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Enhanced cooperativity for quantum-nondemolition-measurement–induced spin squeezing
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We study the enhancement of cooperativity in the atom-light interface near a nanophotonic waveguide for
application to quantum nondemolition (QND) measurement of atomic spins. Here the cooperativity per atom is
determined by the ratio between the measurement strength and the decoherence rate. Counterintuitively, we find
that by placing the atoms at an azimuthal position where the guided probe mode has the lowest intensity, we increase
the cooperativity. This arises because the QND measurement strength depends on the interference between the
probe and scattered light guided into an orthogonal polarization mode, while the decoherence rate depends on the
local intensity of the probe. Thus, by proper choice of geometry, the ratio of good-to-bad scattering can be strongly
enhanced for highly anisotropic modes. We apply this to study spin squeezing resulting from QND measurement
of spin projection noise via the Faraday effect in two nanophotonic geometries, a cylindrical nanofiber and a
square waveguide. We find that, with about 2500 atoms and using realistic experimental parameters, ∼6.3 and
∼13 dB of squeezing can be achieved on the nanofiber and square waveguide, respectively.
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I. INTRODUCTION

Cooperativity is a measure of the entangling strength of the
atom-light interface in quantum optics. Originally introduced
in cavity quantum electrodynamics (QED), the cooperativity
per atom, C1, can be expressed in terms of the ratio of the coher-
ent coupling rate to the decoherence rates, C1 = g2/(�c�A),
where g is the vacuum Rabi frequency, �c is the cavity decay
rate, and �A is the atomic spontaneous emission rate out of
the cavity [1]. Alternatively, we can write C1 = (σ0/A)F ,
where σ0 is the resonant photon scattering cross section of
the atom, A is the cavity mode area, and F is the cavity
finesse. Expressed in this way, cooperativity is seen to arise due
to scattering of photons preferentially into the cavity mode,
compared to emission into free space, here enhanced by the
finesses due to the Purcell effect. Strong coupling dynamics
seen in pioneering experiments in atomic cavity QED [2,3] is
now a mainstay in quantum information processing in systems
ranging from quantum dots [4–6] to circuit QED [7,8]. The
NA atom cooperativity, CN = (NAσ0/A)F = (Dopt)F , where
Dopt is the resonant optical depth. In this configuration, the
collective degrees of the atom can be manipulated by their
common coupling to the cavity mode.

Cooperativity also characterizes the atom-light interface in
the absence of a cavity. In free space, an atom at the waist
of a laser beam will scatter into the forward direction at
a rate κ ∝ (σ0/A)γs , where γs is the photon scattering rate
into 4π steradians [9]. Here the single-atom cooperativity can
be expressed to be proportional to the ratio of these rates,
C1 ∝ κ/γs ∝ σ0/A. The NA-atom cooperativity, in a plane-
wave approximation, ignoring effects of diffraction and cloud
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geometry [9], CN ∝ NAσ0/A = Dopt. To be self-consistent,
here the beam area must be very large, so C1 is very small,
e.g., C1 ∼ 10−6, but for a sufficiently large ensemble, the
Dopt can be large enough to lead to entanglement between
the collective atomic degrees of freedom and the light. In
this situation, measurement of the light leads to backaction on
the ensemble and, for an appropriate quantum nondemolition
(QND) interaction, results in squeezing of the collective
spin [10,11]. QND measurement-induced spin squeezing has
been observed in free-space dipole-trapped ensembles [12–14]
and in optical cavities [15–17]. The rate of decoherence is set by
the rate of optical pumping, γop ∝ γs , and we can characterize
the cooperativity per atom as C1 = κ/γop.

In recent years nanophotonic waveguides have emerged as
a new geometry that complements cavity QED and can lead to
strong cooperativity [18–24]. Notably, the effective beam area
of a tightly guided mode can be much smaller than in free space
and propagate for long distances without diffraction. As such,
σ0/A can be orders of magnitude larger than in free space,
e.g., σ0/A ∼ 0.1, and contribute collectively for a modest
ensemble of a few thousand atoms trapped near the surface
of the waveguide. Moreover, in some cases the Purcell effect
can further enhance forward scattering into the guided mode
compared with scattering into free space. Taken together, these
features make nanophotonic waveguides a promising platform
for the quantum atom-light interface.

In this paper we show that one can achieve an additional
enhancement to the cooperativity in a nanophotonic geometry
that is not possible in free space. In particular, we consider
the QND measurement of the collective spin of an atomic
ensemble via a Faraday interaction followed by polarization
spectroscopy. In this configuration the polarimeter effectively
performs a homodyne measurement, where the probe is the
“local oscillator,” which interferes with the light scattered
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into the orthogonally polarized guided mode [9]. This signal
thus depends on the spatial overlap of the two orthogonal
polarization modes at the position of the atom. In contrast,
decoherence due to photon scattering into unguided 4π stera-
dians occurs at a rate γs determined only by the intensity of
the probe. The net result is that the cooperativity per atom,
C1 ∝ κ/γs , primarily depends on the strength of the orthogonal
polarization mode, and this factor can be enhanced, especially
for highly anisotropic guided modes. Counterintuitively, we
see that the strongest cooperativity arises when the atom is
placed at the position of minimum intensity of the azimuthally
anisotropic probe mode where the intensity of the initially
unoccupied orthogonal mode is maximum.

We study the enhanced cooperativity for two nanophotonic
geometries: a cylindrical nanofiber formed by tapering a
standard optical fiber with cold atoms trapped in the evanescent
wave, as recently employed in a variety of experimental
studies [18,25–38], and a nanofabricated suspended square
waveguide, currently investigated at Sandia National Labora-
tories [39]. For each geometry we study the use of the Faraday
effect and polarimetry to perform a QND measurement of
the magnetic spins [40] and, thereby, induce squeezing of
collective spins of cesium atoms. A dispersive measurement
of the number of atoms trapped near the surface of an optical
nanofiber was first performed in [41], and quantum spin pro-
jection noise was recently detected using a QND measurement
with a two-color probe in [31] and [38]. Previously, we studied
QND measurement-induced spin squeezing mediated by a
birefringence interaction [24]. We see here that, through the
enhanced cooperativity, QND measurement via the Faraday
effect can lead to substantial squeezing, greater than 10 dB in
some geometries, for 2500 atoms.

