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Directionality fields generated by a local Hilbert transform
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We propose an approach based on a local Hilbert transform to design non-Hermitian potentials generating
arbitrary vector fields of directionality, �p(�r), with desired shapes and topologies. We derive a local Hilbert
transform to systematically build such potentials by modifying background potentials (being either regular or
random, extended or localized). We explore particular directionality fields, for instance in the form of a focus to
create sinks for probe fields (which could help to increase absorption at the sink), or to generate vortices in the
probe fields. Physically, the proposed directionality fields provide a flexible mechanism for dynamical shaping
and precise control over probe fields leading to novel effects in wave dynamics.
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I. INTRODUCTION

Systems described by non-Hermitian potentials, first in-
troduced in quantum mechanics and linear electrodynamics
[1,2], have recently found realizations in optics [3–8] by using
coherent gain and losses, thus opening the new discipline of
non-Hermitian optics. One of the most fascinating properties
of such non-Hermitian systems is that the parity (in one
dimension), or generally the space symmetry (in two or higher
dimensions), can be broken at around so called exceptional
points. As a consequence, different counterintuitive phys-
ical effects arise, such as unidirectional invisibility [6–8],
unidirectional transmission [9], unidirectional lasing [10,11]
anti-band-gaps [12], perfect unidirectional absorption [13,14],
nonreciprocal Bloch oscillations [15], and generally the uni-
directional transfer of energy in linear [3–5] and nonlinear
[16–18] systems. Most of the new intriguing features were
initially proposed in a particular kind of such non-Hermitian
systems, namely in those holding PT-symmetry [1].

An interesting extension of such broken-symmetry systems
is when such unidirectionality holds only locally [19]. The
most straightforward case of such a one-dimensional (1D)
system is, for instance, when the locally broken symmetry
favors wave propagation to the left on the right half-space,
and to the right on the left half-space. Such a potential may be
expected to introduce a sink at the boundary of both domains
with different parity, i.e., at x = 0, where the probe field may
be efficiently localized [19]. Field localization due to favored
flows toward a selected position, see Fig. 1(a), may be ex-
tremely desirable either in linear or nonlinear optics, especially
beyond one dimension, in higher-dimensional systems. We
propose here general locally non-Hermitian potentials, see
Fig. 1(b), where the probe fields could be configured into
arbitrary shapes and flows, for instance into a sink, a vortex,
or into closed flow channels; see Figs. 1(c) and 1(d). Such
potentials hold local PT symmetry in the entire spatial domain.
Therefore, working exactly on the local exceptional point
can allow precise control over the field flow sense, enabling

the generation of arbitrary directionality fields. The general
ultimate goal is to systematically construct arbitrary complex
non-Hermitian potentials favoring any desired configuration
of directionality fields in the system.

