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Controllable nonlinearity in a dual-coupling optomechanical system under a weak-coupling regime

Gui-Lei Zhu, Xin-You Lü,* Liang-Liang Wan, Tai-Shuang Yin, Qian Bin, and Ying Wu†

School of physics, Huazhong University of Science and Technology, Wuhan 430074, China

(Received 9 October 2017; published 16 March 2018)

Strong quantum nonlinearity gives rise to many interesting quantum effects and has wide applications in
quantum physics. Here we investigate the quantum nonlinear effect of an optomechanical system (OMS) consisting
of both linear and quadratic coupling. Interestingly, a controllable optomechanical nonlinearity is obtained by
applying a driving laser into the cavity. This controllable optomechanical nonlinearity can be enhanced into
a strong coupling regime, even if the system is initially in the weak-coupling regime. Moreover, the system
dissipation can be suppressed effectively, which allows the appearance of phonon sideband and photon blockade
effects in the weak-coupling regime. This work may inspire the exploration of a dual-coupling optomechanical
system as well as its applications in modern quantum science.
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I. INTRODUCTION

Cavity optomechanics, exploring the nonlinear photon-
phonon interaction via radiation pressure [1,2], has achieved
tremendous advances in recent years, including the realization
of cooling a macroscopic mechanical resonator to ground state
[3–6], optomechanically induced transparency [7–10], coher-
ent state conversion between cavity and mechanical modes
[11–13], and the generation of squeezed light [14–16]. Those
achievements offer the basic of exploring the applications of
optomechanical nonlinearity which can be applied into quan-
tum optics and quantum information sciences. In particular, re-
cent studies have shown that the strong optomechanical nonlin-
earity could be used to generate single photon sources [17–20],
engineer a nonclassical phonon state [21–24], and implement
quantum information processing [25]. However, the strong
nonlinearity is difficult to realize in a normal optomechanical
system due to its weak photon-phonon interaction [1,2].

Recently, many methods have been proposed to enhance
the radiation-pressure optomechanical coupling, such as using
the photon hopping effects in two cavity systems [25–27] or
multimode systems [28–31], Josephson effect in superconduct-
ing circuits [32–34], and the optical [35,36] and mechanical
parameter amplification [37,38]. In previous proposals, only
the linear optomechanical coupling is considered and an
additional subsystem is needed to be introduced into the OMS,
which limits its applications in the optomechanical many-body
lattices [39–41].

Different from former works, here we investigate the
optomechanical nonlinearity in an optomechanical system
(OMS) with a membrane-in-the-middle configuration [42–44]
[see Fig. 1(a)], including both the linear and quadratic
optomechanical coupling. Specifically, the mechanical mode
oscillates around the antinode and node of the resonator mode
a1 and a2, respectively. Typically, the quadratic coupling is
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much smaller than the linear coupling [45–49], which has
been considered in the following discussion.

Interestingly, we found that a controllable optomechanical
nonlinearity could be obtained without introducing an addi-
tional subsystem. Physically, by strong driving the linear mode
a1, two effective polariton modes with controllable frequencies
are obtained. They couple to the quadratic mode a2 with the
form of radiation pressure, and have the controllable interac-
tion strengths and coupling weights. This ultimately leads to
the results that the strong radiation-pressure coupling can be
obtained in an initially weakly coupled OMS. Moreover, the
present optomechanical nonlinearity can be controlled easily,
i.e., adjusting the frequency or strength of the driving laser. To
show this controllable nonlinearity, the controllable phonon
sidebands and photon blockade effects are demonstrated in
the weak-coupling regime. This work is general and may
also be applied into the photonic crystals [50–52] and micro-
toroidal resonator [53–55], even superconducting circuits with
the ability of implementing quadratic interaction [56–58]. It
effectively associates the linear and quadratic optomechanical
interactions in a same OMS, which is interesting in broadening
the regimes of cavity optomechanics as well as its applications
in modern quantum technologies.

This paper is organized as follows: In Sec. II we introduce
our model. The master equation describing the system’s evo-
lution and the controllable optomechanical nonlinearity of the
proposed system are presented in Sec. III. In Sec. IV we discuss
the nonlinear properties of this system featured by phonon
sideband and photon blockade effects in the weak-coupling
regime. In Sec. V we discuss the experimental prospect of
our proposal. Finally, we conclude our results in Sec. VI.
In addition, we provide a detailed derivation on the effective
thermal occupancies in the Appendix.

II. THE MODEL

It is known that the optomechanical coupling between the
optical cavity mode and the mechanical mode of an OMS
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FIG. 1. (a) Schematic of a Fabry-Perot-type optomechanical sys-
tem with a “membrane-in-the-middle” configuration, consisting of
two optical cavity modes a1 and a2 coupled to the mechanical mode
b. The driving field on cavity mode a1 is described by amplitude
� and frequency ωd. A weak probe field (enclosed by the dashed
lines) with frequency ωL and amplitude ε is applied to detect the
nonlinear optomechanical system. (b) The eigenvalues of the effective
Hamiltonian HOMS. Here the red solid lines represent the energy level
of B− mode while the blue dotted lines show the energy level of B+.
The parameters �g± = g2

±/ω± are the energy shift of polariton modes
B±.

depends strongly on the position of the middle mirror (or
membrane) [44]. When the mirror is placed in the vicinity
of the antinodes of one cavity mode, the maximum coupling
between the cavity mode and mechanical mode is linear, in that
quadratic coupling and higher order coupling terms are much
smaller than the linear one and can be ignored safely. The other
case is that the mirror is put around nodes of a cavity mode,
the linear coupling is near zero, accordingly, the maximum
optomechanical coupling becomes quadratic.

Given the above, here we consider a Fabry-Perot-type op-
tomechanical cavity system with a “membrane-in-the-middle”
configuration, in which the mechanical mode (with frequency
ωm) couples to both the cavity mode a1 (with frequency ω1)
linearly and a2 (with frequency ω2) quadratically, as shown in
Fig. 1(a). Specifically, the mechanical mode oscillates around
the antinodes and nodes of mode a1 and a2, respectively. This
dual-coupling optomechanical device is applicable to trap and
cool the partially reflective mirrors driven by bichromatic lasers
[44,59].