The remainder of the paper is organized as follows. In
Sec. II, we lay out the theoretical description of the QND
measurement and the relevant measurement strength. In ad-
dition, we describe how decoherence is included in the model
through a first-principles stochastic master equation, here for
the case of alkali atoms, cesium in particular. From this we see
how cooperativity emerges as the key parameter that charac-
terizes the squeezing. We calculate in Sec. III the squeezing
dynamics for the different nanophotonic waveguides, atomic
preparations, and measurement protocols. We conclude with a
summary and outlook for future work in Sec. IV.

II. QND MEASUREMENT AND COOPERATIVITY

The theoretical framework describing the propagation of
light guided in a nanofiber and interacting with trapped
atoms in the dispersive regime was detailed in our previous
work [24]. We review the salient features here and include the
generalization to the square waveguide.

For waveguides that are symmetric under a π/2 rotation
around the z (propagation) axis, there are two degenerate
polarizations for each guided mode and for each propagation
direction. Assuming a nanophotonic waveguide that supports
only the lowest order guided mode, and restricting our attention
to modes propagating in the positive z direction, we denote
uH (r⊥) and uV (r⊥) as the horizontally and vertically polarized
modes that adiabatically connect to x and y linearly polarized
modes, respectively, as the cross section of the waveguide
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FIG. 1. Fundamental guided modes of the nanophotonic waveg-
uides. (a) Electric field components of the H -polarized HE11 mode of
a circular nanofiber. From left to right: Re[ux(r⊥)], Re[uy(r⊥)], and
Im[uz(r⊥)] in the xy plane. (b) Same as (a), but for the H -polarized
quasi-TE01 mode of a square waveguide. Black lines outline the
waveguide boundary. The color scale is normalized to the maximum
value of all field components for each waveguide mode. All other
mode components not shown for both waveguide geometries vanish
everywhere. (c) Normalized intensity distribution on the transverse
plane for both geometries. Blue arrows indicate the local electric
field’s direction and amplitude (relative length) at positions along
the vertical waveguide axis, which only have an x component of the
mode. Stars indicate typical positions of trapped atoms (r ′

⊥/a = 1.8
for the nanofiber [18] and a similar scale for the square waveguide,
r ′
⊥/w = 1.0, wherea andw are the radius and width of the waveguides

respectively). Dotted light gray lines show the corresponding V -mode
contour, which is the H mode rotated by 90◦ around the waveguide
propagation axis. The atom’s azimuthal position is chosen to be at a
position with the V mode being strongest.

becomes large compared to the optical wavelength. Note that in
typical nanophotonic geometries these guided modes also have
a nonnegligible z component. For a cylindrically symmetric
nanofiber, these are the well-studied HE11 modes; for a square
waveguide, these are the quasi-TE01 and quasi-TM01 modes,
shown in Fig. 1. One can solve for the guided modes of
a cylindrical fiber analytically [24,42,43]. We use a vector
finite-difference method to numerically solve for the guided
eigenmodes of the square waveguide [44] with core material
of Si3N4 whose index of refraction is n = 2 [45].

The quasimonochromatic positive frequency component of
the quantized field associated with these guided modes (g) at
frequency ω0 takes the form

Ê(+)
g (r,t) =

√
2πh̄ω0

vg

[uH (r⊥)âH (t) + uV (r⊥)âV (t)]

× ei(β0z−ω0t), (1)
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where vg is the group velocity, and β0 is the propagation
constant of the guided modes. In the first Born approximation
the dispersive interaction of the guided field with NA atoms
trapped near the surface of the waveguide at positions {r′

⊥,zn},
detuned far from resonance, is defined by the scattering
equation [24],

Ê(+)
g,out(r,t) = Ê(+)

g,in(r,t)

+
NA∑
n=1

↔
Gg(r,r′

n; ω0) × α̂
↔(n) · Ê(+)

g,in(r′
n,t), (2)

where α̂
↔(n) is the atomic polarizability operator of the nth atom,

and

↔
G

(+)

g (r,r′
n; ω0) = 2πi

ω0

vg

∑
p

up(r⊥)u∗
p(r′

⊥)eiβ0(z−z′
n) (3)

is the dyadic Green’s function for a dipole to radiate into the
forward-propagating guided mode. In principle, the Green’s
function for an NA-atom chain decomposes into collective sub-
and superradiant normal modes [23,46], but in the far-detuning
limit, these are all equally excited. The result is equivalent to
the symmetric mode of independently radiating dipoles. The
input-output relation for the mode operators then reads [24]

âout
p (t) = âin

p (t) + i
∑
p′

φ̂p,p′ âin
p′ (t), (4)

where

φ̂p,p′ = 2π
ω0

vg

u∗
p(r′

⊥) ·
NA∑
n=1

α̂
↔(n) · up′ (r′

⊥) (5)

is the phase operator associated with scattering polarization
p′ → p by a collective atomic operator. When p = p′, this is
a phase shift; for p 
= p′, this leads to a transformation of the
polarization of the guided mode.

