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Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime
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We propose and analyze an efficient scheme for the lopsided Raman-Nath diffraction of one-dimensional
(1D) and two-dimensional (2D) atomic gratings with periodic parity-time (PT )-symmetric refractive index.
The atomic grating is constructed by the cold-atomic vapor with two isotopes of rubidium, which is driven by
weak probe field and space-dependent control field. Using experimentally achievable parameters, we identify the
conditions under whichPT -symmetric refractive index allows us to observe the lopsided Raman-Nath diffraction
phenomenon and improve the diffraction efficiencies beyond what is achievable in a conventional atomic grating.
The nontrivial atomic grating is a superposition of an amplitude grating and a phase grating. It is found that
the lopsided Raman-Nath diffraction at the exceptional point (EP) of PT -symmetric grating originates from
constructive and destructive interferences between the amplitude and phase gratings. Furthermore, we show
that the PT -phase transition from unbroken to broken PT -symmetric regimes can modify the asymmetric
distribution of the diffraction spectrum and that the diffraction efficiencies in the non-negative diffraction orders
can be significantly enhanced when the atomic grating is pushed into a broken PT -symmetric phase. In addition,
we also analyze the influence of the grating thickness on the diffraction spectrum. Our scheme may provide the
possibility to design a gain-beam splitter with tunable splitting ratio and other optical components in integrated
optics.
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I. INTRODUCTION

In the past two decades, the study of parity-time (PT )
symmetry has been an important interdisciplinary field in
the scientific and technological mainstream since the concept
of PT symmetry was first proposed in quantum mechanics
by Bender [1,2]. Note that a non-Hermitian Hamiltonian is
PT symmetric and has a real eigenvalue spectrum when it
commutes with the PT operator, i.e., [H,PT ] = 0. For a
general Hamiltonian H = p̂2/2m + V (x̂), with p̂ = ih̄∂/∂t

in the time-dependent Schrödinger equation ih̄∂�/∂t = H�,
the action of the space-reflection operator P and time-reversal
operator T on the momentum and position operators p̂ and
x̂ is P: p̂ → −p̂, x̂ → −x̂ and T : p̂ → −p̂, x̂ → x̂, i →
−i. Then, HPT = p̂2/2m + V (x̂) and PT H = p̂2/2m +
V ∗(−x̂) can be deduced from the above consideration. Thus, a
PT -symmetric Hamiltonian requires V (x̂) = V ∗(−x̂). Unlike
the character of a Hermitian Hamiltonian, an exceptional
point (EP) exists in the PT -symmetric Hamiltonian with the
change of the system parameters. The EP is a phase-transition
point corresponding to the phase transition from an unbroken
PT -symmetric phase to a brokenPT -symmetric phase, where
the real eigenvalue spectrum of the PT -symmetric system
undergoes a phase-transition start to become complex [2].

In recent years, PT symmetry has been extended to the
field of optics due to the formal equivalence between the
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paraxial wave equation [i∂E(x,z)/∂z + (2k)−1∂2E(x,z)/
∂x2 + k0n(x)E(x,z) = 0] and the time-dependent
Schrödinger equation [3,4]. The vertical distance z

plays the role of time t and the optical Hamiltonian is
Hopt = −(2k)−1∂2/∂x2 − k0n(x) [5]. Then, the action of
the operators P and T on the transverse position x is
P: x → −x and T : x → x, i → −i. In this situation,
we can deduce HoptPT = −(2k)−1∂2/∂x2 − k0n(x) and
PT Hopt = −(2k)−1∂2/∂x2 − k0n

∗(−x), where the complex
refractive index n(x) = nr (x) + ini(x) is equivalent to the
potential V (x̂). Thus, the condition of an optical system being
PT symmetric is n(x) = n∗(−x). This relation indicates that
the real part nr (x) of the complex refractive index must be
an even function of x, whereas the imaginary component
ni(x), i.e., gain and absorption, should be odd in optical
PT symmetry. Numerous optical PT -symmetric systems
relying on the modulations of gain and absorption have
been theoretically and experimentally realized in synthetic
waveguides [3,5–9], photonic lattices [4,10–13], microcavities
[14–19], and cold-atom gases [20–25]. Meanwhile, many
novel optical phenomena have been discovered, such as Bloch
oscillation [10,11], single-mode laser [15], ultralow-threshold
chaos [16], enhanced high-order sideband [18,19], coherent
perfect absorbers [13,22], Gaint Goos-Hänchen shift [25],
nonreciprocal and unidirectional light propagation [8,26,27],
and asymmetric Bragg diffraction [28–31].

On the other hand, much attention has been attracted to the
field of grating diffraction due to its significant applications in
the fields of natural science and industrial production [32–36].
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As an optical component with periodic structure, the grating
can diffract the incident light beam into a high-order diffraction
direction. To our knowledge, the prototype of diffraction grat-
ing was first made by Rittenhouse in 1785 [32]. He constructed
a half-inch-wide grating with 53 apertures. Since then, a lot of
schemes have been proposed to study the diffraction charac-
teristics and applications of ruled gratings [37], holographic
grating [38–41], silicon gratings [34,35], and metal gratings
[42]. In recent years, based on electromagnetically induced
transparency (EIT) [43], the tunable atomic gratings called
electromagnetically induced gratings (EIGs) have been theo-
retically and experimentally investigated in multilevel atomic
vapors [44–54]. The notable point in these investigations is that
a standing-wave field replacing the traveling-wave field of EIT
can modulate the spatial distribution of the refractive index,
gain-absorption coefficient, or both of the atomic medium,
thereby forming an atomic grating.