In a frame rotating with frequency ωd, the Hamiltonian of
the optomechanical system depicted in Fig. 1(a) can be written

as (h̄ = 1)

Htot = δ1a
†
1a1 − g1a

†
1a1(b + b†) + ω2a

†
2a2

− g2a
†
2a2(b + b†)2 + ωmb†b + i�(a†

1 − a1), (1)

where a1 (a2) and b are the annihilation operators of the optical
cavity modes and the mechanical mode, and g1 (g2) is the
linear (quadratic) coupling strength between cavity mode a1

(a2) and mechanical mode b. Here � represents the laser
driving strength and δ1 = ω1 − ωd is the frequency detuning
of the optical cavity from the driving field. When a strong red-
detuning driving field is applied, the cavity could generate large
steady-state amplitudes in both the cavity and the mechanical
modes. We assume α1 (β) is the steady-state amplitude of the
cavity (mechanical) mode under the red-detuning driving. By
using the displacement a1 → a1 + α1, b → b + β, the system
Hamiltonian Htot can be replaced by a shifted optomechanical
Hamiltonian Hshifted = Heff + Hnl given by

Heff = �1a
†
1a1 + �2a

†
2a2 − G2a

†
2a2(b + b†)

−G1(a†
1 + a1)(b + b†) + ωmb†b, (2a)

Hnl = −g1a
†
1a1(b + b†) − g2a

†
2a2(b + b†)2. (2b)

Here G1 is the linearized optomechanical coupling strength,
G2 is the radiation-pressure coupling strength, and �1,�2 are
the shifted detuning, given by

�1 = δ1 − 2g1β, �2 = ω2 − 4g2β
2, (3a)

G1 = g1|α1|, G2 = 4g2|β|. (3b)

The steady-state mean valuesα1,β satisfyωmβ − g1|α1|2 =
0. Without loss of generality, we have taken α1,β,G1,G2 to
be real and positive. Under the condition of G1,G2 � g1,g2,
the Hamiltonian Hnl can be ignored safely in our following
calculations.

From Eq. (3b) we found that the introduced radiation-
pressure coupling strength G2 is proportional to the mechanical
displacement β. In the following we will give a simple
analytical derivation to clarify this effect; provided that the
equilibrium position of membrane is effectively shifted with
amplitude β, i.e., b → b + β. Accordingly, we could ob-
tain g2a

†
2a2(b + b† + 2β)2 = g2a

†
2a2(b + b†)2 + G2a

†
2a2(b +

b†) + 4β2g2a
†
2a2. As is shown in this equation, first, the steady-

state displacement of membrane cannot enhance the originally
quadratic coupling strength g2. Second, a radiation-pressure
coupling is introduced, and its strength G2 is proportional to
the displacement β. The last term 4β2g2a

†
2a2 merely changes

the cavity’s resonant frequency.
Physically, we could understand this effect as following.

In our proposal, a strong driving field applied to cavity mode
a1 changes the effective equilibrium position of membrane,
i.e., the membrane deviates from the nodes of a2 mode. This
shift introduces a radiation-pressure optomechanical coupling
from the original quadratic optomechanical interaction. Then
the dominated optomechanical coupling shifts from quadratic
form [i.e., four-operators term a

†
2a2(b + b†)2] to a radiation-

pressure form [i.e., three-operators term a
†
2a2(b + b†)], in that

the strength of the introduced radiation-pressure coupling is
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enhanced by the displacement amplitude β of membrane’s
equilibrium position. Actually, this process is similar to the lin-
earization procedure [60–63], i.e., when a strong driving field
is applied to a normal OMS with radiation-pressure coupling
g0a

†a(b + b†), the dominated optomechanical interaction will
shift from the radiation-pressure coupling to a linearized
optomechanical interaction G(a + a†)(b + b†). Because the
linearized optomechanical coupling strength G = g0α (|α|2
is the mean photon number in the cavity) can be much larger
than g0.

III. CONTROLLABLE OPTOMECHANICAL
NONLINEARITY

Interestingly, the present system has a controllable op-
tomechanical interaction, which leads to the controllable
optomechanical nonlinearity. Specifically, Eq. (2a) can be
diagonalized via a Bogoliubov transformation R = MB with
RT = (a1,a

†
1,b,b†) and BT = (B−,B

†
−,B+,B

†
+). We refer to

B± as polariton modes including both photonic and phononic
components, and the transformation matrix is given by [24]

M =

⎛
⎜⎝

C+ C− D+ D−
C− C+ D− D+

−E+ −E− F+ F−
−E− −E+ F− F+

⎞
⎟⎠, (4)

where the matrix factors C±,D±,E±,F± read

C± = cosθ

2

(�1 ± ω−)√
�1ω−

, D± = sinθ

2

(�1 ± ω+)√
�1ω+

, (5a)

E± = sinθ

2

(ωm ± ω−)√
ωmω−

, F± = cosθ

2

(ωm ± ω+)√
ωmω+

. (5b)

By using the inverse of matrix M , we obtain the expression
of new mode B± in terms of a1 and b modes, i.e.,

B− = C+a1 − C−a
†
1 − E+b + E−b†, (6a)

B
†
− = −C−a1 + C+a

†
1 + E−b − E+b†, (6b)

B+ = D+a1 − D−a
†
1 + F+b − F−b†, (6c)

B
†
+ = −D−a1 + D+a

†
1 − F−b + F+b†. (6d)

After a Bogoliubov transformation, we obtain a standardlike
optomechanical Hamiltonian, given by

HOMS = �2a
†
2a2 + ω+B

†
+B+ − g+a

†
2a2(B+ + B

†
+)

+ω−B
†
−B− − g−a

†
2a2(B− + B

†
−). (7)