The Faraday effect arises from the irreducible rank 1 (vec-
tor) component of the polarizability tensor [47]. Given an atom
with hyperfine spin f , this contribution is α̂vec

ij = iα1εijkf̂k ,

where α1 = C
(1)
f

σ0
4πk0

�A

2�
is the characteristic polarizability. In

alkali atoms C
(1)
f = ∓ 1

3f
for the D1- and D2-line transitions,

respectively. We take the detuning, �, large compared to the
excited-state hyperfine splitting. The resonant scattering cross
section on a unit oscillator strength is σ0 = 6π/k2

0 , where
k0 = ω0/c. The polarization transformation associated with
scattering from H to V mode is determined by the operator

φ̂V H = i2π
ω0

vg

α1[u∗
V (r′

⊥) × uH (r′
⊥)] · F̂, (6)

where F̂ = ∑
n f̂ (n) is the collective spin of the atomic ensem-

ble. Thus,

âout
V (t) = âin

V (t) + iφ̂V,H âin
H (t)

= âin
V (t) − 2π

ω0

vg

α1[u∗
V (r′

⊥) × uH (r′
⊥)] · F̂ âin

H (t), (7)

and similarly for scattering from V to H .

FIG. 2. (a) Schematic polarization spectroscopy geometry for
the QND measurement and spin-squeezing generation based on the
Faraday effect. Atoms trapped near the surface of the nanophotonic
waveguide cause a Faraday rotation of the guided light, which is
measured in a polarimeter that detects the S2 component of the Stokes
vector (intensity in the diagonal D minus antidiagonal D̄ modes).
(b) Evolution of the light’s polarization state on the Poincaré sphere
(left to right). The Stokes vector of the light is prepared along the
S1 direction, and the Faraday interaction causes a rotation around
the S3 axis. Shot noise, shown as the uncertainty bubble, limits the
resolution of the detection. (c) Evolution of the collective state before
and after measurement (left to right). The spin is prepared in a coherent
state, with projection noise shown as the uncertainty bubble. After the
measurement the uncertainty in Fz is squeezed, and the direction is
correlated with the measurement outcome on the polarimeter.

The polarization transformation can be expressed as a
rotation of the Stokes vector of the light on the Poincaré sphere
with operator components

Ŝ1(t) = 1
2 [â†

H (t)âH (t) − â
†
V (t)âV (t)], (8a)

Ŝ2(t) = 1
2 [â†

H (t)âV (t) + â
†
V (t)âH (t)], (8b)

Ŝ3(t) = 1
2i

[â†
H (t)âV (t) − â

†
V (t)âH (t)]. (8c)

By measuring the output Stokes vector in a polarimeter, we
perform a QND measurement of a collective atomic operator
to which it was entangled. In a proper configuration, this leads
to squeezing of a collective spin. Launching H -polarized light
corresponds to the initial Stokes vector along S1, and Faraday
rotation leads to an S2 component, which is measured in a
polarimeter [Fig. 2(a)]. Taking the H mode as a coherent state
with amplitude βH , the signal of the polarimeter measures
Ŝout

2 = (βH â
†out
V + β∗

H âout
V )/2. Using this expression we see

that the polarimeter acts as a homodyne detector, with the input
H mode acting as the local oscillator and the photons scattered
into the V mode as the signal. Formally, the input-output
relation follows from the scattering equation, Eq. (7), and reads

Ŝout
2 = Ŝ in

2 + i(φ̂V H − φ̂HV )Ŝ in
1 = Ŝ in

2 + χ3(r′
⊥)F̂zŜ

in
1 . (9)

The first term Ŝ in
2 represents the shot noise, which fundamen-

tally limits the resolution of the measurement and thus the spin
squeezing that can be obtained in a given time interval. The
second term is the homodyne signal, where we have expressed
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the rotation angle around the 3 axis of the Poincaré sphere as

χ3(r′
⊥) = −4πω0

vg

α1|Re[u∗
V (r′

⊥) × uH (r′
⊥)]|

= −C
(1)
f

σ0

AFar(r′
⊥)

�A

2�
. (10)

We emphasize here the dependence of the rotation angle on the
position of the atom in the transverse plane, r′

⊥, assumed equal
for all atoms in the chain. In particular, χ3(r′

⊥) depends on the
overlap of uH (r′

⊥) and uV (r′
⊥), indicating atomic scattering of

photons from the H to the V mode associated with the Faraday
interaction. We have characterized this overlap by an effective
area that defines the Faraday interaction at the position of the
atom,

AFar(r′
⊥) = 1

ng|Re[u∗
V (r′

⊥) × uH (r′
⊥)]| , (11)

where ng = c/vg is the group index. A more tightly confined
(smaller) area corresponds to a stronger interaction.

By monitoring the Faraday rotation, we can perform a
continuous measurement on the collective spin projection F̂z.
The “measurement strength,” which characterizes the rate at
which we gain information and thereby squeeze the spin, is
given by

κ = |χ3(r′
⊥)|2 Pin

h̄ω0
, (12)

where Pin is the input power transported into the guided
mode. The measurement strength is the rate at which photons
are scattered from the guided H to the guided V mode.
Decoherence arises due to diffuse scattering into unguided
modes and the accompanied optical pumping of the spin.
In principle, the photon scattering rate into 4π steradians is
modified over free space due to the Purcell effect, but we
neglect this correction here. In the case of the nanofiber, this
is a small effect at typical distances at which the atom is
trapped [48,49]. For the square waveguide, we examine this
correction in future work.

Decoherence is due to optical pumping of the spin between
different magnetic sublevels. Henceforth, we restrict ourselves
to alkali atoms driven on the D1 or D2 line, at optical
pumping rate

γop = 2

9
σ (�)

Iin(r′
⊥)

h̄ω0
. (13)

Here σ (�) = σ0
�2

A

4�2 is the photon scattering cross section at
the detuning � for a unit oscillator strength transition, and
the factor of 2/9 reflects the branching ratio for absorbing a
π -polarized laser photon followed by spontaneous emission
of a photon, causing optical pumping to another spin state.
Iin(r′

⊥) = ngPin|uH (r′
⊥)|2 ≡ Pin/Ain(r′

⊥) is the input intensity
into the guided H mode at the position of the atom, where we
have defined

Ain(r′
⊥) = 1

ng|uH (r′
⊥)|2 (14)