It is worth noting that the plane diffraction gratings operate
in two different diffraction regimes: Bragg regime (or thick
grating) [33,38,50,51,55,56] and Raman-Nath regime (or thin
grating) [33,39–41,44–49,57]. In the Bragg regime, essentially
only two waves, i.e., one transmitted wave and one diffracted
wave, exist when the light wave is incident at or near the Bragg
angle [38], while multiple diffraction waves are generated in
the Raman-Nath regime [33]. Note that a criterion has been
introduced to distinguish between the two diffraction regimes
[58]. We notice that the phenomena of Bragg diffraction
in thick gratings [30] and photonic crystal [31] with PT -
symmetric optical potential have recently been investigated. It
has been shown that by introducing the spatial modulations of
the refractive index and gain and absorption with a π/2 phase
shift between them, thePT symmetry can result in asymmetric
diffraction when the sign of the Bragg incident angle is
changed. As we know, the PT -symmetric systems [20–25]
and atomic gratings [44–54] induced by atomic coherence in
the atomic vapors can be actively and effectively controlled
via adjusting the optical parameters of the system, such as
the intensities and detunings of the applied fields. Thus, it
reminds us of one question: could some new Raman-Nath
diffraction characteristics occur in the atomic grating with a
PT -symmetric refractive index?

In this paper, we investigate the spectrum characteristics
of Raman-Nath diffraction in one-dimensional (1D) and 2D
atomic gratings with a periodic PT -symmetric refractive
index. Our proposal is motivated by the earlier research
about weak-light solitons in a PT -symmetric atomic system,
which is formed by the interference of two Raman resonances
[21]. The continuously tunable atomic grating consists of
a phase grating with cosinoidal phase modulation and an
amplitude grating with sinusoidal gain-absorption modulation.
We demonstrate that the gain-absorption modulation plays
an important role in the spatial distribution of Raman-Nath
diffraction spectra in one and two dimensions. Different from
the diffraction spectra in the conventional atomic gratings
[44–49], the proposed atomic grating presents an asym-
metric diffraction effect in one and two dimensions when
the modulated refractive index satisfies PT symmetry. Using
the interference mechanism between the phase grating and the
amplitude grating [39,40], we can give the physical interpre-
tation of the asymmetry diffraction phenomenon. Our results

illustrate that the lopsided diffraction spectra stimulated by 1D
and 2D atomic gratings can be achieved at the EP. Moreover, the
diffraction efficiencies in the non-negative diffraction orders
can be significantly enhanced when the atomic grating is
pushed into a broken PT -symmetric phase. In the PT -phase
region, we investigate the influence of the grating thickness
on the diffraction spectrum. It is found that the increase of
the grating thickness in the Raman-Nath regime can stimulate
higher diffraction orders and result in a redistribution of the
diffraction efficiencies. More importantly, the thickness of the
atomic grating cannot affect the zeroth-order diffraction field
when the atomic grating is at the EP. Based on these results,
the atomic grating with a PT -symmetric refractive index
may potentially have the functions of optical beam deflecting,
sampling, shaping, and splitting with ultrahigh diffraction
efficiency.

II. MODEL AND METHOD

We consider a mixed system of two isotopes (87Rb and
85Rb) of cold-atomic rubidium. As shown in Fig. 1(a),
the energy-level structure of each isotope is treated as a
three-level �-type configuration with an excited state |a,m〉
and two ground states |b,m〉 and |c,m〉 (m = 1,2 is the

FIG. 1. (a) Schematic diagram for a mixed system of two species
of cold 87Rb and 85Rb atoms with three-level �-type structure, in
which blue dots indicate the initial populated level. (b) Possible
experimental setup of the position-dependent control field (red arrow)
Ec and Stark field (blue arrow) ES , each of which consists of a
z-direction optical beam (Ec0 or ES0) and two pairs of optical beams
(E±

cj or E±
Sj , j = 1,2) with cross angle (θc or θS). The striation

area is the region of spatial modulation. (c) Sketch of 1D and 2D
electromagnetically induced grating in the cold-atomic sample.
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species of the atoms). Such a mixed atomic system can be
realized in the mixture of cold 87Rb (species 1) and
85Rb (species 2) atoms using the D1 line. The designated
states can be chosen as follows: |a,1〉 = |5 2P 1/2,F = 1〉,
|b,1〉 = |5 2S1/2,F = 1〉, |c,1〉 = |5 2S1/2,F = 2〉 for the 87Rb
atom, and |a,2〉 = |5 2P 1/2,F = 2〉, |b,2〉 = |5 2S1/2,F = 2〉,
|c,2〉 = |5 2S1/2,F = 3〉 for the 85Rb atom. A weak probe
field Ep with half Rabi frequency �pm = −→μ m

ab · −→
e pEp/2h̄

(frequency ωp) couples to the transition |a,m〉 → |b,m〉 (res-
onant frequency ωm

ab), while the transition |a,m〉 → |c,m〉
(resonant frequency ωm

ac) is driven by a control field Ec with
half Rabi frequency �cm = −→μ m

ac · −→
e cEc/2h̄ (frequency ωc).−→μ m

ab (−→μ m
ac) presents the electric-dipole matrix moment for

the relevant optical transitions from state |a,m〉 to state |b,m〉
(|c,m〉), with −→

e p (−→e c) denoting the unit polarization vector of
the probe (control) field. For the selected levels of two isotopes
of rubidium, the dipole matrix moments are assumed to be
approximately equal and μm

ab ≈ μm
ac = 2.5377 × 10−29 C m

[59]. For simplicity, �p1 = �p2 = �p and �c1 = �c2 = �c.
Under the electric-dipole and rotating-wave approxima-

tions, the resulting interaction Hamiltonian for each subsystem
(m = 1,2) in the interaction picture can be written as

Hm
I = h̄

⎛
⎜⎝

	m + δm −�c −�p

−�∗
c δm 0

−�∗
p 0 0

⎞
⎟⎠, (1)

where 	m = ωm
ac − ωc and δm = ωm

ab − ωm
ac − (ωp − ωc) are

the one- and two-photon detunings. The dynamics of the
subsystem (m = 1,2) can be described by using the density
matrix approach as

dρm

dt
= − i

h̄

[
Hm

I ,ρm
] + L[ρm(t)]. (2)