This article provides a solution to the problem sketched
above. We first consider a given directionality field �p(�r), as
denoted by the arrows in Fig. 1. Next, we consider any initial
background potential n(�r), being, for instance, real (in the
case of optics, a real refractive index profile), or being, more
generally, also complex (by including optical gain and losses).
Such an initial background potential may correspond with a
localized object on a constant refractive index background,
n(�r) → n0 for |�r| → ∞, as well as to spatially extended
patterns, i.e., a periodic, quasiperiodic, or randomly distributed
background potential. The central message of this article is
to propose and derive the explicit integral relation, which
could be referred to as a local Hilbert transform, to obtain
the reciprocal part of the background potential, m(�r), which
ensures a desired configuration of the directionality field,
defined by any arbitrary vector field, �p(�r). For instance, in
the case of optics, starting from an initial refractive index
profile n(�r), the proposed local Hilbert transform generates the
corresponding spatial profile of the gain-loss function, m(�r);
see Fig. 1(a). The local directionality of the final complex
potential is warranted by the corresponding Fourier transform
(zero in one half-space) as indicated in Fig. 1. Finally, in order
to verify the expected effect, we numerically check that the
flows of the probe fields follow the given directionality field
�p(�r); for instance, the field accumulates at around the focal
points of �p(�r). These tests have been performed by numer-
ically solving the Schrödinger equation (for paraxial optics,
or zero-temperature Bose condensates) for linear systems or
the complex Ginzburg-Landau equation (CGLE) for nonlinear
systems (for instance, for broad aperture lasers) with given
complex potentials. Moreover, the tests hold for more complex
models for field flow, like the set of Maxwell’s equations (see
Appendix B).
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FIG. 1. Directionality fields. (a) One-dimensional directionality
field consisting of spatial domains of different parity, containing sinks,
and sources between the domains. The first row represents a random
complex potential with a given real n(x) and imaginary part m(x)
(blue and red, respectively) with corresponding Fourier spectra of
each domain shown in the second row. (b) Vector field to generate a
complex directionality field in two spatial dimensions in the form of
a focus, which may eventually create a sink for the probe field. The
insets schematically represent the Fourier transforms of an arbitrary
random directionality potential at several points. (c,d) Vector fields in
the form of a node and an antinode, resulting in a vortex with a sink
and a circular flow channel for the probe field. In all cases, the vector
fields, �p(�r), are denoted by dark blue arrows.

II. LOCAL HILBERT TRANSFORM

To characterize the complex directionality fields, we in-
troduce a measure of local directionality. In the simplest 1D
case, a scalar function p(x) is sufficient, equal to +1/ − 1 for
right/left directionality, respectively. Such uniform direction-
ality [p(x) = const = ±1] can be constructed by a pair of the
well-known Hilbert transform:

m(x) = −p

π
P

∫
n(x1)

x − x1
dx1,

(1)

n(x) = −p

π
P

∫
m(x1)

x − x1
dx1,

connecting the two quadratures of a complex function in
physical space. The quadratures can be, for instance, the real
and imaginary parts of the potential (corresponding to the
refractive index and gain-loss in optics). P denotes the principal
value of the integral (the integral is calculated everywhere,
except at the singularity point).

In fact, the Hilbert transform in the frequency domain
(referred to as the Kramers-Kronig relation) is directly related
to the directionality of time. Indeed, the causality princi-
ple entails total invisibility of the future, which generates
analogous relations in frequency. Analogously, the spatial

Hilbert transform is related to the unidirectional invisibility
in space [20,21]. In the particular case of Eq. (1), it ensures
the suppression of either the left or right scattering by the
corresponding potential, depending on the sign of p.

Now, in pursuit of a potential that determines an arbitrary
directionality of the field, we propose a local Hilbert transform,
where the p(x) function can vary in space. For this general 1D
case, the pair of Hilbert transforms (see Appendix A 1 for the
derivation) reads

m(x) = 1

π
P

∫
p(x)n(x1)

x − x1
dx1,

(2)

n(x) = −1

π
P

∫
p(x1)m(x1)

x − x1
dx1.

Note that the directionality function enters into Eq. (2)
asymmetrically, which warrants that the sequentially applied
direct and inverse local Hilbert transform recovers the ini-
tial function, while p(x)2 = 1. Symbolically, Eq. (2) (see
Appendix A 2) can be cast in operator form: m(x) ≡ Ĥ P̂ n(x)
and n(x) ≡ P̂ Ĥ−1m(x), respectively. We note that generally
the local Hilbert operator Ĥ and directionality operator P̂

do not commute. The noncommutivity of these operators
requires the asymmetric form of transformations, Eq. (2). This
noncommutivity problem does not occur in a classical Hilbert
transform pair for uniform directionality.

Finally, we tackle 2D systems. We define a unit direction-
ality vector field �p(�r), such that | �p(�r)| = 1. Then, the pair of
local Hilbert transforms reads (see Appendix A 3)

m(�r) = 1

π
P

∫∫
δ((�r − �r1) · �q(�r − �r1))n(�r1)

�p(�r)(�r − �r1)
d�r1,

(3)

n(�r) = −1

π
P

∫∫
δ((�r − �r1) · �q(�r − �r1))m(�r1)

�p(�r1)(�r − �r1)
d�r1.