FIG. 3. Contour plots of the effective mode areas and the co-
operativity per atom near an optical nanofiber. Contour plot of (a)
the reciprocal effective Faraday interaction mode area, Eq. (11),
and (b) the reciprocal input mode area in the xy plane, Eq. (14).
An x-polarized incident mode is assumed. (c) Contour plot of the
cooperativity, Eq. (15), on the xy plane. The isovalue lines of C1

increase by 0.002 428 at each gradient step from the outside inwards.
The x and y coordinates are scaled in units of a for all three plots.

to be the effective area associated with the input mode. We thus
define the cooperativity per atom

C1(r′
⊥) = κ

γop
= σ0

2f 2

Ain(r′
⊥)

[AFar(r′
⊥)]2

. (15)

This is our central result. Roughly, 1/[AFar(r′
⊥)]2 ∼

|uV (r′
⊥)|2|uH (r′

⊥)|2, thus C1(r′
⊥) ∼ σ0|uV (r′

⊥)|2. In the context
of homodyne measurement, the signal to be measured is
proportional to the overlap between the H and the V modes,
while the decoherence rate depends on the intensity of the
local oscillator or H mode. How large the initially unoccupied
V mode is at the atoms’ position determines the signal-to-
noise ratio for a QND measurement. We thus enhance the
cooperativity by choosing the position of the atoms so that
the orthogonal, unoccupied mode is large, while the intensity
of the local input mode that causes decoherence is small.

We contrast this with squeezing arising from a birefringence
interaction, as we studied in [24]. Linear birefringence corre-
sponds to a relative phase between ordinary and extraordinary
linear polarizations, which can arise due to both the geometry
of the anisotropic modes relative to the placement of the atoms
and the atoms’ tensor polarizability. Here, the coupling is not
optimal at the position of minimum intensity; it is maximum
at the angle 45◦ between the H and the V modes. As such, one
will not see as strong an enhancement of the cooperativity as
we find in our protocol employing the Faraday effect.

Figures 3 and 4 show plots of 1/AFar, 1/Ain, and C1 as a
function of the position of the atom in the transverse plane,
r′
⊥, for the two nanophotonic geometries. We see that AFar

is essentially cylindrically symmetric sufficiently far from
the surface for both the nanofiber and the square waveguide
geometries and thus the measurement strength is basically
independent of the azimuthal position of the atoms. In contrast,
Ain is azimuthally anisotropic. For input x polarization, 1/Ain

is the smallest along the y axis at a given radial distance,
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FIG. 4. Similar to Fig. 3, but for the square waveguide. In (a),
the contour lines outside of the waveguide are essentially concentric
circles. There are distortions near the four corners of the square waveg-
uide shown in the plot, mainly caused by numerical divergences. In
(c), the isovalue lines of C1 increase by 0.005 109 at each gradient
step from the outside inwards. The x and y coordinates are scaled in
units of w for all three plots.

which corresponds to the lowest intensity of the input H mode
and, thus, the lowest optical pumping rate γop. This angle
corresponds to the position at which |uV (r′

⊥)| is largest and thus
yields the largest enhancement of C1. Thus, counterintuitively,
we enhance the cooperativity by placing the atom at the angle
of minimum input intensity. This enhancement is even greater
for the square waveguide, which has more anisotropic guided
modes compared to the cylindrical nanofiber. For typical
geometries, given a nanofiber with radius a = 225 nm, atoms
trapped on the y axis, and a distance 200 nm (0.8a) from the
surface, the single-atom cooperativity is C1 = 0.00728 at the
optimal trapping angle; for the square waveguide of width
w = 300 nm, with atoms trapped 150 nm from the surface,
C1 = 0.0102 at the optimum. Thus, with order 1000 trapped
atoms the NA-atom cooperativity is of the order of 10, sufficient
to generate substantial spin squeezing.

III. SPIN-SQUEEZING DYNAMICS

Given an ensemble of NA atoms initially prepared in a
spin-coherent state for the hyperfine spin f , polarized in the
transverse plane, e.g., along the x axis, a QND measurement
of the collective spin Fz will squeeze the uncertainty of that
component. The metrologically relevant squeezing parameter
is [50]

ξ 2 ≡ 2NAf
〈
�F 2

z

〉
〈F̂x〉2

. (16)

Under the assumption that the state is symmetric with respect
to the exchange of any two atoms, valid when we start in a spin-
coherent state and all couplings are uniform over the ensemble,
the collective expectation value can be decomposed into

〈
�F 2

z

〉 = NA

〈
�f 2

z

〉 + NA(NA − 1)
〈
�f (i)

z �f (j )
z

〉∣∣
i 
=j

, (17a)

〈F̂x〉 = NA〈f̂x〉. (17b)

The first term in Eqs. (17a) and (17b) is the pro-
jection noise associated with the NA identical spin-f
atoms, and the second term in Eq. (17a) is determined
by two-body covariances, 〈�f (i)

z �f
(j )
z 〉|

i 
=j
= 〈�f (1)

z �f (2)
z 〉 =

〈f̂ (1)
z f̂ (2)

z 〉 − 〈f̂ (1)
z 〉〈f̂ (1)

z 〉. Negative values of these two-body
correlations correspond to the pairwise entanglement between
atoms, leading to spin squeezing [51]. Note that when the
detuning is sufficiently far off-resonance, all collective sub-
and superradiant modes [23,46] are equally (and thus sym-
metrically) excited. In this paper, we work in the dispersive
regime with a few thousand atoms and can safely ignore the
atom-atom interaction caused by multiple scattering, and hence
the collective atomic system satisfies the exchange symmetry.