Here ω± are the polariton mode frequencies of the subsystem,

ω2
± = 1

2

(
�2

1 + ω2
m ±

√(
ω2

m − �2
1

)2 + 16G2
1�1ωm

)
(8)

and the effective coupling strengths of the optomechanical
subsystem are given by

g− = −4g2βsinθ

√
ωm

ω−
, (9a)

g+ = +4g2βcosθ
√

ωm

ω+
, (9b)
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FIG. 2. The polariton modes ω± of the optomechanical
subsystem. Plots of the relationship between ω± and (a)
detuning �1/ωm, (b) the linearized coupling strength G1/ωm.
Main parameters including β = 25, g1/ωm = 10−2, in
(b) δ1/ωm = 2.0. The shadowed area indicates the considered
parameter range in our proposal.

with the angle θ defined as

tan 2θ = 4G1
√

�1ωm

�2
1 − ω2

m

. (10)

From Eqs. (6) we could obtain polariton modes B± of optical
and mechanical modes. As discussed in Sec. II, the introduced
radiation-pressure coupling strength G2 could be enhanced
by the displacement amplitude β. Moreover, as is shown in
Eq. (9a), the effective subsystem’s radiation-pressure coupling
strength g− can be enhanced when the polariton mode fre-
quency ω− is decreased. Physically, this result can be under-
stood as following. When the polariton mode frequency ω−
decreases, the polariton mode B− coupled to the optical field
is highly softened. Accordingly, the subsystem’s radiation-
pressure coupling g− is largely enhanced. In addition, in the
extreme case of ω− → 0, g− approaches infinity. However, in
our proposal, the considered region is far from ω− = 0, which
avoids the appearance of this singular point.

Specifically, Eq. (8) shows that G1 = √
�1ωm/2 corre-

sponds to a critical point of ω2
− = 0. Theoretically, when

ω− → 0, the matrix factors C,D,E,F approach infinity, then
the new modes B± tend to be zero (zero combinations of
mode a1 and b). However, in our proposal, we have taken
the value of �1 from 1.1ωm to 1.5ωm, accordingly ω− ranges
from 0.25ωm to 0.5ωm. As shown in the inset of Fig. 2(a), the
chosen parameter region of ω− is far away from the critical
point ω− = 0. In order to make it more explicit, we plotted the
function of matrix factors C,D,E,F versus detuning �1/ωm in
Fig. 3. It is shown that, in the considered parameter region, the
matrix factors C,D,E,F are finite, which ensures the validity
of polariton mode B−.

In Fig. 4 we present the dependence of the effective coupling
strength g± on system parameters �1 and G1. It is shown
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FIG. 3. The values of matrix factors C,|D|,E,|F | versus detuning
�1/ωm corresponding to the region of Fig. 2. The parameters are
chosen as β = 25, g1/ωm = 10−2.

that, in the considered region, g− can be enhanced. Together
with the validity of the polariton mode B−, the enhancement
of system nonlinearity decided by increasing g− has real
meaning. Moreover, here the optical mode couples to the two
effective polariton modes with a weight decided by θ . As
shown in Fig. 5, θ ranges from 0 to 0.75 and also can be
controlled by modulating the detuning �1/ωm. By adjusting
the driving laser applied into mode a1, the proposed system
has a controllable optomechanical nonlinearity decided by the
controllable optomechanical interactions.

IV. PHONON SIDEBAND AND PHOTON BLOCKADE
EFFECT IN THE WEAK-COUPLING REGIME

Generally speaking, the strong optomechanical nonlinearity
can induce a phonon sideband in the excitation spectrum and
a photon blockade under the condition of a weak driving field.
In order to probe (or utilize) this controllable nonlinearity,
we drive the cavity mode a2 using a weak probe field with
frequency ωL, amplitude ε (ε � κ), where κ is the initial cavity
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FIG. 4. The effective coupling strengths versus (a) the detuning
�1/ωm and (b) the linearized coupling strength G1/ωm. The system
parameters are δ1/ωm = 1.80 for (a), other parameters are chosen as
β = 25, g1/ωm = 10−2, g2/ωm = 3 × 10−3.
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FIG. 5. Relationship between angle θ and linearized coupling
strength G1/ωm and the detuning �1/ωm. The parameters are β = 25,
g1/ωm = 10−2, and δ1/ωm = 2.0.

damping rate. Then the effective system Hamiltonian becomes

H
′
OMS = �

′
2a

†
2a2 +

∑
σ=±

ωσB†
σBσ

−
∑
σ=±

gσa
†
2a2(Bσ + B†

σ ) + iε(a†
2 − a2), (11)

where �
′
2 = �2 − ωL. By diagonalizing H

′
OMS with the

transformation H
′
OMS → UH

′
OMSU and U = e−iP a

†
2a2 , P =

i
∑

σ ( gσ

ωσ
)(B†

σ − Bσ ), we can obtain

H
′
OMS = �

′
2a

†
2a2 +

∑
σ

(
ωσB†

σBσ − g2
σ

ωσ

a
†
2a

†
2a2a2

)

+ iε(a†
2e

iP − e−iP a2). (12)

Then the system eigenstates are |n,m̃+,m̃−〉 and corresponding
eigenvalues given by

En,m̃σ
= n�2 −

∑
σ

(
n2 g2

σ

ωσ

− mσωσ

)
, (13)

where n,mσ are the non-negative integers and |n,m̃+,m̃−〉 =
U |n,m+,m−〉. Here |n,m+,m−〉 represents a state of n photons
and mσ polaritons.

The results mentioned above show that we obtain an
optomechanical system with two effective polariton modes
(i.e., B±) coupled to a same cavity mode a2. The corresponding
coupling weight decided by θ can be controlled by tuning the
frequency detuning δ1. Qualitatively, we present the energy
level structure of system in Fig. 1(b), which clearly shows the
strong Kerr nonlinearity of system coming from both of the two
optomechanical interactions between a2 and B±. Then, to show
quantitatively the nonlinearity induced phonon sideband and
photon blockade, we numerically calculate system dynamics
including the cavity mode a2 and two polariton modes B±.
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FIG. 6. The corresponding effective damping rates of the sub-
system. Main parameters are β = 25, g1/ωm = 10−2, γ /ωm = 10−5,
κ/ωm = 5 × 10−2, and δ1/ωm = 1.80 for (b).