Here, the Liouvillian matrix L[ρm(t)] indicating the relax-
ation by spontaneous decay can be written as

L[ρm(t)] =

⎛
⎜⎝

−(
�m

ab + �m
ac

)
ρm

aa −γ m
acρ

m
ac −γ m

abρ
m
ab

−γ m
acρ

m
ca �m

acρ
m
aa −γ m

cbρ
m
cb

−γ m
abρ

m
ba −γ m

cbρ
m
bc �m

abρ
m
aa

⎞
⎟⎠,

(3)

where the coherence decay rates are defined as γ m
ab = (�m

ab +
�m

ac + γ m
a,deph)/2, γ m

ac = (�m
ab + �m

ac + γ m
a,deph + γ m

c,deph)/2,
and γ m

cb = (�m
cb + γ m

c,deph)/2, in which �m
ij (i,j = a,b,c) is

the spontaneous-emission decay rate from state |i,m〉 to state
|j,m〉 and γ m

a,deph and γ m
c,deph are phenomenological decay

rates that model the energy-conserving dephasing processes.
�m

cb is much smaller than �m
ab (�m

ac) and, consequently, can
be neglected, that is, �m

cb � 0. As the 87Rb (m = 1) and 85Rb
(m = 2) atoms are loaded into a cell at low temperature (∼μK),
�m

ab � �m
ac = � = π × 5.75 MHz and dephasing processes

can be safely neglected [59]. As a result, γ m
ab = γ m

ac = � and
γ m

cb = 0.
In our mixed system, the sum of the susceptibility from

each subsystem forms the total complex susceptibility. There-
fore, the total susceptibility of the weak probe field can be

defined by

χp = |μab|2
ε0h̄�p

(
N1ρ

1
ab + N2ρ

2
ab

)
, (4)

where N1 and N2 are the atom number densities of isotopes
87Rb and 85Rb in the cell, respectively.

In the proposed scheme, we consider the case that the
87Rb (85Rb) atom is initially prepared in ground state |b,1〉
(|c,2〉), i.e., ρ1

bb(0) = ρ2
cc(0) = 1, which is achieved by locking

two additional optical pumping lasers to the |c,1〉 → |a,1〉
transition for 87Rb and the |b,2〉 → |a,2〉 transition for 85Rb
[not indicated in Fig. 1(a)] before the probe and control fields
are turned on [60]. Similar to Refs. [61,62], we have assumed
that probe field Ep is sufficiently weak and the detuning
between the control (probe) field and the transition |a,m〉 →
|c,m〉 (|a,m〉 → |b,m〉) is sufficiently large. Therefore, the
atomic population depletions of the ground states |b,1〉 (for
87Rb) and |c,2〉 (for 85Rb) can be neglected in the presence
of sufficiently strong optical lasers. It means that most of the
atomic population remains in ground states |b,1〉 (for 87Rb)
and |c,2〉 (for 85Rb), i.e., ρ

1(ss)
bb � ρ2(ss)

cc � 1 [superscript (ss)
represents the steady state]. In this situation, the weak probe
field can be absorbed by the 87Rb atom and amplified by the
85Rb atom in the stimulated Raman transition |c,m〉 → |b,m〉
(m = 1,2). Meanwhile, the two-photon detuning δ2 of the 85Rb
atom is taken as zero via adjusting the frequency ωp of the
probe field without taking into account the effect of Doppler
broadening in the ensemble of cold atoms. The required density
matrix elements ρ1

ab and ρ2
ab can be obtained by solving

Eqs. (1)–(3). Consequently, by using perturbation theory in
the limit of weak probe field, the analytical expression for χp

in the steady state can be written as [21]

χp = |μab|2
ε0h̄

(
N1δ1

δ2
1 + δ1	1 − iδ1� − |�c|2

+ N2

	2 + i�

)
. (5)

Note that the real and imaginary parts of the complex sus-
ceptibility, i.e., χp = χ ′

p + iχ ′′
p , determine the real and imag-

inary parts of the complex refractive index n = √
1 + χp =

nr + ini . Thus, Eq. (5) gives the following expressions of the
real and imaginary parts of the susceptibility:

χ ′
p = N1|μab|2

ε0h̄

{
δ1

[
δ2

1 + δ1	1 − |�c|2
]

[
δ2

1 + δ1	1 − |�c|2
]2 + δ2

1�
2
+ η	2

	2
2 + �2

}
,

χ ′′
p = N1|μab|2

ε0h̄

{
δ2

1�[
δ2

1 + δ1	1 − |�c|2
]2 + δ2

1�
2
− η�

	2
2 + �2

}
,

(6)

where η = N2/N1.
The realization of PT -symmetric probe-field susceptibil-

ity, i.e., χp(x) = χ∗
p(−x) (and hence the PT refractive in-

dex n(x) = [1 + χp(x)]1/2 = [1 + χ∗
p(−x)]1/2 = n∗(−x)), re-

lies on the spatial modulations of the control field Ec(x) [Rabi
frequency �c(x)] and one-photon detuning 	m(x) (m = 1,2)
in Eq. (6). Here, x is the transverse coordinate in space. The
position-dependent detuning 	m(x) originates from the Stark
effect, which is the shifting of spectrum lines of atoms. A far-
off-resonant Stark field with the amplitude of the electric field
ES(x) and the wavelength λS will induce a space-modulated
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FIG. 2. (a) The real part nr (x) and (b) the imaginary part ni(x) of the 1D complex refractive index as functions of x. Solid orange lines in
(a) and (b) show the exact solution of the complex refractive index, while dashed blue lines represent the corresponding first-order approximate
(FOA) solution of the exact refractive index. The other parameters are 	1 = 8�, 	2 = 8.72�, δ1 = 1.81�, � = 20 μm, V0 = 3, and W0 = 1.5.