Here �q(�r) is a unit vectorial field orthogonal to a given field
of directionality: �q(�r) · �p(�r) = 0 and |�q(�r)| = 1. Note again
that �p(�r) and �p(�r1) enter asymmetrically into Eq. (3). Besides,
technically, due to the presence of the Kronecker δ function in
Eq. (3), the integrals become, effectively, one-dimensional.

The pair of local Hilbert transforms, Eq. (3), is our central
result, which is used throughout the rest of the article to design
specific potentials to generate the given fields of directionality,
and to explore the propagation of the probe fields in such
potentials.

Although Eq. (3) may relate arbitrary (orthogonal) quadra-
tures of the complex potential, we consider here a simple case
in which the quadratures are the real and imaginary parts of
the potential: n(�r) ≡ nRe(�r), m(�r) ≡ nIm(�r), i.e., the refractive
index and gain-loss spatial distributions of the corresponding
optical potentials. We start from a given refractive index profile
nRe(�r) (either describing localized objects, extended objects,
or a random background), and then build the corresponding
gain-loss profile, nIm(�r), by using Eq. (3) to obtain a final
complex potential n(�r) = nRe(�r) + inIm(�r), which ensures a
given directionality field �p(�r). Then, we probe the potential
by numerically solving the Schrodinger equation with the
corresponding complex potential (see Appendix B for the other
models of the probing field).
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FIG. 2. Probe field evolution in directionality fields. Directionality fields in the form of a focus [the one shown in Fig. 1(b)] generated
from the real-valued background potential with different profiles, such as (a) an octagonal pattern, (b) a random pattern, and (c) a localized
pattern. The upper row depicts the real part of the background potential, nRe(�r), the second row depicts the corresponding imaginary part of the
potential generated by the local Hilbert transform, nIm(�r), and the bottom row shows the normalized final distributions of the probe field after
a sufficiently long time. The evolutions of the field for the three cases are shown in the corresponding movie (Supplemental Movie 1 [22]).

III. NUMERICAL ANALYSIS

We consider a paraxial electromagnetic field equation
of diffraction (equivalent to the Schrödinger equation for a
quantum wave function) for an optical beam including the
non-Hermitian potential, U (�r), in the normalized form as

∂tA(�r,t) = i∇2A(�r,t) + iU (�r)A(�r,t), (4)

where A(�r,t) is the slowly varying electric-field envelope
distributed in �r and evolving in time t , and U (�r) = nRe(�r) +
inIm(�r) is a complex potential in two-dimensional space gener-
ated from an arbitrary vector field of directionality, �p(�r). Here,
nRe(�r) is the initial considered background pattern and nIm(�r)
is the constructed imaginary part of the potential using the
proposed local Hilbert transform. We numerically solve Eq. (4)
using the split step method to explore different directionally
fields that demonstrate the functionality of our proposal.

We first consider the simplest directionality field in the
form of a sink or a focus [see Fig. 1(b)]: �p(�r) = −�r/|�r|,
starting from different background potentials, nRe(�r). The
numerical results for an octagonal, random, and localized
background potential are presented in Fig. 2. For a particular
initial probe field (a Gaussian beam at any arbitrary position),
we observe the flow of the probe field toward the center, �r = 0.

After a sufficient evolution time, the field is finally localized
at the center in all cases, yet it grows in time due to the
linearity of the system while maintaining its spatial profile.
We note the robustness of the mechanism, since localization
occurs irrespective of the initially chosen probe field position.
Also, different background configurations (octagonal, random,
localized) lead to similar localization distributions, with minor
differences on small spatial scales due to different symmetries
of the background potential.