Particularly, within a Lindblad approach for the system
dissipation, the system dynamics is decided by the master
equation given by [64]

dρ

dt
= −i[HOMS,ρ] + κD[a2]ρ + κ−n̄−D[B†

−]ρ

+κ−(n̄− + 1)D[B−]ρ + κ+n̄+D[B†
+]ρ

+κ+(n̄+ + 1)D[B+]. (14)

Here D[o]ρ = oρo† − (o†oρ + ρo†o)/2 is the standard Lind-
blad superoperator for the damping of the polariton modes.
The effective polariton damping rates κ± read

κ− = γ
ωmsin2θ

ω−
+ κcos2θ, (15a)

κ+ = γ
ωmcos2θ

ω+
+ κsin2θ, (15b)

where κ and γ are the initial cavity and mechanical damping
rate, respectively. As one can see in Fig. 6, κ+ decreases with
increasing �1/ωm while κ− becomes larger with increasing
�1/ωm, but all κ± are smaller than initial cavity damping rate
κ . Moreover, κ± have an inverse tendency with the growth of
G1/ωm. In the region discussed in this paper, the corresponding
damping rates of the subsystem can be suppressed effectively.
We assume the mechanical bath to be at temperature TM = 0,
then the effective thermal occupancies for modes B± can be
written as

n̄− = κcos2θ

4κ−�1ω−
(�1 − ω−)2, (16a)

n̄+ = κsin2θ

4κ+�1ω+
(�1 − ω+)2. (16b)
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FIG. 7. The resulting effective bath thermal occupancies of the
cavity and mechanical modes. Parameters are β = 25, g1/ωm = 10−2,
γ /ωm = 10−5, κ/ωm = 5 × 10−2, and δ1/ωm = 2.0 for (b).

Here n̄± originally comes from the environments of the
optical mode a1 and mechanical mode b [see the definition of
B± shown in Eqs. (6)]. The detailed derivation of Eqs. (16)
is given in the Appendix. In Fig. 7 we plot the relationship
between effective bath thermal occupancies given in Eqs. (16)
and variables �1/ωm and G/ωm. It is shown that, in the

-4 -3 -2 -1
0

0.1

0.2

0.3

0.4
-6 -4 -2
0

0.02

0.04

0.06

0.08

-4 -3 -2 -1

0 1 2 3 4

0 2 4 6

0 1 2 3 4
0

0.2

0.4

0.6

0.8
(c)

(b)

(a)

FIG. 8. Optical cavity output spectrum S(�2) for three different
values of the detuning δ1/ω−. (a) δ1/ω− = 5.31, g1/ω− = 3.00 ×
10−2, g2/ω− = 9.36 × 10−3, (b) δ1/ω− = 4.38, g1/ω− = 2.37 ×
10−2, g2/ω− = 7.10 × 10−3, and (c) δ1/ω− = 4.00, g1/ω− = 2.00 ×
10−2, g2/ω− = 6.00 × 10−3.
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FIG. 9. The equal-time second-order correlation function g2(0)
versus the driving detuning �2/ω− for various values of the detuning
δ1/ω− for (a) δ1/ω− = 7.09, g1/ω− = 4.43 × 10−2, g2/ω− = 1.33 ×
10−2, (b) δ1/ω− = 4.88, g1/ω− = 2.80 × 10−2, g2/ω− = 8.37 ×
10−3, and (c) δ1/ω− = 4.00, g1/ω− = 2.00 × 10−2, g2/ω− = 6.00 ×
10−3.

considered region, n± are all less than 0.8, which ultimately
ensures the probability to observe phonon sidebands and
photon blockade effects in our proposal.

To demonstrate the phonon sideband, we calculate the
steady-state excitation spectrum

S(�2) = lim
t→∞

〈a†
2a2〉(t)
n0

, (17)

where the resonant photon number n0 = 4ε2/κ2. By using
Eq. (17) with Hamiltonian HOMS, we plot the optical photon
excitation spectrum S(�2) as a function of various detuning
δ1/ω− in Fig. 8. (Note that we plot Figs. 8, 9, and 10 [65]
using the Hamiltonian HOMS and considering three modes,
i.e., a2,B+, and B−.) It shows that the phonon sideband
appears in the originally weak-coupling regime and also can be
controlled by the detuning δ1/ω−. This clearly demonstrates
the controllable optomechanical nonlinearity featured in our
system, which could effectively enter into the strong coupling
regime, i.e., g± > κ±.

To demonstrate the photon blockade effect, we calculate the
equal-time second-order correlation function in a steady state

g(2)(0) = lim
t→0

〈a†
2a

†
2a2a2〉(t)

〈a†
2a2〉2(t)

. (18)

By numerically solving Eq. (18) with Hamiltonian HOMS,
accordingly, the second-order correlation function g2(0) of the
optomechanical system can be calculated. In Figs. 9 and 10
we illustrate the dependence of g2(0) on the weak probe field
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FIG. 10. The equal-time second-order correlation function g2(0)
versus the driving detuning �2/ω− for various values of the quadratic
coupling strength g2/ω−. Parameters are β = 25, g1/ω− = 1.51 ×
10−2, δ1/ω− = 3.78 and (a) g2/ω− = 7.56 × 10−4, (b) g2/ω− =
3.02 × 10−3, and (c) g2/ω− = 7.56 × 10−3.

detuning �2/ω− for different driving detuning δ1/ω− and
initial quadratic coupling strength g2/ω−.