energy shift 	Em
j (x) = −αm

j E2
S(x)/4 (αm

j is the corresponding
scalar polarizability) for level |j,m〉 in the two species (m =
1,2). For the selected D1 line (5 2S1/2 → 5 2P 1/2) of isotopes
87Rb (m = 1) and 85Rb (m = 2), the ground-state polariz-
ability αm

b � αm
c = 2πh̄ × 0.0794 Hz/(V/cm)2 and the D1

scalar polarizability αm
a − αm

b = 2πh̄ × 0.1223 Hz/(V/cm)2

[59]. Ignoring the difference of Stark shifts between level |b,m〉
and level |c,m〉, the Stark field cannot affect the two-photon
detuning δ1. However, it can amend the one-photon detuning,
i.e., 	m(x) = 	m − (αm

a − αm
b )ES(x)2/4h̄, where 	m is one-

photon detuning in the absence of the Stark field.
Notice thatPT symmetry requires χ ′′

p(x) to be an odd func-
tion, hence the imaginary part of the susceptibility is zero at
x = 0 and we then obtain the relationship betweenN1 andN2 as

η = N2

N1
= δ2

1

[
	2

2(0) + �2
]

[
δ2

1 + δ1	
2
1(0) − |�c(0)|2] + δ2

1�
2
. (7)

By taking 1D spatial-dependent susceptibility as an
example, we introduce the approach to construct a PT -
symmetric optical potential as follows: First, we define a seed
susceptibility χsd

p = χp0 − χp1 cos(Kx) − iχp2 sin(Kx),
where χpj (j = 0,1,2) is the free parameter. Second, we
compute analytical solutions for real �sd

c (x,χpj ,η) and
Esd

S (x,χpj ,η) by solving equation χp(�sd
c ,Esd

S ) = χsd
p . Third,

we substitute �sd
c and Esd

S back into Eq. (6) and make the error
function ς (x) = n(x) − n∗(−x) as small as possible by tuning
the parameters χpj and η. Since the expressions of �c(x) and
ES(x) are fairly complex, we can keep the first significant
harmonics (i.e., the terms �10−3) for the final expressions of
�c(x) and ES(x). Because there is a slight difference between
the final susceptibility χp(x) and the seed susceptibility χsd

p ,
the real and imaginary parts of the susceptibility can be
represented by a Fourier series in which the first significant
harmonics is kept (for more details, see [20]).

In the following, the parameters 	1 = 8�, 	2 = 8.72�,
δ1 = 1.81�, λp � 0.658 μm, and λS � 5 μm are chosen.
Here, the wavelength of the Stark field is so long that no quan-
tum interference exists between the Stark field and the atomic
system. Thus, the Stark field only causes energy shift and has
no influence on the stimulated Raman process. In experiment,
the Stark field in the midinfrared range can be generated by a
quantum cascade laser working at continuous-wave operation

[63]. In addition, we select N1 � 7.86 × 1013 cm−3 based on
Eq. (5), which leads to N1|μab|2/ε0h̄ ∼ 3.

For 1D PT -symmetric susceptibility, i.e., χp(x) =
χ∗

p(−x), as shown in Fig. 1(b), the Stark field ES(x) [or the
control field Ec(x)] consists of a z-direction laser field ES0

(or Ec0) and two pairs of laser fields E±
S1 and E±

S2 (or E±
c1

and E±
c2) with cross angle θS (or θc), in which each pair of

laser fields can form a standing wave along the x direction.
In this case, we define two undetermined modulation factors
V0 and W0, which can feature different regions of an optical
PT -symmetric system. When η = 2.1541 is confirmed and
both the Stark field and the control field satisfy Eq. (A2) in
the Appendix, by keeping the first significant harmonics, the
real and imaginary parts of the first-order approximate (FOA)
susceptibility in Eq. (6) are given as follows:

χ ′
p(x) = 1.383 − 0.0015V0 cos(Kx),

χ ′′
p(x) = −0.003W0 sin(Kx), (8)

where K = 2π/� and � is the period of standing waves.
One can find from Eqs. (A2) and (8) that the spatial

intensities of the Stark field ES(x) and the control field
�c(x) = −→μ ac · −→

e cEc(x)/2h̄ determine the values of V0 and
W0, and hence determine the PT -symmetric probe suscepti-
bility. Here, the parameters V0 and W0 provide a possibility
of continuously adjusting PT symmetry via changing the
intensity distributions of both the Stark field and the control
field. The space-dependent susceptibility in Eq. (8) further
leads to the 1D PT -symmetric refractive index n(x) = [1 +
χ ′

p(x) + iχ ′′
p(x)]1/2 = [ε0 − ε1 cos(Kx) − iε2 sin(Kx)]1/2, in

which ε0 = 2.383, ε1 = 0.0015V0, and ε2 = 0.003W0. In
the sufficiently small modulation (ε0 
 ε1,ε2), the 1D PT -
symmetric refractive index can be written as [33]

n(x) = nr (x) + ini(x)

= n0 − n1 cos(Kx) − in2 sin(Kx), (9)

with n0 = ε
1/2
0 = 2.3831/2, n1 = ε1/2ε

1/2
0 = 0.00075V0/

2.3831/2, and n2 = 0.0015W0/2.3831/2.
To show the accuracy of the PT -symmetric optical poten-

tial realized by the above approach, we substitute Eqs. (A2)
into (6) and then, using n(x) = [1 + χ ′

p(x) + iχ ′′
p(x)]1/2, plot

the real and imaginary parts of the refractive index with
and without approximation as functions of x in Figs. 2(a)
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and 2(b) for 	1 = 8�, 	2 = 8.72�, δ1 = 1.81�, � = 20 μm,
V0 = 3, and W0 = 1.5. When the Stark field and control field
in Eq. (A2) are selected, one can find that the exact refractive
index [see solid orange lines in Figs. 2(a) and 2(b)] coincides
well with the first-order approximate (FOA) solution, which
keeps the first significant harmonics of the Fourier series
development of the refractive index [see dashed blue lines in
Figs. 2(a) and 2(b)]. The real and imaginary parts of the exact
refractive index are almost modulated with the cosine function
and sine function, respectively. Thus, the above approach to
realize a PT -symmetric optical system is valid.