To study the spin-squeezing dynamics, we follow the
method first developed by Norris [52]. We employ a first-
principles stochastic master equation for the collective state
of NA atoms,

dρ̂ = dρ̂|QND + dρ̂|op. (18)

The first term on the right-hand side of Eq. (18) governs the
spin dynamics arising from QND measurement [9,53],

dρ̂|QND =
√

κ

4
H[ρ̂]dW + κ

4
L[ρ̂]dt, (19)

where κ is the measurement strength defined in Eq. (12), and
dW is a stochastic Wiener interval. The conditional dynamics
are generated by superoperators that depend on the collective
spin:

H[ρ̂] = F̂zρ̂ + ρ̂F̂z − 2〈F̂z〉ρ̂, (20a)

L[ρ̂] = F̂zρ̂F̂z − 1
2

(
ρ̂F̂ 2

z + F̂ 2
z ρ̂

) = 1
2 [F̂z,[ρ̂,F̂z]]. (20b)

The second term governs decoherence arising from op-
tical pumping, which acts locally on each atom, dρ̂|op =∑NA

n D(n)[ρ̂]dt , where

D(n)[ρ̂] = − i

h̄

(
Ĥ

(n)
eff ρ̂ − ρ̂Ĥ

(n)†
eff

) + γop

∑
q

Ŵ (n)
q ρ̂Ŵ (n)†

q .

(21)

Here Ĥ
(n)
eff is the effective non-Hermitian Hamiltonian describ-

ing the local light shift and absorption by the nth atom and
Ŵ (n)

q is the jump operator corresponding to optical pumping
through absorption of a laser photon followed by spontaneous
emission of a photon of polarization q [47] (see the Appendix).

The rate of decoherence is characterized by the optical
pumping rate,γop. Note that the optical pumping superoperator,
Eq. (21), is not trace preserving when restricted to a given
ground-state hyperfine manifold f . Optical pumping that
transfers atoms to the other hyperfine manifold in the ground-
electronic state is thus treated as loss. Moreover, if the atoms are
placed at the optimal position in the transverse plane, the local
field of the guided mode is linearly polarized. In that case the
vector light shift vanishes, and for detunings large compared
to the excited-state hyperfine splitting, the rank 2 tensor light
shift is negligible. The light shift is thus dominated by the scalar
component, which has no effect on the spin dynamics. In that
case Ĥeff = −i

h̄γop

2 1̂, representing an equal rate of absorption
for all magnetic sublevels.
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FIG. 5. Schematic energy level diagram for cesium atoms probed
on the D2 line, 6S1/2 → 6P3/2. Relevant dynamics are restricted to
a truncated qutrit subspace of ground levels. Atoms are prepared
in the fiducial state |↑〉 and driven by x-polarized (π ) light. The
Faraday rotation corresponds to coherent scattering of π → σ in this
basis, and measurement backaction leads to entanglement between
pairs of atoms in |↑〉 = |f = 4, mx = 4〉 and the coupled state |↓〉 =
|f = 4, mx = 3〉. Optical pumping can cause spin flips |↑〉 → |↓〉
and |↓〉 → |T 〉 = |f = 4, mx = 2〉. The latter process is included to
account for transfer of coherences. The detuning � is taken to be large
compared to the excited-state hyperfine splitting.

Following the work of Norris [52], the solution to the
master equation is made possible by three approximations.
First, we restrict the subspace of internal magnetic sublevels
that participate in the dynamics. The system is initialized in
a spin-coherent state, with all atoms spin-polarized along the
x axis. We denote this the “fiducial state,” |↑〉 = |f,mx = f 〉.
Through QND measurement, spin squeezing is induced by en-
tanglement with the “coupled state,” |↓〉 = |f,mx = f − 1〉.
Optical pumping is dominated by “spin flips” |↑〉 → |↓〉
and “loss” due to pumping to the other hyperfine level.
Finally, we include a third internal magnetic sublevel, |T 〉 =
|f,mx = f − 2〉, to account for “transfer of coherences,”
which can occur in spontaneous emission [52,54] (see Fig. 5).
Restricted to this qutrit basis, the internal hyperfine spin
operators are

f̂x = f σ̂↑↑ + (f − 1)σ̂↓↓ + (f − 2)σ̂T T , (22a)

f̂y = −i

√
f

2
(σ̂↑↓ − σ̂↓↑) − i

√
2f − 1

2
(σ̂↓T − σ̂T ↓), (22b)

f̂z =
√

f

2
(σ̂↑↓ + σ̂↓↑) +

√
2f − 1

2
(σ̂↓T + σ̂T ↓), (22c)

where we have defined the atomic population and coherence
operators σ̂ba = |b〉〈a|.

Second, we assume that the collective state is symmetric
under exchange of spins. This approximation is valid when all
atoms see the same probe intensity and in the far-detuning
regime when all sub- and superradiant modes are equally
excited. With this, we can limit our attention to the symmetric
subspace and define, for example, the symmetric two-body
covariances by〈

�σ
(1)
ba �σ

(2)
dc

〉
s
≡ 1

2

[〈
�σ

(1)
ba �σ

(2)
dc

〉 + 〈
�σ

(2)
ba �σ

(1)
dc

〉]
, (23)

where the superscripts, (1) and (2), label arbitrarily two
atoms in the ensemble. Due to the exchange symmetry,

〈�σ
(1)
ba �σ

(2)
dc 〉s = 〈�σ

(1)
ba �σ

(2)
dc 〉 = 〈�σ

(2)
ba �σ

(1)
dc 〉, which re-

duces the number of n-body moments required to simulate
the spin dynamics of the ensemble.