Figure 9(a) shows that there is no photon blockade [g2(0) �
1] for large detuning δ1/ω− since large detuning causes weak
nonlinearity and large effective bath thermal occupancies
n±. With the decrease of δ1/ω−, we observe a series of
bunching (peaks) and antibunching (dips) resonances with the
change of �2/ω−. This indicates that the nonlinear effect is
enhanced extensively and the noise of the optomechanical
system is suppressed effectively along with the decrease of
driving detuning δ1/ω−. When δ1/ω− � 4.00, the photon
blockade effect appears in certain values of �2/ω− due to the
system effectively reaching into the strong-coupling regime
[see Fig. 9(c)]. Again, these results also demonstrate that the
controllable optomechanical nonlinearity can be realized in
our proposal. In Fig. 10 we plot the second-order equal time
correlation function g2(0) as a function of �2/ω− when the
initial quadratic coupling strength g2 takes various values. It is
also clearly shown that the realization of a photon blockade
in the weak-coupling regime is based on our proposal. In
other words, the strong optomechanical nonlinearity could be
realized in the weakly coupled OMS.

V. DISCUSSIONS

In this section we discuss the experimental feasibility of
our proposal. To obtain a strong linearized interaction between
the optical mode a1 and mechanical mode b (i.e., G1 =
α1g1 ∼ 0.1ωm), a large optomechanical interaction strength
g1/ωm = 10−2 and cavity photon number 〈a†

1a1〉 = α2
1 = 2500

have been chosen here. Until now, it is still challenging to
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realize g1/ωm = 10−2 in the normal optomechanical system
[1]. In principle, this problem can be solved by increasing the
mean photon number 〈a†

1a1〉 with applying a strong driving
laser. As shown in Ref. [4], the cavity photon number up to
1010 has been realized experimentally, which manifests that the
restriction of the parameter condition g1/ωm of our proposal
can be relaxed largely theoretically.

Moreover, a relatively strong optomechanical coupling
strength g1/ωm ∼ 10−2 has been obtained in the optome-
chanical crystal [50,66] or ultracold atomic optomechanical
system [67]. Recently, many potential theoretical schemes have
been proposed to enhance the single-photon optomechanical
coupling strength by utilizing the Josephson effect in supercon-
ducting circuits [33], the squeezing effect [35,37], and so on.
In a short summary, it might be still challenging to implement
our proposal completely with current available experimental
technology. We hope it will be realized in further experiments
along with the progress of cavity optomechanics.

VI. CONCLUSION

In conclusion, we presented a method to obtain controllable
optomechanical nonlinearity in an OMS including both the
linear and quadratic optomechanical coupling. By applying
a strong driving laser into a cavity, we have shown that the
optomechanical coupling could be enhanced enormously with-
out loss of the nonlinearity, i.e., from weak-coupling regime
to an effective strong radiation-pressure coupling regime. To
demonstrate the controllable optomechanical nonlinearity, we
numerically calculated cavity excitation spectrum and second-
order correlation function, and presented the appearances of
phonon sidebands and photon blockade effects in the originally
weak-coupling regime. Our results shown that, in the dual-
coupling optomechanical system, one can easily enhance the
optomechanical nonlinearity by applying a strong driving laser.
This study provides a promising route to reach the strong
nonlinear regime of an OMS with available technology, and
has potential applications in modern quantum science.
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APPENDIX: DERIVATION OF THE EFFECTIVE
THERMAL OCCUPANCIES

In this Appendix we show the detailed discussion on the
generation of the effective thermal occupancies n̄±. Here n̄±
are the effective thermal occupancies of polariton modes B+

and B−. The initial master equation with Hamiltonian Heff can
be written as

dρ

dt
= −i[Heff ,ρ(t)] + κD[a1]ρ + κD[a2]ρ

+ (n̄ + 1)γD[b]ρ + n̄γD[b†]ρ, (A1)

here D[o]ρ = oρo† − (o†oρ + ρo†o)/2 is the standard Lind-
blad superoperator. n̄ = n̄B[ωm,TM ] = [exp(ωm/kBTM ) −
1]−1 is the mean number of the mechanical mode inside the
bath, kB is the Boltzmann constant, and the mechanical bath is
at temperature TM . Applying the inverse of Eqs. (6a)–(6d) into
Eq. (A1), we can then obtain the effective master equation [see
Eq. (14)]. Accordingly, the effective polariton damping rates
are [64]

κ− = γ (E+ + E−)2 + κ(C2
+ − C2

−)

= γ
ωmsin2θ

ω−
+ κcos2θ, (A2a)

κ+ = γ (F+ + F−)2 + κ(D2
+ − D2

−)

= γ
ωmcos2θ

ω+
+ κsin2θ, (A2b)

where C,D,E,F are matrix factors of Eqs. (5). Specifically,
when the initial modes a1 and b transform into polariton modes
B+ and B−, the interaction between cavity and bath generates
nonconserving terms and these nonconserving terms lead to
polariton heating. The thermal occupancies read

n̄− = 1

κ−
[γ (E+ + E−)2n̄B[ω−,TM ] + κC2

−]

= γωmsin2θ

κ−ω−
n̄B[ω−,TM ] + κcos2θ

4κ−�1ω−
(�1 − ω−)2,

(A3a)

n̄+ = 1

κ+
[γ (F+ + F−)2n̄B[ω+,TM ] + κD2

−]

= γωmcos2θ

κ+ω+
n̄B[ω+,TM ] + κsin2θ

4κ+�1ω+
(�1 − ω+)2.

(A3b)

We choose the temperature of the mechanical bath to be
zero, i.e., n̄B[ω−,TM ] = n̄B[ω+,TM ] = 0, then we obtain the
effective thermal occupancy as follows:

n̄− = κcos2θ

4κ−�1ω−
(�1 − ω−)2, (A4a)

n̄+ = κsin2θ

4κ+�1ω+
(�1 − ω+)2. (A4b)

[1] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.
Phys. 86, 1391 (2014); M. Aspelmeyer, P. Meystre, and K.
Schwab, Phys. Today 65(7), 29 (2012); P. Meystre, Ann. Phys.
(Berlin) 525, 215 (2013); T. J. Kippenberg and K. J. Vahala,

Science 321, 1172 (2008); F. Marquardt and S. M. Girvin,
Physics 2, 40 (2009).