For 2D PT -symmetric susceptibility, i.e., χp(x,y) =
χ∗

p(−x,−y), we can extend Es(x) and �c(x) in Eq. (A2)
into 2D forms Es(x,y) and �c(x,y) by adding two pairs of
Stark fields (E±

S3, E±
S4) and control fields (E±

c3,E
±
c4) with cross

angles θS and θc, respectively. In this case, E+
mn and E−

mn

(m = c,S; n = 3,4) form a standing wave along the y direction
with an initial phase φmn. When the condition in Eq. (A3) is
satisfied, the real and imaginary parts of the PT -symmetric
susceptibility in two dimensions are given by

χ ′
p(x,y) = 1.383 − 0.0015V0[cos(Kx) + cos(Ky)],

χ ′′
p(x,y) = −0.003W0[sin(Kx) + sin(Ky)], (10)

which further results in the 2DPT -symmetric refractive index
n(x,y) = [1 + χ ′

p(x,y) + iχ ′′
p(x,y)]1/2 = {ε0 − ε1[cos(Kx)

+ cos(Ky)] − iε2[sin(Kx) + sin(Ky)]}1/2 with ε0 = 2.383,
ε1 = 0.0015V0, and ε2 = 0.003W0. In the sufficiently small
modulation, the 2D PT -symmetric refractive index can be
written as

n(x,y) = n0 − n1[cos(Kx) + cos(Ky)]

− in2[sin(Kx) + sin(Ky)], (11)

where n0 = ε
1/2
0 , n1 = ε1/2ε

1/2
0 , and n2 = ε2/2ε

1/2
0 .

Therefore, the periodic modulation of the complex re-
fractive index in Eqs. (9) and (11) can form 1D and 2D
atomic grating. In what follows, we introduce two methods to
investigate the Raman-Nath diffraction characteristics of 1D
and 2D atomic gratings with PT -symmetric optical potential,
as shown in Fig. 1(c). The first method is the amplitude
transmittance approach used to give the 1D and 2D diffrac-
tion spectrum through Fourier transform for the transmission
function [44]. The second method is using the coupled-wave
theory of Raman-Nath regime diffraction to analytically give
the diffraction efficiency of each diffraction order [33].

In the atomic grating with PT -symmetric refractive index
n(x), the weak probe field propagating along the z direction in
the PT -symmetric grating is written as

E(x,z) = Ep(x,z)e−iβz, (12)

in which β = k0n0 is the effective propagation constant in
the atomic medium and k0 = 2π/λp indicates the propagation
constant in free space. In addition, the amplitude of the wave
Ep varies slowly in space. The propagation of the probe field
in the atomic grating satisfies the wave equation:

∇2E(x,z) + k2
0n

2(x)E(x,z) = 0. (13)

Figure 1(c) shows the sketch of 1D and 2D atomic grating in-
duced by atomic coherence in the cold-atomic sample. For the

1D PT -symmetric refractive index, substituting n(x) = n(x)
and E(x,z) = E(x,z) = Ep(x,z)e−iβz into the wave equation
(13), we then leave out the fact e−iβz and obtain the resulting
wave equation under a slowly varying envelope approximation
(SVEA) as follows:

−2iβ
∂Ep

∂z
= 2k2

0n0[n1 cos(Kx) + in2 sin(Kx)]Ep. (14)

Then, Eq. (14) becomes

∂Ep

∂z
= 2π

λp

[in1 cos(Kx) − n2 sin(Kx)]Ep. (15)

Here, we assume that the interaction length between the
isotopes (87Rb and 85Rb) and probe field along the z direction,
i.e., the grating thickness, is L. Meanwhile, the amplitude
transmission is defined as the ratio of the output field amplitude
at z = L to the input field amplitude at z = 0. Due to the
amplitude modulation and phase modulation in the x direction,
the amplitude transmission function is given by

T (x) = e−α1(x)Leiα2(x)L, (16)

where α1(x) = 2πn2 sin(Kx)/λp and α2(x) = 2πn1

cos(Kx)/λp are the spatial modulations of the amplitude
and phase, respectively.

In the case of far-field Fraunhofer diffraction, the diffraction
spectrum of the weak probe field is obtained by the Fourier
transform of the amplitude transmission function T (x). The
normalized diffraction intensity function can be written as

Ip(θ ) = |F (θ )|2 sin2(Nπ� sin θ/λp)

N2 sin2(π� sin θ/λp)
, (17)

where θ indicates the diffraction angle with respect to the z
direction and N represents the number of spatial periods of
the atomic grating illuminated by the probe field. F (θ ) is the
Fraunhofer diffraction of a single space period �, which is
given by

F (θ ) = 1

�

∫ �

0
T (x)e−i2πx sin θ/λpdx. (18)

In particular, if the condition of sin θm = mλp/� is satis-
fied, the diffraction intensity Im along the mth-order diffraction
direction can be calculated by

Im = Ip(θm) = |F (θm)|2, (19)

with F (θm) = (1/�)
∫ �

0 T (x)e−i2πmx/�dx.
In a similar way, 2D amplitude transmission function

T (x,y) of the probe field in 2D atomic grating with PT -
symmetric refractive index n(x,y) can be obtained as

T (x,y) = e−α1(x,y)Leiα2(x,y)L, (20)

with α1(x,y) = 2πn2[sin(Kx) + sin(Ky)]/λp and α2(x,y) =
2πn1[cos(Kx) + cos(Ky)]/λp.