Third, we make the Gaussian approximation, valid for
large atomic ensembles, so that the many-body state is fully
characterized by one- and two-body correlations. Equivalently,
the state is defined by the one- and two-body density operators,
with matrix elements ρ

(1)
a,b = 〈σ̂ba〉, ρ

(1,2)
ac,bd = 〈�σ

(1)
ba �σ

(2)
dc 〉s

in the symmetric subspace. We track the evolution of the
correlation functions through a set of coupled differential
equations [52]. Optical pumping, acting locally, couples only
n-body correlations to themselves, e.g.,

d
〈
�σ

(1)
ba �σ

(2)
dc

〉
s

∣∣
op = 〈

D†[�σ
(1)
ba

]
�σ

(2)
dc

〉
s
dt

+ 〈
�σ

(1)
ba D†[�σ

(2)
dc

]〉
s
dt. (24)

QND measurement generates higher order correlations
according to

d〈σ̂ba〉|QND = κ

4
〈L†[σ̂ba]〉dt +

√
κ

4
〈H†[σ̂ba]〉dW. (25)

We can truncate this hierarchy in the Gaussian approximation,
setting third-order cumulants to 0. Thus, for example,

d
〈
�σ

(1)
ba �σ

(2)
dc

〉
s

∣∣
QND

= d
〈
σ̂

(1)
ba σ̂

(2)
dc

〉
s

∣∣
QND − 〈σ̂ba〉|QND(d〈σ̂dc〉|QND)

−〈σ̂dc〉|QND(d〈σ̂ba〉|QND) − d〈σba〉|QNDd〈σdc〉|QND

= −κ
〈
�σ

(1)
ba �Fz

〉
s

〈
�Fz�σ

(2)
dc

〉
s
dt, (26)

where we have employed the Ito calculus dW 2 = dt .
Note that when the third-order cumulants are set to 0,
the contribution of the L superoperator to the dynamics
of the two-body covariances vanishes, d〈�σ

(1)
ba �σ

(2)
dc 〉s |L =

κ
4 〈L†[�σ

(1)
ba �σ

(2)
dc ]〉sdt = 0. This indicates that the events of

no-photon detection under the Gaussian-state approximation
do not affect atom-atom correlations; the measurement back-
action and squeezing arise from the homodyne detection in the
guided modes.

Using all of the approximations above, we can efficiently
calculate the collective spin dynamics for the ensemble of
qutrits (dimension d = 3) with d2 = 9 equations for the one-
body quantity, 〈σ̂ba〉, and d2(d2 + 1)/2 = 45 equations for
the two-body covariances, 〈�σ

(1)
ba �σ

(2)
dc 〉s , in the symmetric

subspace independent of the number of atoms. With this
formalism in hand, we can calculate the squeezing parameter,
Eq. (16), as a function of the time by finding time-dependent
solutions for the one-body averages 〈f̂x〉 and 〈�f 2

z 〉 and the
two-body covariances 〈�f (1)

z �f (2)
z 〉. The detailed approach

to calculating the collective spin dynamics is given in the
Appendix.

Using this formalism, we calculate the squeezing of an
ensemble of cesium atoms, initially spin-polarized in the
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FIG. 6. Reciprocal spin-squeezing parameter, Eq. (16). (a, c) Plots
of ξ−2 as a function of time in units of the optical pumping rate γop,
for the cylindrical nanofiber and square waveguide, respectively, for
NA = 2500, with other parameters given in the text. These curves peak
at the time determined by the detailed balance of reduced uncertainty
due to QND measurement and decoherence due to optical pumping.
(b, d) Plots of the peak value ξ−2 as a function of NA for the nanofiber
and square waveguide, respectively.

6S1/2, |f = 4,mx = 4〉 state. We choose the guided mode
frequency near the D2 resonance, 6S1/2 → 6P3/2, far detuned
compared to the excited-state hyperfine splitting. In Fig. 6,
we plot the reciprocal of the spin-squeezing parameter as a
function of the time and its peak as a function of the atom
number, NA, in both the optical nanofiber and the square
waveguide cases. By placing atoms 200 nm from the nanofiber
surface (r ′

⊥ = 1.8a), our simulations for 2500 atoms yield
6.3 dB of squeezing. Using the square waveguide platform
with the same number of atoms placed 150 nm from the
surface, our calculation yields 12.9 dB squeezing. As we have
shown in Sec. II, the square waveguide geometry enhances the
anisotropic contrast of the two orthogonal guided modes and
dramatically reduces the relative local intensity when the atoms
are placed on the y axis. This results in a large cooperativity
and higher peak spin squeezing, achieved in a shorter time
and with a relatively slower decay compared to the nanofiber.
In addition, in Figs. 6(b) and 6(d) we show how the peak
squeezing scales with the number of trapped atoms when the
atom positions are fixed as above.

In the absence of any other noise, the cooperativity of
atom-light coupling increases as the atoms are placed closer
to the waveguide surface. Figures 7(a) and 7(c) show the
peak squeezing as a function of r⊥ for both the nanofiber
and the square waveguide geometries with 2500 atoms. With
the same setting, we also plot out the cooperativity, C1, on a
logarithm scale in Figs. 7(b) and 7(d) as a function of the atom
radial distance to the center of both waveguide geometries. We
find that C1 is proportional to e−βr⊥ and the peak squeezing
scales as

√
Dopt, where β ≈ 1.65/a for the nanofiber and

FIG. 7. (a, c) Peak squeezing parameter and (b, d) cooperativity
at the optimal azimuthal trapping position as a function of the radial
distance to the waveguide axis, for NA = 2500, with other parameters
given in the text. Nanofiber case (a, b); square waveguide case (c, d).

β ≈ 2.14×2/w for the square waveguide with 2500 atoms.
The cooperativity of the square waveguide increases more
rapidly than that of the nanofiber as the atoms approach the
waveguide surface.

IV. SUMMARY AND OUTLOOK

In this paper we have studied the cooperativity of the
atom-photon interface for two nanophotonic geometries: a
cylindrical nanofiber and a square waveguide. Due to the
anisotropic nature of the guided modes, one can strongly
enhance the cooperativity by trapping atoms at positions that
maximize the rate at which photons are forward-scattered into
the orthogonally polarized guided mode, while simultaneously
minimizing the rate at which they are scattered into free
space. Counterintuitively, the optimal geometry is such that
atoms at a certain distance from the surface are trapped at
the azimuthal angle of the minimal intensity of the probe. We
applied this idea to study the generation of a spin-squeezed
state of an ensemble of atoms induced by QND measurement,
mediated by the Faraday interaction in the dispersive regime.
With realistic parameters, our simulation shows more than
6 dB of squeezing for the cylindrical nanofiber or 12 dB
for the square waveguide with 2500 atoms. The amount of
spin squeezing we predict based on the Faraday effect is
substantially larger than that for the birefringence-based spin-
squeezing protocol studied in our earlier work [24]. Although
we have only considered a cylindrical nanofiber and a square
waveguide, the ideas presented in this paper are applicable to
other nanophotonic waveguide geometries which could show
enhanced cooperativity. In addition, our model of decoherence,
simplified when the detuning is large compared to the excited-
state hyperfine splitting, is almost certainly not the optimal
operating condition.