[2] H. Xiong, L.-G. Si, X.-Y. Lü, X.-X. Yang, and Y. Wu, Sci. China:
Phys. Mech. Astron. 58, 1 (2015).

033830-7

https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1103/RevModPhys.86.1391
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1063/PT.3.1640
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1002/andp.201200226
https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1156032
https://doi.org/10.1126/science.1156032
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1103/Physics.2.40
https://doi.org/10.1007/s11433-015-5648-9
https://doi.org/10.1007/s11433-015-5648-9
https://doi.org/10.1007/s11433-015-5648-9
https://doi.org/10.1007/s11433-015-5648-9


ZHU, LÜ, WAN, YIN, BIN, AND WU PHYSICAL REVIEW A 97, 033830 (2018)

[3] A. D. O’Connell et al., Nature (London) 464, 697 (2010).
[4] S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer,

Nature (London) 460, 724 (2009).
[5] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.

Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, Nature
(London) 478, 89 (2011).

[6] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K.
Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W.
Simmonds, Nature (London) 475, 359 (2011).

[7] S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A.
Schliesser, and T. J. Kippenberg, Science 330, 1520 (2010).

[8] A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield,
M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Nature
(London) 472, 69 (2011).

[9] A. Kronwald and F. Marquardt, Phys. Rev. Lett. 111, 133601
(2013).

[10] M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi,
R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Phys. Rev.
A 88, 013804 (2013).

[11] V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H.
Wang, Phys. Rev. Lett. 107, 133601 (2011).

[12] X. Zhou, F. Hocke, A. Schliesser, A. Marx, H. Huebl, R. Gross,
and T. J. Kippenberg, Nat. Phys. 9, 179 (2013).

[13] T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds,
and K. W. Lehnert, Nature (London) 495, 210 (2013); T. A.
Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert,
Science 342, 710 (2013).

[14] D. W. C. Brooks, T. Botter, S. Schreppler, T. P. Purdy, N.
Brahms, and D. M. Stamper-Kurn, Nature (London) 488, 476
(2012).

[15] A. H. Safavi-Naeini, S. Gröblacher, J. T. Hill, J. Chan,
M. Aspelmeyer, and O. Painter, Nature (London) 500, 185
(2013).

[16] T. P. Purdy, P.-L. Yu, R. W. Peterson, N. S. Kampel, and C. A.
Regal, Phys. Rev. X 3, 031012 (2013).

[17] M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther,
Nature (London) 431, 1075 (2004).

[18] B. Lounis and W. E. Moerner, Nature (London) 407, 491
(2000).

[19] P. Rabl, Phys. Rev. Lett. 107, 063601 (2011).
[20] A. Nunnenkamp, K. Børkje, and S. M. Girvin, Phys. Rev. Lett.

107, 063602 (2011).
[21] S. Bose, K. Jacobs, and P. L. Knight, Phys. Rev. A 56, 4175

(1997).
[22] A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, Phys. Rev. A

70, 020101(R) (2004).
[23] B. Pepper, R. Ghobadi, E. Jeffrey, C. Simon, and D.

Bouwmeester, Phys. Rev. Lett. 109, 023601 (2012).
[24] X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Sci. Rep.

3, 2943 (2013).
[25] K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett,

M. D. Lukin, P. Zoller, and P. Rabl, Phys. Rev. Lett. 109, 013603
(2012).

[26] P. Kómár, S. D. Bennett, K. Stannigel, S. J. M. Habraken, P. Rabl,
P. Zoller, and M. D. Lukin, Phys. Rev. A 87, 013839 (2013).

[27] M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt,
Phys. Rev. Lett. 109, 063601 (2012).

[28] F. Massel, S. U. Cho, J.-M. Pirkkalainen, P. Hakonen, T. T.
Heikkilä, and M. A. Sillanpää, Nat. Commun. 3, 987 (2012).

[29] H. Seok, L. F. Buchmann, E. M. Wright, and P. Meystre, Phys.
Rev. A 88, 063850 (2013).

[30] L. F. Buchmann and D. M. Stamper-Kurn, Phys. Rev. A 92,
013851 (2015).

[31] G. Heinrich and F. Marquardt, Europhys. Lett. 93, 18003
(2011).

[32] J. R. Johansson, G. Johansson, and F. Nori, Phys. Rev. A 90,
053833 (2014).

[33] T. T. Heikkilä, F. Massel, J. Tuorila, R. Khan, and M. A.
Sillanpää, Phys. Rev. Lett. 112, 203603 (2014).

[34] A. J. Rimberg, M. P. Blencowe, A. D. Armour, and P. D. Nation,
New J. Phys. 16, 055008 (2014).

[35] X.-Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori,
Phys. Rev. Lett. 114, 093602 (2015).

[36] X.-Y. Lü, J.-Q. Liao, L. Tian, and F. Nori, Phys. Rev. A 91,
013834 (2015).

[37] M.-A. Lemonde, N. Didier, and A. A. Clerk, Nat. Commun. 7,
11338 (2016).

[38] T.-S. Yin, X.-Y. Lü, L.-L. Zheng, M. Wang, S. Li, and Y. Wu,
Phys. Rev. A 95, 053861 (2017).

[39] M. Ludwig and F. Marquardt, Phys. Rev. Lett. 111, 073603
(2013).

[40] L.-L. Wan, X.-Y. Lü, J.-H. Gao, and Y. Wu, Opt. Express 25,
17364 (2017).

[41] J. H. Gan, H. Xiong, L.-G. Si, X.-Y. Lü, and Y. Wu, Opt. Lett.
41, 2676 (2016).

[42] J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt,
S. M. Girvin, and J. G. E. Harris, Nature (London) 452, 72
(2008).

[43] J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E.
Harris, Nat. Phys. 6, 707 (2010).

[44] M. Bhattacharya, H. Uys, and P. Meystre, Phys. Rev. A 77,
033819 (2008).