In the region of Fraunhofer diffraction, the 2D diffraction
spectrum of the weak probe field is obtained by the 2D Fourier
transform of the amplitude transmission function T (x,y). And
then the diffraction-intensity function can be written as

Ip(θx,θy) = |F (θx,θy)|2 sin2(Nxπ� sin θx/λp)

N2
x sin2(π� sin θx/λp)

× sin2(Nyπ� sin θy/λp)

N2
y sin2(π� sin θy/λp)

, (21)
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where θx(y) is the diffraction angle with respect to the z direction
in the x(y) − z plane and Nx(y) stands for the number of spatial
periods of the PT -symmetric grating along the x(y) direction.
The Fraunhofer diffraction F (θx,θy) of a single space period
� in 2D space is given by

F (θx,θy) = 1

�2

∫ �

0
dxe−i2πx sin θx/λp

×
∫ �

0
T (x,y)e−i2πy sin θy/λpdy. (22)

When both sin θm
x = mλp/� and sin θn

y = nλp/� are sat-
isfied, we can obtain the diffraction intensity I(m,n) along the
(m,n)th-order diffraction direction as

I(m,n) = F
(
θm
x ,θn

y

) =
∣∣∣∣ 1

�2

∫ �

0
dxe−i2πmx/�

×
∫ �

0
T (x,y)e−i2πny/�dy

∣∣∣∣
2

. (23)

Next, we give the coupled-wave analysis of Raman-Nath
diffraction in the 1D and 2D atomic gratings. Based on
Eqs. (12) and (13), the propagation constant k0n(x) inside 1D
atomic grating in the PT -phase regime satisfies

k2
0n

2(x) = k2
0[n0 − n1 cos(Kx) − in2 sin(Kx)]2

= k2
0

{
n2

0 − 2n0[n1 cos(Kx) + in2 sin(Kx)]
}

= β2 − 2β[κ+eiKx + κ−e−iKx], (24)

where we neglect the second-order small quantity, i.e., n1n2,
and the coupling constant κ± can be defined as

κ± = π (n1 ± n2)

λp

= 0.0015π (0.5V0 ± W0)

2.3831/2λp

, (25)

which is different from the case in conventional planar trans-
mission grating for W0 > 0. The coupling constants κ+ and
κ− in the conventional grating are identical. Furthermore, they
have a positive real value for phase grating with cosinusoidal
modulated phase grating.

For the 1D PT -symmetric periodic optical potential
with the complex refractive index n(x) = n0 − n1 cos(Kx) −
in2 sin(Kx), an exceptional point (EP) corresponding to a
phase transition from unbroken to broken PT symmetry
occurs at n1 = n2, that is, W0 = Wc = 0.5V0. When W0 < Wc,
there is a band gap between two real energy bands in the
periodic lattice and the eigenvalues are real, which corresponds
to unbrokenPT symmetry. As W0 is increased close to Wc, the
band gap of the lattice shrinks until a gapless energy spectrum
is obtained at the EP. Two energy bands begin to become
complex and pairs of complex conjugate eigenvalues begin
to appear, which corresponds to broken PT symmetry (see,
for instance, [27]). Consequently, based on Eq. (25), we can
find different characteristics of the coupling constant κ± for
three different phase regions: unbroken PT -symmetric phase
(UPTP), EP phase, and broken PT -symmetric phase (BPTP).
In Fig. 3, we present the dependence of the coupling constants
κ± on the parameter W0, which describes the balanced gain
and absorption in the atomic grating. The coupling constant
κ+ in the positive direction increases as the parameter W0

monotonously increases (see solid orange line in Fig. 3),

0 0.5 1 1.5 2
W0

-2

0

2

4

6

κ
± (

μ
m

−1
)

×10-3

κ+

κ
-

UPTP

EP

BPTP

FIG. 3. The coupling constant κ± as a function of the parameter
W0, which describes the balanced gain and loss. The other parameters
are λp � 0.658 μm and V0 = 3.

while the negative-direction coupling constant κ− decreases
(see dashed blue line in Fig. 3). At W0 = Wc = 1.5, κ− =
0, κ+ > 0, which means that the grating has a unidirectional
coupling between different diffraction fields. We can find that
κ+ > κ− > 0 for W0 < Wc and κ+ > 0,κ− < 0 for W0 > Wc.
In the two cases, the coupling constants satisfy |κ+| > |κ−|.

Then the total probe field Ep(x,z) inside the grating region
0 � z � L is expressed in terms of multiple modes, each of
which individually obeys Maxwell’s equations and describes
the diffraction amplitude along the corresponding diffraction
order outside of the grating. Thus, the total field is given by

Ep(x,z) =
+∞∑

m=−∞
Sm(z) e−i(2πn0z/λp−mKx). (26)

In the cases of λp  � and a slow energy transfer be-
tween modes, both the second-order derivatives of the modes’
amplitude, d2Sm/dz2, and the dephasing from the Bragg
condition, Sm, are neglected. Consequently, the 1D Raman-
Nath diffraction equation is obtained as

dSm(z)

dz
− i[κ−Sm+1(z) + κ+Sm−1(z)] = 0. (27)

On substituting the dimensionless coordinates ξ =
2πn1z/λp into Eq. (27), we rewrite Eq. (27) as

dSm(ξ )

dξ
− i

2
[σ−Sm+1(ξ ) + σ+Sm−1(ξ )] = 0, (28)

with σ± = 1 ± n2/n1 = 1 ± W0/0.5V0.
For 2D atomic grating in the PT -phase regime, the propa-

gation constant k0n(x,y) inside the atomic grating satisfies

k2
0n

2(x,y) = β2 − 2β[κ+
x exp(iKx) + κ−

x exp(−iKx)

+ κ+
y exp(iKy) + κ−

y exp(−iKy)], (29)

with

κ±
x = κ±

y = π (n1 ± n2)

λp

= 0.0015π (0.5V0 ± W0)

2.3831/2λp

, (30)

where κ+
x(y) and κ−

x(y) are the strengths of the coupling along
the positive and negative x(y) directions, respectively. κ+

x(y) and
κ−

x(y) have the similar change rule, with κ+ and κ− shown in
Fig. 2.
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The total probe field Ep(x,y,z) inside the grating region
0 � z � L can be written as

Ep(x,y,z) =
+∞∑

m=−∞

+∞∑
n=−∞

S(m,n)(z)e−i(2πn0z/λp−mKx−nKy).