Next, we explore more exotic directionality fields: a
superposition of a vortex with a sink as defined by the
vector field: �p(�r) = −(α�r + β�r × �ez)/|α�r + β�r × �ez|, and a
circular channel flow as �p(�r) = [α(|�r| − 1)�er + β�r × �ez]/
|[α(|�r| − 1)�er + β�r × �ez]|. In both expressions, �ez, �er , and
�eϕ stand for the unit basis vectors in polar coordinates, and
α and β correspond to the radial and azimuthal part of the
flow, respectively. The results for both cases are provided in
Fig. 3.

The final spatial field distributions in Fig. 3 indicate that
the probe field is accumulated at the center, �r = 0, in the
case of a vortex sink in the directionality field and on a
ring for the directionality field in the form of a circular
channel. The evolutions of the field toward the final state in
the considered chiral cases are also robust (weakly dependent
on the background potential as well as on the initial distribution
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FIG. 3. Probe field evolution in chiral directionality fields for
background octagonal potential. (a) Vortex with sink, (b) circular
flow channel, corresponding to the vector fields of Figs. 1(c) and
1(d). The first row represents the imaginary part of the potential
(the real part is shown in Fig. 2), the second row shows the final
amplitude distributions of the probe field, the third row shows the
phase distributions of the probe field, and the fourth row represents
the corresponding flows of the probe field. The field flow is determined
by −i(A∗∇A − A∇A∗), where A(�r,t) is the spatial distribution of the
probe field.

of probe fields), and they are shown in the corresponding movie
(see Supplemental Movie 2 [22]).

IV. APPLICATION TO VCSELs

Next, as a proof of concept and to show the applicability
of the proposed scheme also for nonlinear systems (not only
for linear systems, as demonstrated above for the Schrödinger
equation), we study a possible implementation for laserlike
systems with field saturation. We consider a patterned vertical
cavity surface emitting laser (VCSEL), as shown in Fig. 4(a),
where the sink functionality is implemented to improve the
brightness output beam. The system may be described by
the CGLE with the corresponding complex potential [19]. The
results show the field localization induced by the unidirectional
potential; see Fig. 4(b). It is clear from the flux depicted in the

FIG. 4. Field evolution of the VCESL described by the CGLE
(the laser case). (a) Schematic of a modified VCSEL with a patterned
active layer and a correspondingly profiled mirror may lead to a
directionality field in the form of a localized pattern with a sink,
as shown in Fig. 2(c). (b) Final distribution of the output field after
saturation for p = −0.1. The inset represents the field flux for the
corresponding field distribution. Note that the spatial domain (x,y)
has normalized units.

inset of Fig. 4(b) that the field is directed toward the center,
confirming the sink behavior, leading to a bright and stable
output beam when the field is saturated.

V. CONCLUSIONS

To conclude, we propose and derive a local Hilbert trans-
form relating the two quadratures of the non-Hermitian po-
tential to construct the arbitrary directionality fields from
any arbitrary background pattern. The results obtained in
two dimensions could be straightforwardly extendable to 3D
systems. We present the simplest cases of such directionality
fields in the form of a sink, a vortex, and a circular flow channel,
while evidently the procedure allows building directionality
fields of any shape. We also show that the local Hilbert
transform can be applied on initial periodic, random, and
localized background potentials to generate such directionality
fields, among others. The proposed theory can yield signif-
icant control over the electromagnetic field flows, providing
an alternative to the broad field of transformation optics
[23–26]. Our proposal is generic in nature, which may offer
rich possibilities for structuring the light in linear and nonlinear
micro-optical systems, and it could be applied to all fields
of wave dynamics, like zero temperature Bose condensates,
acoustics, plasmonics waves, etc., all described by the models
of Schrödinger equation type.

We note that the potentials ensure the directionality fields
not only probing by the Schrödinger equation but also by other
models, for instance the full Maxwell’s equations governing
electromagnetic fields without paraxial approximation (see
Appendix B). The specific model alters only the Green function
in scattering theory; however, it does not affect the scattering
potentials and consequently does not alter the local Hilbert
transform.