[45] A. Xuereb and M. Paternostro, Phys. Rev. A 87, 023830 (2013).
[46] J.-Q. Liao and F. Nori, Phys. Rev. A 88, 023853 (2013).
[47] L.-G. Si, H. Xiong, M. S. Zubairy, and Y. Wu, Phys. Rev. A 95,

033803 (2017).
[48] M. R. Vanner, Phys. Rev. X 1, 021011 (2011).
[49] X.-Y. Lü, G.-L. Zhu, L.-L. Zheng, and Y. Wu, Phys. Rev. A 97,

033807 (2018).
[50] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O.

Painter, Nature (London) 462, 78 (2009).
[51] A. G. Krause, J. T. Hill, M. Ludwig, A. H. Safavi-Naeini, J.

Chan, F. Marquardt, and O. Painter, Phys. Rev. Lett. 115, 233601
(2015).

[52] A. H. Safavi-Naeini, T. P. Mayer Alegre, M. Winger, and O.
Painter, Appl. Phys. Lett. 97, 181106 (2010).

[53] K. Vahala, Nature (London) 424, 839 (2003).
[54] T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Phys. Rev.

Lett. 93, 083904 (2004).
[55] F.-Y. Hong and S.-J. Xiong, Phys. Rev. A 78, 013812 (2008).
[56] Z.-L. Xiang, S. Ashhab, J.-Q. You, and F. Nori, Rev. Mod. Phys.

85, 623 (2013).
[57] J.-Q. You and F. Nori, Nature (London) 474, 589 (2011); Phys.

Today 58(11), 42 (2005).
[58] E. J. Kim, J. R. Johansson, and F. Nori, Phys. Rev. A 91, 033835

(2015).
[59] M. Bhattacharya and P. Meystre, Phys. Rev. Lett. 99, 073601

(2007).

033830-8

https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08967
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature08171
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10461
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1038/nature10261
https://doi.org/10.1126/science.1195596
https://doi.org/10.1126/science.1195596
https://doi.org/10.1126/science.1195596
https://doi.org/10.1126/science.1195596
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature09933
https://doi.org/10.1038/nature09933
https://doi.org/10.1103/PhysRevLett.111.133601
https://doi.org/10.1103/PhysRevLett.111.133601
https://doi.org/10.1103/PhysRevLett.111.133601
https://doi.org/10.1103/PhysRevLett.111.133601
https://doi.org/10.1103/PhysRevA.88.013804
https://doi.org/10.1103/PhysRevA.88.013804
https://doi.org/10.1103/PhysRevA.88.013804
https://doi.org/10.1103/PhysRevA.88.013804
https://doi.org/10.1103/PhysRevLett.107.133601
https://doi.org/10.1103/PhysRevLett.107.133601
https://doi.org/10.1103/PhysRevLett.107.133601
https://doi.org/10.1103/PhysRevLett.107.133601
https://doi.org/10.1038/nphys2527
https://doi.org/10.1038/nphys2527
https://doi.org/10.1038/nphys2527
https://doi.org/10.1038/nphys2527
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature11915
https://doi.org/10.1038/nature11915
https://doi.org/10.1126/science.1244563
https://doi.org/10.1126/science.1244563
https://doi.org/10.1126/science.1244563
https://doi.org/10.1126/science.1244563
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature11325
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/nature12307
https://doi.org/10.1038/nature12307
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1103/PhysRevX.3.031012
https://doi.org/10.1038/nature02961
https://doi.org/10.1038/nature02961
https://doi.org/10.1038/nature02961
https://doi.org/10.1038/nature02961
https://doi.org/10.1038/35035032
https://doi.org/10.1038/35035032
https://doi.org/10.1038/35035032
https://doi.org/10.1038/35035032
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063601
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevLett.107.063602
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.56.4175
https://doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1103/PhysRevA.70.020101
https://doi.org/10.1103/PhysRevLett.109.023601
https://doi.org/10.1103/PhysRevLett.109.023601
https://doi.org/10.1103/PhysRevLett.109.023601
https://doi.org/10.1103/PhysRevLett.109.023601
https://doi.org/10.1038/srep02943
https://doi.org/10.1038/srep02943
https://doi.org/10.1038/srep02943
https://doi.org/10.1038/srep02943
https://doi.org/10.1103/PhysRevLett.109.013603
https://doi.org/10.1103/PhysRevLett.109.013603
https://doi.org/10.1103/PhysRevLett.109.013603
https://doi.org/10.1103/PhysRevLett.109.013603
https://doi.org/10.1103/PhysRevA.87.013839
https://doi.org/10.1103/PhysRevA.87.013839
https://doi.org/10.1103/PhysRevA.87.013839
https://doi.org/10.1103/PhysRevA.87.013839
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1103/PhysRevLett.109.063601
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1038/ncomms1993
https://doi.org/10.1103/PhysRevA.88.063850
https://doi.org/10.1103/PhysRevA.88.063850
https://doi.org/10.1103/PhysRevA.88.063850
https://doi.org/10.1103/PhysRevA.88.063850
https://doi.org/10.1103/PhysRevA.92.013851
https://doi.org/10.1103/PhysRevA.92.013851
https://doi.org/10.1103/PhysRevA.92.013851
https://doi.org/10.1103/PhysRevA.92.013851
https://doi.org/10.1209/0295-5075/93/18003
https://doi.org/10.1209/0295-5075/93/18003
https://doi.org/10.1209/0295-5075/93/18003
https://doi.org/10.1209/0295-5075/93/18003
https://doi.org/10.1103/PhysRevA.90.053833
https://doi.org/10.1103/PhysRevA.90.053833
https://doi.org/10.1103/PhysRevA.90.053833
https://doi.org/10.1103/PhysRevA.90.053833
https://doi.org/10.1103/PhysRevLett.112.203603
https://doi.org/10.1103/PhysRevLett.112.203603
https://doi.org/10.1103/PhysRevLett.112.203603
https://doi.org/10.1103/PhysRevLett.112.203603
https://doi.org/10.1088/1367-2630/16/5/055008
https://doi.org/10.1088/1367-2630/16/5/055008
https://doi.org/10.1088/1367-2630/16/5/055008
https://doi.org/10.1088/1367-2630/16/5/055008
https://doi.org/10.1103/PhysRevLett.114.093602
https://doi.org/10.1103/PhysRevLett.114.093602
https://doi.org/10.1103/PhysRevLett.114.093602
https://doi.org/10.1103/PhysRevLett.114.093602
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1103/PhysRevA.91.013834
https://doi.org/10.1038/ncomms11338
https://doi.org/10.1038/ncomms11338
https://doi.org/10.1038/ncomms11338
https://doi.org/10.1038/ncomms11338
https://doi.org/10.1103/PhysRevA.95.053861
https://doi.org/10.1103/PhysRevA.95.053861
https://doi.org/10.1103/PhysRevA.95.053861
https://doi.org/10.1103/PhysRevA.95.053861
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1103/PhysRevLett.111.073603
https://doi.org/10.1364/OE.25.017364
https://doi.org/10.1364/OE.25.017364
https://doi.org/10.1364/OE.25.017364
https://doi.org/10.1364/OE.25.017364
https://doi.org/10.1364/OL.41.002676
https://doi.org/10.1364/OL.41.002676
https://doi.org/10.1364/OL.41.002676
https://doi.org/10.1364/OL.41.002676
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nature06715
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/nphys1707
https://doi.org/10.1038/nphys1707
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.77.033819
https://doi.org/10.1103/PhysRevA.87.023830
https://doi.org/10.1103/PhysRevA.87.023830
https://doi.org/10.1103/PhysRevA.87.023830
https://doi.org/10.1103/PhysRevA.87.023830
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.88.023853
https://doi.org/10.1103/PhysRevA.95.033803
https://doi.org/10.1103/PhysRevA.95.033803
https://doi.org/10.1103/PhysRevA.95.033803
https://doi.org/10.1103/PhysRevA.95.033803
https://doi.org/10.1103/PhysRevX.1.021011
https://doi.org/10.1103/PhysRevX.1.021011
https://doi.org/10.1103/PhysRevX.1.021011
https://doi.org/10.1103/PhysRevX.1.021011
https://doi.org/10.1103/PhysRevA.97.033807
https://doi.org/10.1103/PhysRevA.97.033807
https://doi.org/10.1103/PhysRevA.97.033807
https://doi.org/10.1103/PhysRevA.97.033807
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nature08524
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1103/PhysRevLett.115.233601
https://doi.org/10.1063/1.3507288
https://doi.org/10.1063/1.3507288
https://doi.org/10.1063/1.3507288
https://doi.org/10.1063/1.3507288
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1038/nature01939
https://doi.org/10.1103/PhysRevLett.93.083904
https://doi.org/10.1103/PhysRevLett.93.083904
https://doi.org/10.1103/PhysRevLett.93.083904
https://doi.org/10.1103/PhysRevLett.93.083904
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/PhysRevA.78.013812
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1103/RevModPhys.85.623
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1038/nature10122
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1063/1.2155757
https://doi.org/10.1103/PhysRevA.91.033835
https://doi.org/10.1103/PhysRevA.91.033835
https://doi.org/10.1103/PhysRevA.91.033835
https://doi.org/10.1103/PhysRevA.91.033835
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.073601
https://doi.org/10.1103/PhysRevLett.99.073601


