propagation from a beam waist
z = 0 to z = 3zR for FSL beams with waists of 100 μm
and �|�R,L| = 1,2 (dark blue, cyan) using (12) with P =
7.44 mW and n2 = 8 × 10−6 W cm−2 such that μ = 257.5
and σ = 19.8. Equivalent results exist for beams with waists
of 200 μm (green, magenta) and with rescaled experimental
parameters P = 29.8 mW and n2 = 2 × 10−6 W cm−2 such
that σ and μ are unchanged. We consider two superpositions
of FSL beams (�R = 1,�L = 0 and �R = 2,�L = 1) and show
that the results for the two different beam waists match in both
cases if we plot rotation versus the number of Rayleigh lengths
propagated [Fig. 8(b)]. If, however, we plot the same results as
a function of distance [Fig. 8(b)], we can see that by doubling
the beam waist, and hence increasing zR by a factor 4, the
rotation of the larger beam is correspondingly decreased by a
factor 1/4.
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FIG. 10. Nonlinear polarization rotation at 3zR as a function of
bias for biased CV beams with |�R,L| = 1,2,3 (red - bottom, blue -
middle, and green - top, respectively).
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z = 0 z = 1.3zR z = 2.5zR

FIG. 11. Radially elliptically polarized vector beam with
|�R,L| = 1 and |ER|:|EL| = 4:1, from left to right, at a beam waist
z = 0 and after nonlinear propagation over z = 1.3ZR and over
z = 2.5ZR . There is little change to the spatial profile of the beam
during propagation, but the polarization changes from radial through
spiral to azimuthal.

C. Biased vector beams γ �= π/4

While many applications of cylindrical vector beams use
spatially varying linear polarization (radial or azimuthal),
beams with azimuthally varying elliptical polarization allow
the space-variant spin in the beam to be transferred to the
atomic medium, thus offering a unique way to manipulate
atoms spatially [12]. Such elliptically polarized FSL beams
can be produced by changing the relative amplitudes of the
two eigenmodes of a cylindrical vector beam [i.e., by changing
the value of γ in Eq. (2)]. As we have already mentioned,
equal-amplitude CV beams do not experience any polarization
rotation during propagation, linearly or nonlinearly, as both
components have the same magnitude of OAM and hence
experience the same Gouy phase and the same spatial intensity
distribution. However, when elliptically polarized, or biased,
CV beams are propagated in the nonlinear medium we find that
the polarization distributions do rotate and that the amount
and direction of the rotation are dependent on the ellipticity
of the polarization. This is clearly shown in Fig. 9, where
|�R| = |�L| = 1 and γ in Eq. (2) has been chosen such that
|ER|:|EL| is 4:1 (red), 2:1 (blue), 1:1 (green), 1:2 (cyan), and
1:4 (magenta).

Note that as the bias is increased the beams become more
“scalar” as the contribution of the second beam becomes
negligible, and the polarization becomes circular. In this case
we recover the behavior demonstrated in [14], where the
scalar beam is shown to fragment more quickly than the
corresponding vector beam. As Fig. 10 shows, the amount of

rotation saturates as the bias increases. The rotation may also
be increased by using higher-order CV beams, but as these
diffract more for the same experimental parameters, a higher
nonlinearity is required in order to keep the beams confined.

One effect of this rotation is the conversion of radial (or
azimuthal) elliptical polarization to azimuthal (or radial) with
minimal changes to the spatial profile of the beam, as shown
in Fig. 11. By choosing the bias and the propagation distance
for a given beam waist, we can control the polarization of the
beam with no polarization optics.

IV. CONCLUSION

Knowing how the spatial polarization distribution of a
beam is affected by propagation is of importance in many
applications that depend on the state of polarization. We
have analytically calculated the polarization rotation of fully
structured light beams during linear propagation and shown
that the observed rotation is due entirely to the difference in
Gouy phase between the two eigenmodes comprising the FSL
beams. This allows the exact polarization state at a particular
propagation distance to be controlled simply by choosing the
eigenmodes of the FSL beam and the beam size. Moreover,
we have shown that polarization rotation is also affected by
propagation through a self-focusing (Kerr) nonlinear medium
and that this can be controlled by changing the eigenmodes
of the superposition and physical parameters such as the
beam size, the amount of Kerr nonlinearity, and the input
power. In addition, the ability to control both the intensity
and polarization of FSL beams may provide a useful method
for applications in micromachining and microscopy [4,34].
Finally, we have shown that by biasing cylindrical vector beams
to have elliptical polarization, we can vary the polarization
state from radial through spiral to azimuthal using nonlinear
propagation.
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