(31)

As a result, the Raman-Nath diffraction equation in two
dimensions is given by

dS(m,n)(z)

dz
− i[κ−

x S(m+1,n)(z) + κ+
x S(m−1,n)(z)

+ κ−
y S(m,n+1)(z) + κ+

y S(m,n−1)(z)] = 0. (32)

By substituting the dimensionless coordinates ξ =
2πn1z/λp, Eq. (32) can be rewritten as

dS(m,n)(ξ )

dξ
− i

2
[σ−

x S(m+1,n)(ξ ) + σ+
x S(m−1,n)(ξ )

+ σ−
y S(m,n+1)(ξ ) + σ+

y S(m,n−1)(ξ )] = 0, (33)

with σ±
x = σ±

y = 1 ± n2/n1.
We can acquire the diffraction efficiencies of different

diffraction orders in one and two dimensions by solving the
differential equations (28) and (33).

In the proposed scheme, we focus on showing the diffraction
characteristics of the atomic grating in the Raman-Nath regime.
However, Raman-Nath diffraction occurs when the condition

Q′γ � 1 (34)

is satisfied [58]. If the probe field is normal incident, Q′ =
2πλpL/n0�

2 is the quality factor of the grating and γ =
πn1L/λp is the grating strength parameter.

III. RESULTS AND DISCUSSIONS

In this section, we focus on analyzing the Raman-Nath
diffraction characteristics of 1D and 2DPT -symmetric atomic
gratings. Before presenting the numerical results, the max-
imum grating thickness Lmax should be given by using the
criterion of Raman-Nath regime diffraction in Eq. (34). When
V0 = 3 and � = 20 μm, ε0 = 2.383 and ε1 = 0.0045, which
further lead to Lmax = (�2n0/2π2n1)1/2 = (�2ε0/π

2ε1)1/2 =
146.5 μm. Thus, Raman-Nath diffraction theory is valid in the
region L � 146.5 μm.

We first investigate the influence of the PT -phase tran-
sition from an unbroken to broken PT -phase regime on the
distributions of Raman-Nath diffraction in one dimension. As
we know, the nonzero balanced gain-absorption parameter W0

can be used to tune the PT phase when V0 is fixed to 3
[20,27]. We show in Fig. 4(a) the diffraction spectra of the
1D atomic grating as a function of sin θ for three different
values of W0 by presenting the numerical results of Eq. (17).
When the sinusoidal gain-absorption modulation exists, i.e.,
W0 �= 0, it is found from Fig. 4(a) that diffractions in all
negative orders are suppressed and the asymmetric Raman-
Nath diffraction phenomenon can be observed. Compared with
the case of W0 = 0.35 < Wc, the diffraction efficiencies of the
grating in non-negative diffraction orders are greatly enhanced
and the diffraction field of the −1st order also exists as
W0 = 2.25 > Wc. More interestingly, for the critical condition
W0 = Wc = 1.5, the diffraction fields in negative principal
maxima are completely inhibited and only some extremely
small diffraction side lobes exists [see the insets of Fig. 4(a)].

In order to present the asymmetric degree of the diffraction,
we define a “diffraction ratio R,” which is the intensity ratio
of the −1st-order diffraction to the +1st-order diffraction:

R = I−1

I+1
= Ip(θ−1)

Ip(θ+1)
, (35)

where I−1 and I+1 are obtained from Eq. (19). We plot
the diffraction ratio R as a function of the gain-absorption
parameter W0 in Fig. 4(b). It is found that the diffraction ratio
R first goes through exponential reduction as W0 increases
in the UPTP. At the EP (corresponding to W0 = 1.5), the
diffraction ratio R arrives at its minimum value ∼10−5.4 and
can be regarded as R = 0. When W0 increases from 1.5 to 2.5,
which corresponds to BPTP, the diffraction ratio R starts to
go through exponential growth. In other words, the lopsided
Raman-Nath diffraction of 1D PT -symmetric atomic grating
can be realized at the EP.

In our model, the atomic grating with a PT -symmetric
optical potential can be considered as the superposition of an
amplitude grating with sinusoidal gain-absorption modulation
and a cosinusoidal-modulated phase grating. Consequently,
the above interesting asymmetric diffraction phenomena, as
shown in Fig. 4, originates from the interference between
the amplitude grating and the phase grating [39,40]. For a
periodically modulated grating, the amplitude transmission

0
0.2
0.4

0
0.8
1.6

620.0- 620.0-40.0-
0

6 ×10-3

-0.2 -0.1 0 0.1 0.2
sinθ

0
2
4

I p
(θ

)

620.0- 620.0-40.0-
0

0.2

-1 +1 +2 +30

W0=2.25

W0=1.5

W0=0.35(a)

0 0.5 1 1.5 2 2.5
W0

-6
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-2
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2

lo
g 1

0R

UPTP

EP

BPTP

(b)

FIG. 4. (a) The Raman-Nath diffraction intensities as a function of sin θ for different values of the gain-absorption parameter W0. (b) The
logarithm of diffraction ratio R, which describes the asymmetric degree of the diffraction, as a function of the parameter W0. The insets in (a)
show the diffraction in the −1st diffraction order. Other parameters are V0 = 3, N = 5, and L = 90 μm.
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function can be presented by a Fourier series development,

T (x) =
∑

n

An exp (inKx), (36)

where K = 2π/� and An stands for the amplitude of the
nth diffraction order, which is obtained by the nth Fourier
coefficient of the transmission function [from Eqs. (18) and
(19)]:

An = 1

�

∫ �

0
T (x) exp (inKx)dx. (37)

Thus, the diffraction spectrum Q(sin θ ) of the grating can
be represented by a set of discrete values {An} as

Q(sin θ ) = {An} =
∑

n

Anδ

(
sin θ − nλp

�

)
. (38)

For an amplitude grating with cosinusoidal modulation of
the absorption and gain, the amplitude transmission function
can be written as

T1(x) = exp [−ξ1 cos(Kx)], (39)

with ξ1 = 2πn2L/λp.
The amplitudes of the diffraction orders diffracted by the

amplitude grating are

{Bn} = {
(−1)nIB

n (ξ1)
}
, (40)

where IB
n (ξ1) is the nth-order modified Bessel function.