Note also that an analogous directionality field may be
achieved with only purely lossy media, thus increasing the
feasibility for practical realization, e.g., a perfectly matched
layer (PML) on arbitrary boundary contours. Moreover, di-
rectionality fields can be generated in nonlinear cases. For
instance, we demonstrate that the directionality fields in the
form of a sink may increase the brightness of the emission
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of broad aperture lasers, leading to bright and narrow output
beams. All this indicates a huge application potential, apart
from the fundamental importance of the local Hilbert transform
itself.
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APPENDIX A: DERIVATION OF THE LOCAL HILBERT
TRANSFORM

In this appendix, we derive the local Hilbert transform for
2D potentials, systematically exploring the cases in increasing
order of complexity, starting from the well-known Hilbert
transform in the 1D case, to the local Hilbert transform in one
dimension, then finally extending to the 2D case.

1. Spatial Hilbert transform in one dimension

Let us consider the background potential, n(x), with its
spatial Fourier transform n(kx) = 1√

2π
∫ n(x)exp(−ikxx)dx.

The space symmetry is maximally broken if the spectra are
set to zero either on the left or right half-axis kx , depending on
the value of p = ±1. This can be done by adding to the initial
potential a potential with the following spectrum:

m(kx) = n(kx)p sgn(kx), (A1)

where sgn(∗) is the sign function. The antisymmetric part of the
spectrum (with the sign function) corresponds to the imaginary
part of the potential in real space if the initial potential n(kx)
is a real one. Equation (A1), the product of two functions,
is equivalent to the Hilbert transform in the wave number kx

domain. The standard form of the Hilbert transform in the x

domain is the convolution of the inverse Fourier spectra of both
product components of (A1):

m(x) = p

π
P

∫
n(x1)

x − x1
dx1. (A2)

Note that the inverse Fourier transform of the sign function
is

√
2/πi/x, and the convolution in (A2) in one dimension

introduces the factor (2π)−1/2; P denotes the principal value
of the integral. Differently from the conventional form of the
Hilbert transform, we introduced here the directionality factor
p. Analogously, the inverse Hilbert transform reads

n(x) = −p

π
P

∫
m(x1)

x − x1
dx1. (A3)

For consistency, the sequentially direct and inverse Hilbert
transform H ∗ H−1 can be calculated applying sequentially

(A2) and (A3):

m(x) = p

π
P

∫
n(x1)

x − x1
dx1

= −p2

π2
P

∫
m(x2)

(x − x1)(x1 − x2)
dx1dx2. (A4)

Since the relation (1/π2)P ∫[dx1/(x − x1)(x1 − x2)] =
−δ(x − x2) holds, the sequentially direct and inverse Hilbert
transform results in an identity transform.

The Hilbert transform ensures the maximum spatial asym-
metry in the system’s response to the non-Hermitian potentials.
The Hilbert transform is valid for the PT-symmetric potentials
at the so-called PT-phase transition (or critical) point (but not
vice versa).

2. Spatial local Hilbert transform in one dimension

In the case of potentials with local directionality, for
instance for those containing domains of alternating direc-
tionality as shown in Fig. 1(a), one should introduce the
local function of the directionality, therefore the parameter p

becomes space-dependent p(x). Then, in an analogous way,
we define the local Hilbert transform,

m(x) = 1

π
P

∫
p(x)n(x1)

x − x1
dx1, (A5)

and the inverse,

n(x) = −1

π
P

∫
p(x1)m(x1)

x − x1
dx1. (A6)

Note that the directionality function p(x) enters into (A4)
and in (A5) in different ways: in (A5) it enters after the integra-
tion, and in (A6) it enters before the integration. The symmetric
shape of the pair of Hilbert transform would result in the
following integral on ∫ p(x1)dx1

(x−x1)(x1−x2) checking the sequentially
direct- and inverse Hilbert transform. The above integral does
not lead to the δ(x − x2) function for noncontinuos p(x1). Note
that p(x1) is not continuous at the sink and source points (see
Fig. 1).