CONTROLLABLE NONLINEARITY IN A DUAL-COUPLING … PHYSICAL REVIEW A 97, 033830 (2018)

[60] A. F. Pace, M. J. Collett, and D. F. Walls, Phys. Rev. A 47, 3173
(1993).

[61] D. Vitali, S. Gigan, A. Ferreira, H. R. Böhm, P. Tombesi, A.
Guerreiro, V. Vedral, A. Zeilinger, and M. Aspelmeyer, Phys.
Rev. Lett. 98, 030405 (2007).

[62] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg,
Phys. Rev. Lett. 99, 093901 (2007).

[63] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Phys.
Rev. Lett. 99, 093902 (2007).

[64] M.-A. Lemonde and A. A. Clerk, Phys. Rev. A 91, 033836
(2015).

[65] Our numerical results on the phonon sideband and
photon blockade are calculated based on the QuTiP
package [J. R. Johansson, P. D. Nation, and F. Nori,
Comput. Phys. Commun. 183, 1760 (2012); 184, 1234
(2013)].

[66] J. Chan, M. Eichenfield, R. M. Camacho, and O. Painter, Opt.
Express 17, 3802 (2009); J. Chan, A. H. Safavi-Naeini, J. T.
Hill, S. Meenehan, and O. Painter, Appl. Phys. Lett. 101, 081115
(2012).

[67] K. W. Murch, K. L. Moore, S. Gupta, and D. M. StamperKurn,
Nat. Phys. 4, 561 (2008).

033830-9

https://doi.org/10.1103/PhysRevA.47.3173
https://doi.org/10.1103/PhysRevA.47.3173
https://doi.org/10.1103/PhysRevA.47.3173
https://doi.org/10.1103/PhysRevA.47.3173
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.98.030405
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093901
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevLett.99.093902
https://doi.org/10.1103/PhysRevA.91.033836
https://doi.org/10.1103/PhysRevA.91.033836
https://doi.org/10.1103/PhysRevA.91.033836
https://doi.org/10.1103/PhysRevA.91.033836
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1364/OE.17.003802
https://doi.org/10.1364/OE.17.003802
https://doi.org/10.1364/OE.17.003802
https://doi.org/10.1364/OE.17.003802
https://doi.org/10.1063/1.4747726
https://doi.org/10.1063/1.4747726
https://doi.org/10.1063/1.4747726
https://doi.org/10.1063/1.4747726
https://doi.org/10.1038/nphys965
https://doi.org/10.1038/nphys965
https://doi.org/10.1038/nphys965
https://doi.org/10.1038/nphys965