Our simulations are based on a first-principles stochastic
master equation that includes QND measurement backaction
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that generates entanglement and results in spin squeezing, as
well as decoherence due to optical pumping by spontaneous
photon scattering [9,24,52]. This simulation is made possible
by a set of simplifying assumptions: (i) we restrict each
atom to a qutrit, embedded in the hyperfine manifold of
magnetic sublevels; (ii) the state is exchange symmetric with
respect to any two atomic spins; and (iii) the many-body
state is fully characterized by one- and two-body correlations
(the Gaussian approximation). With these, we solve for the
metrologically relevant squeezing parameter as a function of
time and see the trade-offs between QND measurement and
decoherence for various geometries and choices of parameters.
Our method is extendable to include higher order correlations,
which become manifest at large squeezing, when the Holstein-
Primakoff (Gaussian) approximation breaks down. The com-
putational framework we have developed here should allow us
to study n-body moments with an acceptable computational
load.

In future work we intend to extend our analysis in a number
of directions. While we have focused here on the enhancement
of the cooperativity in a nanophotonic waveguide-based QND
measurement, we did not fully analyze the impact of the Purcell
effect and the modification of spontaneous emission rates in
our simulations. We have also neglected here the motion of
atoms in the optical lattice. In practice, however, these effects
are important, the latter having been observed in the nanofiber
experiments [37,38,55,56]. We include these in future studies,
with an eye towards the development of new strategies for
atomic cooling and state initialization in the nanophotonic
platforms [57]. We expect that our proposed geometry, which
places the atoms at positions of minimum intensity, could
also help reduce the perturbation of the motion of trapped
atoms due to the probe, which causes a disturbance in the
signal [37].

Finally, we have studied here the dispersive regime of
a QND measurement, where the probe light is detuned far
off-resonance, and multiple scattering of photons among atoms
is negligible. To extend our theory, it is necessary to include
collective effects such as super- and subradiance [23,46,58],
with applications including quantum memories [34,59], and
the generation of matrix product states and cluster states
[60–64].
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APPENDIX: MODELING COLLECTIVE
SPIN DYNAMICS

In this Appendix we give further details of the equations of
motion for spin squeezing as a function of the time, as discussed
in the text, building on the work of Norris [52]. In the symmetric
subspace, and in the Gaussian approximation, we track a set
of one- and two-body correlation functions that determine
the metrologically relevant squeezing parameter, Eqs. (16)
and (17). The evolution is determined by the dynamics induced
by the QND measurement and decoherence due to optical
pumping, Eqs. (18)–(21). For concreteness, we consider here
cesium atoms, initially prepared in a spin-coherent state,
with all atoms in the stretched state polarized along the x

axis, |↑〉 = |6S1/2, f = 4,mx = 4〉. The atoms are trapped
on the y axis at a distance r ′

⊥ from the core axis of the
waveguide and are probed with guided light in the H mode,
which has linear polarization in the x direction at the position
of the atoms. We take the detuning large compared to the
excited-state hyperfine splitting, e.g., 4 GHz red detuned from
the D2 line, |6S1/2, f = 4〉 → |6P3/2, f

′ = 3〉. Spontaneous
emission from the probe may result in optical pumping of
atoms to the other hyperfine manifold, f = 3; we treat this
as a loss channel under the approximation that, over the time
interval of interest, there is a negligible probability that these
atoms will repump to f = 4. We also include a bias static
magnetic field along the z axis. This does not affect the
QND measurement of Fz, but ultimately, we must calculate
all dynamics in the rotating frame.

Spontaneous emission, optical pumping, and the resulting
decoherence act locally on each atomic spin, governed by the
master equation, Eq. (21). For light linearly polarized in the x

direction, and for detunings large compared to the excited-state
hyperfine splitting, this takes the simplified form [47]

dρ̂(n)

dt

∣∣∣∣
op

= D[ρ̂(n)] = − i

h̄
[ĤA,ρ̂(n)] − γopρ̂

(n)

+ γop

4f 2
(f̂ (n)

+ ρ̂(n)f̂
(n)
− + f̂

(n)
− ρ̂(n)f̂

(n)
+ ), (A1)

where f̂
(n)
± = f̂ (n)

z ± if̂ (n)
y are the raising and lowering op-

erators for projection of spin along the x axis, and γop =
�2

A

18�2 σ0
Iin
h̄ω0

is the optical pumping for linear polarization in
the far-detuned limit, given intensity Iin at the position of
the atom (we assume that all atoms are trapped the same
distance for the waveguide and, thus, see the same intensity).
The atomic Hamiltonian is ĤA = ∑

n h̄�0f̂
(n)
z + ĤLS, the sum

of the Zeeman interaction with a bias magnetic field, giving
rise to Larmor precession at frequency �0, and the light shift
ĤLS = h̄χ3F̂zŜ3, due to the probe. Even for far detuning, the
residual tensor light shift cannot be neglected, as it scales
at 1/�2, the same as γop and κ . In principle, a two-color
probe can remove the tensor term, which would otherwise
lead to a degradation of the mean spin and, thus, a reduction
in metrologically useful squeezing [65,66]. We neglect this
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effect here. Finally, going to the rotating frame at the Lar-
mor frequency, f̂ (n)

x → f̂ (n)
x cos(�0t) + f̂ (n)

y sin(�0t), f̂ (n)
y →

f̂ (n)
y cos(�0t) − f̂ (n)

x sin(�0t), and averaging the rapidly oscil-
lating terms (RWA), the master equation takes the form

dρ̂(n)

dt

∣∣∣∣
op

= D[ρ̂(n)]