Equations (A5) and (A6) written in symbolical operator
form read m(x) = Ĥ P̂ n(x) and n(x) = P̂ Ĥ−1m(x), where Ĥ

is the Hilbert operator (i.e., setting of half-spectra to zero) and
P̂ is the directionality operator (saying which half of the spectra
to set to zero). Calculation of the sequentially direct and inverse
Hilbert transform results either in m(x) = Ĥ P̂ P̂ Ĥ−1m(x) or
in n(x) = P̂ Ĥ−1Ĥ P̂ n(x). Since p(x)2 = 1, both direct and
inverse Hilbert transforms result in unity relations. In contrast,
the direct and inverse Hilbert transform in the symmetrical case
would lead to operators Ĥ P̂ Ĥ−1P̂ and Ĥ−1P̂ Ĥ P̂ , which, in
general, are not unity operators if Ĥ and P̂ do not commute.

3. Spatial Hilbert transform in two dimensions

In 2D systems, we define the directionality by a vector
�p, with the norm | �p| = 1. The background potential is also
defined in 2D space n(�r), and its Fourier image is n(�k) =

1
2π

∫ n(�r)exp(−i�k�r)d�r . Then the directionality can be achieved

by setting a corresponding half-plane of spectrum n(�k) to zero,
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which mathematically reads

m(�k) = n(�k)sgn(�k · �p). (A7)

The Fourier transform of sgn(�k · �p) reads 2iδ(�r · �q)/(�r · �p),
where �q is the unit vector orthogonal to the given field of
directionality: �q · �p = 0, and |�q| = 1. The Hilbert transform
then follows directly:

m(�r) = 1

π
P

∫∫
δ((�r − �r1) · �q)n(�r1)

(�r − �r1) · �p d�r1, (A8)

n(�r) = −1

π
P

∫∫
δ((�r − �r1) · �q)m(�r1)

(�r − �r1) · �p d�r1. (A9)

Equations (A8) and (A9) correspond to the Hilbert trans-
form for a uniform directionality. To write the final result,
the local Hilbert transform in two dimensions, we proceed
as in the 1D case, i.e., we assume that the fields �p(�r) and
�q(�r) are functions of space. Then, the corresponding formulas
read

m(�r) = 1

π
P

∫∫
δ((�r − �r1) · �q(�r − �r1))n(�r1)

�p(�r)(�r − �r1)
d�r1, (A10)

n(�r) = −1

π
P

∫∫
δ((�r − �r1) · �q(�r1))m(�r1)

�p(�r1)(�r − �r1)
d�r1. (A11)

Here �q(�r) is the field orthogonal to the given directionality
field: �q(�r) · �p(�r) = 0 and |�q(�r)| = 1.

Analogously to the 1D case previously explored, the se-
quence of direct and inverse Hilbert transforms using the
asymmetric pair (A10) and (A11) leads to the unity relation,
and thus ensures compatibility.

Note that, technically, due to the presence of the Kronecker
δ function in the integrals, they become effectively one-
dimensional integrals.

APPENDIX B: FDTD SIMULATIONS

The purpose of this appendix is to provide numerical
evidence of the accuracy of the proposed generalized local
Hilbert transform beyond the paraxial approximation, there-
fore using the full set of Maxwell’s equations for the evolution
of the probe field. First, we discuss the similarities and
differences between the scattering of electromagnetic fields in
the Helmholtz (Maxwell’s equations) and Schrödinger models.
Next, we provide the observations of the directionality fields
at optical frequencies using full-wave simulations employing
the finite-difference time-domain (FDTD) method, confirming
that our theory also works on Maxwell’s equations. In addition,
we finally show that such a wave operation can also be realized
via a pure lossy medium, thereby increasing the feasibility and
variety of potential practical realizations.

1. Scattering properties of Helmholtz and Schrödinger
equations

We consider a scalar Helmholtz equation, as directly derived
from Maxwell’s equations:

∇2E(�r) + ε(�r)k2
0E(�r) = 0, (B1)

where k0 = ω0/c is the wave number of frequency ω0 and
ε(�r) = ε0 + 
ε(�r) is a weakly modulated dielectric permit-
tivity, i.e., 
ε(r) 
 ε0, where ε0 is the positive background
(relative) dielectric permittivity. When considering a complex
permittivity, 
ε = 
εRe + iεIm, the system becomes non-
Hermitian. Then, Eq. (B1) becomes

∇2E(�r) + ε0k
2
0E(�r) = −k2

0
ε(r)E(�r). (B2)

Performing the Fourier transform of both sides, we obtain
the following implicit equation for the scattered field:

Es(�k) = k2
0(

k2 − ε0k
2
0

) 1

2π

∫

ε(�k1)Es(�k − �k1)d�k1. (B3)

The term G(k) = k2
0

(k2−ε0k
2
0 )

is the so-called Green function
(more precisely, the spatial Fourier transform of the Green
function), which defines the response of the system (described
by the particular model) to a δ-function excitation in space
(equivalently, filtering in the k domain).

Considering a series expansion for the scattered field: Es =∑n
0 En

s , the implicit equation, Eq. (B3), can be solved itera-
tively in the following way:

En
s (�k) = G(k)

2π

∫
[
ε(k − k′)En−1

s (k′)]dk′, (B4)

where n represents the order of the scattering phenomena.
The first iteration of the series, E1

s (�r), is referred to as the
first-order Born approximation, usually known as the Born
approximation.

In the case of the Schrödinger equation, the stationary field
in the spatial Fourier domain can be written as

Es(�k) = k2
0

k2

1

2π

∫

ε(�k1)Es(�k − �k1)d�k1. (B5)

We note that the sole difference between (B3) and (B5) is a
new Green function, G(k) = k2

0/k
2. Thus, Eq. (B4) can also be

used to calculate the scattered field, of different Born orders,
for the Schrödinger equation, having in this case a different
Green function.

Mathematically, the Schrödinger and Helmholtz equa-
tions represent two systems with slightly different Green
functions, as evident from the scattering functions (B3)
and (B5), with identical convolution integrals but different
terms, 1/(k2 − ε0k

2
0) in the Helmholtz case and 1/k2 in the

Schrödinger case. The rest of the Hilbert transform remains
identical. Physically, this means that the scattering processes
result in different projections of the scattered waves into
the free-space propagation modes. This small difference only
affects the calculation of higher Born-approximation orders
iteratively. Such a difference is not physically significant
in our proposed approach, since the local directionality is
warranted by the zeroing 
ε(�k) over half-plane, regardless of
the scattering amplitude. The Helmholtz model allows us to
describe the propagation of a planar wave guided mode in a
2D plane, where k0 is the wave number of the horizontal mode
(for instance, the lowest order wave guided mode, where the
fields propagate horizontally), and k0 would be practically the
wave number of a plane wave with that frequency, k0 = ω/c.
For a somewhat thicker planar structure, it may be some
other mode. Finally, in the extreme case of an infinitely thick
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FIG. 5. Real (a) and imaginary (b) parts of the refractive index
generated by the local Hilbert transforms in the form of a sink.
Instantaneous spatial intensity profiles for a line source illumination
with a beam waist radius of 5.0 µm, at the time frames (c) 77.0 fs
and (d) 288.6 fs. Similar intensity profiles for a narrow-line source
illumination, with a beam waist radius of 1.0 µm, at the time frames
(e) 77.0 fs and (f) 288.6 fs. Both sources inject a broadband pulse with
a central frequency of 599.6 THz (i.e., central wavelength of 500 nm)
with a bandwidth of 133.6 THz. The dashed white lines indicate the
positions of the sources, while the white arrows denote the source
injection direction. The time evolutions of the intensity profiles are
provided in Supplemental Movie 3 [22]. Numerical calculations were
performed using Lumerical FDTD Solutions.

structure, the field would propagate vertically. Then the wave
number would become k0 = 0, leading to the Schrödinger
equation. Thus, the scattering described by the Helmholtz
model becomes equivalent to the Schrödinger equation for
a vertically propagating mode. In the following sections, we
study basic directionality fields in the form of a sink to verify
our theory beyond the paraxial approximation.