⇒ −γopρ̂
(n) + γop

8f 2

(
f̂ (n)

x ρ̂(n)f̂ (n)
x + f̂ (n)

y ρ̂(n)f̂ (n)
y

+ 2f̂ (n)
z ρ̂(n)f̂ (n)

z

)
. (A2)

With atoms initially prepared in the “fiducial state,” |↑〉 =
|f = 4,mx = 4〉, we include in the dynamics the “coupled
state,” |↓〉 = |f = 4,mx = 3〉, and the “transfer state,” |T 〉 =
|f = 4,mx = 2〉. Restricted to this qutrit substate, the spin
projector operators {f̂x,f̂y,f̂z} are given in Eqs. (22).

With all the components of the stochastic master equation
defined in Eqs. (18)–(21), one can derive the equations of
motion of one- and two-body moments straightforwardly using
the symmetric Gaussian state approximation. Some explicit
results have been given in Eqs. (24)–(26). The equation of
motion for the optical pumping dynamics of the one-body

moment 〈σ̂ba〉 is given by

d〈σ̂ba〉|op = 〈D†[σ̂ba]〉dt =
∑
c,d

tr(D†[σ̂ba]σ̂dc)〈σ̂dc〉dt.

(A3)

The equations of two-body moments of the optical pumping
can be derived similarly. Continuing from Eq. (24), we have

d
〈
�σ

(1)
ba �σ

(2)
dc

〉
s

∣∣
op

= 〈
�D†[σ (1)

ba

]
�σ

(2)
dc

〉
s
dt + 〈

�σ
(1)
ba �D†[σ (2)

dc

]〉
s
dt

=
∑
m,n

tr(D†[σ̂ba]σ̂mn)
〈
�σ (1)

mn�σ
(2)
dc

〉
s

+
∑
m,n

tr(D†[σ̂dc]σ̂mn)
〈
�σ̂

(1)
ba �σ (2)

mn

〉
s
. (A4)

In deriving Eqs. (25) and (26), we have used the Gaussian state
assumption to write three-body moments in connection to one-
and two-body moments, 〈ÂB̂Ĉ〉 = 〈ÂB̂〉〈Ĉ〉 + 〈ÂĈ〉〈B̂〉 +
〈B̂Ĉ〉〈Â〉 − 2〈Â〉〈B̂〉〈Ĉ〉. If we keep only the coherence oper-
ators of the nearest coupling states, Eqs. (A3) and (A4) recover
the same results as found by Norris [52].

We apply similar techniques to derive the equations of
motion due to QND measurement, Eqs. (25) and (26), to yield

d〈σ̂ba〉|QND = κ

4

∑
c,d

tr(L†[σ̂ba]σ̂dc)〈σ̂dc〉dt +
√

κ

4

∑
c,d

tr(H†[σ̂ba]σ̂dc)〈σ̂dc〉dW, (A5)

d
〈
�σ

(1)
ba �σ

(2)
dc

〉
s

∣∣
QND = −κ

{
1

2

[√
f

2
(δa↑〈σ̂b↓〉 + δb↓〈σ̂↑a〉 + δa↓〈σ̂b↑〉 + δb↑〈σ̂↓a〉)

+
√

2f − 1

2
(δa↓〈σ̂bT 〉 + δbT 〈σ̂↓a〉 + δaT 〈σ̂b↓〉 + δb↓〈σ̂T a〉)

]

−
√

f

2
〈σ̂ba〉(〈σ̂↑↓〉 + 〈σ̂↓↑〉) −

√
2f − 1

2
〈σ̂ba〉(〈σ̂↓T 〉 + 〈σ̂T ↓〉)

+ (NA − 1)

[√
f

2

(〈
�σ

(1)
ba �σ

(2)
↑↓

〉
s
+ 〈

�σ
(1)
ba �σ

(2)
↓↑

〉
s

)

+
√

2f − 1

2

(〈
�σ

(1)
ba �σ

(2)
↓T

〉
s
+ 〈

�σba�σ
(2)
T ↓

〉
s

)]}

×
{

1

2

[√
f

2
(δc↑〈σ̂d↓〉 + δd↓〈σ̂↑c〉 + δc↓〈σ̂d↑〉 + δd↑〈σ̂↓c〉)

+
√

2f − 1

2
(δc↓〈σ̂dT 〉 + δdT 〈σ̂↓c〉 + δcT 〈σ̂d↓〉 + δd↓〈σ̂T c〉)

]

−
√

f

2
〈σ̂dc〉(〈σ̂↑↓〉 + 〈σ̂↓↑〉) −

√
2f − 1

2
〈σ̂dc〉(〈σ̂↓T 〉 + 〈σ̂T ↓〉)

+ (NA − 1)

[√
f

2

(〈
�σ

(1)
↑↓�σ

(2)
dc

〉
s
+ 〈

�σ
(1)
↓↑�σ

(2)
dc

〉
s

)

+
√

2f − 1

2

(〈
�σ

(1)
↓T �σ

(2)
dc

〉
s
+ 〈

�σ
(1)
T ↓�σ

(2)
dc

〉
s

)]}
dt. (A6)
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By combining the optical pumping and QND measurement contribution to Eqs. (A3)–(A6), one can find a set of stochastic
equations of a closed set of variables of

{〈σ̂ba〉,〈�σba�σdc〉s |a,b,c,d ∈ {↑ , ↓ ,T }} (A7)

in the symmetric qutrit subspace. The matrix of equations is sparse and close to diagonal, which indicates that only nearest-neighbor
coupling is possible in the {〈σ̂ba〉,〈�σba�σdc〉s} basis. In the symmetric qutrit subspace, we have 45 two-body moment variables
and corresponding sparse second-order equations, which we solve numerically.
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