2. Sink directionality fields with gain-loss media

Here, we perform FDTD simulations in an optical
medium with an octagonally patterned background potential.
Figure 5(a) shows the spatial refractive distribution of the initial
background profile, while the imaginary profile of the modified
medium, generated by the directionality field �p(�r) = −�r/|�r|
in the form of a sink, is depicted in Fig. 5(b). A source placed
within the modified medium injects electromagnetic waves
with an electric field polarized perpendicularly to the plane.
Figure 5 collectively shows the full-wave FDTD simulation

FIG. 6. Instantaneous spatial intensity profiles in a pure lossy
medium: (a) for a line source illumination with a Gaussian beam
waist radius of 5.0 µm and (b) for a narrow-line source illumination
with a Gaussian beam waist radius of 1.0 µm at the time frames
77.0 and 81.8 fs, respectively. Temporal properties of the sources are
the same as in Fig. 5. The dashed white lines indicate the positions
of the sources, while the white arrows denote the source injection
direction. Numerical calculations were performed using Lumerical
FDTD Solutions.

results at various time frames, and for sources with a different
beam waist. Furthermore, the detailed time evolutions of the
fields, also compared with the time evolution of the field
inside the initially given medium, are provided in Supplemental
Movie 3 [22].

Note that for the case represented in Fig. 5, we observe
the localization effect twice (see Supplemental Movie 3 [22]).
First, the incident pulse in the form of a plane wave propagating
toward the sink focuses at the center of the sink [see Figs. 5(c)
and 5(e)]. This is a transient behavior, and it evidences
that the directionality field concentrates the incoming wave
into the sink. The field behavior after this primary focusing
depends strongly on the specific situation. In this particular
case, the fields temporally dissipate from the sink position;
however, in a long-term scale, they again concentrate at the
sink position, as clearly shown in Figs. 5(d) and 5(f). We
therefore show the twofold effect of field management by the
directionality field: transient and asymptotic. The asymptotic
concentration of the probe field corresponds precisely to the
(stationary) scattering theory considered in the main part of the
paper.

3. Sink directionality fields with lossy media

An important advantage of the field directionality concept is
that the complex locally transformed media can be constructed
excluding gain materials and can only consider loss materials.
To achieve this goal, we simply add an “offset” to the imaginary
part of the dielectric permittivity such that the gain areas are
completely eliminated in the sample optical medium. Note that
since the Fourier spectra of a constant offset function is a
Dirac δ function positioned at the center of the wave-vector
domain, adding the offset does not distort the local spectra
of the medium. We apply this method to the potential of
Fig. 5; the corresponding numerical calculations are given
in Figs. 6(a) and 6(b) for sources with different waist radii.
It follows from these figures that the incoming wave is, as
expected, directed toward the center, forming a localization
around the center region. It is important to note is that in this
case no post-localization occurs, due to the absence of any gain
material.
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The general conclusion is that the proposed theory of
directionality fields constructed using the local Hilbert trans-
form can be applied not only to paraxial models like the
Schrödinger equation but also to more complicated wave
propagation models, in particular to full Maxwell’s equations

as simulated using the FDTD model. Such a directionality field
concept applied to the electromagnetic spectrum can lead to
a plethora of optical applications ranging from efficient light
detectors/absorbers and lasers with improved brightness and
beam emission quality to optical data processors.
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