For a cosinusoidal phase grating, the amplitude transmis-
sion function is given by

T2(x) = exp [iξ2 cos(Kx)], (41)

with ξ2 = 2πn1L/λp.
The amplitudes of the diffraction orders diffracted by the

phase grating are

{Cn} = {(i)nJn(ξ2)}, (42)

where Jn(ξ2) is the nth-order Bessel function of the first kind.
We can find from Eq. (16) that the transmission of the atomic

grating is the product of the transmissions of an amplitude
grating and a phase grating. Then the amplitude of each
diffraction order of the atomic grating will be determined by a
convolution operation of the diffracted amplitude series of both
amplitude and phase gratings. Besides, there is a lateral π/2
phase shift between the amplitude and phase modulations of
the PT -symmetric atomic grating. Therefore, the diffraction
amplitude of the atomic grating can be written as

{An} =
{
Bj exp

(
−i

jπ

2

)}
⊗ {Cm}

=
⎧⎨
⎩

∑
j

Bj exp

(
i
−jπ

2

)
Cn−j

⎫⎬
⎭, (43)

where ⊗ means the convolution operation.
The interference mechanism between the amplitude grating

and phase grating of the PT grating can be illustrated by
comparing the amplitudes of the ±1st diffraction orders. If
the system parameters shown in Fig. 4 are selected, ξ1 satisfies

0 < ξ1 < 1.88 so that IB
j (ξ1) (for |j | > 3) can be neglected.

Thus, the amplitudes of the ±1st diffraction orders can be
calculated by using the convolution operation [Eq. (43)],

A1 =
3∑

j=−3

BjC1−j

= B−3C4 exp

(
i
3π

2

)
+ B−2C3 exp(iπ )

+B−1C2 exp

(
i
π

2

)
+ B0C1 + B1C0 exp

(
−i

π

2

)

+B2C−1 exp(−iπ ) + B3C−2 exp

(
−i

3π

2

)

= i[ϑ(ξ1,ξ2) + τ (ξ1,ξ2)],

A−1 =
3∑

j=−3

BjC−1−j

= B−3C2 exp

(
i
3π

2

)
+ B−2C1 exp(iπ )

+B−1C0 exp

(
i
π

2

)
+ B0C−1 + B1C−2 exp

(
−i

π

2

)

+B2C−3 exp(−iπ ) + B3C−4 exp

(
−i

3π

2

)

= i[ϑ(ξ1,ξ2) − τ (ξ1,ξ2)], (44)

where ϑ(ξ1,ξ2) = IB
0 (ξ1)J1(ξ2)−IB

2 (ξ1)J1(ξ2)+IB
3 (ξ1)J3(ξ2)

and τ (ξ1,ξ2) = IB
1 (ξ1)J0(ξ2) + IB

1 (ξ1)J2(ξ2) + IB
3 (ξ1)J2(ξ2)

+ IB
3 (ξ1)J4(ξ2).
According to Eq. (44), it is found that due to the lateral π/2

phase shift between sine-modulated gain-absorption and the
cosine-modulated phase, the amplitude grating and the phase
grating produce constructive interference in the diffraction
direction of the +1st order and destructive interference in the
−1st diffraction order. The constructive interference results
in the +1st-order diffraction efficiency increasing, while the
destructive interference leads to the diffraction efficiency of
−1st order decreasing, which is the same for high diffraction
orders A±n (n � 2). Therefore, we can observe an asym-
metric diffraction spectrum shown in Fig. 4 for ξ1,ξ2 > 0,
i.e., W0,V0 > 0. Especially for ξ1 = ξ2 = ξ (W0 = 0.5V0),
ϑ(ξ,ξ ) = τ (ξ,ξ ) means that there is no diffraction in the
−1st order. In other words, the lopsided diffraction spectra
in Fig. 4 can indeed be achieved by the perfectly destructive
interference between the amplitude and phase gratings in
negative diffraction orders.

It has been found that the grating thickness can greatly
influence the diffraction efficiencies of the atomic gratings
[45–47,51]. In the following, we investigate the influence of
the grating thickness on the Raman-Nath diffraction spectra
for three different regions: EP, UPTP and BPTP. At the EP, the
diffraction patterns as a function of sin θ for three different
grating thicknesses are plotted in Fig. 5(a). As shown in
Fig. 5(a), in the Raman-Nath regime (L � 146.5 μm), the
increase of the thickness L stimulates higher-order diffraction
fields in the positive-order direction and leads to a redistribu-
tion of the diffraction intensities in the positive orders. At the
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FIG. 5. (a) The Raman-Nath diffraction intensities as a function of sin θ for different thicknesses of the atomic grating at EP. (b) The
intensities of the corresponding diffraction orders in (a) as a function of the grating thickness L. Other parameters are the same as in Fig. 4.

phase-transition point, κ− = 0 in the coupled-wave theory,
resulting in σ− = 0, means that there is no energy transfor-
mation from the Sm+1 mode to the Sm mode. Besides, σ+ = 2.
Equation (28) then takes a simple form,

dSm(ξ )

dξ
= iSm−1(ξ ). (45)

By formally integrating Eq. (45), the solution for Sm(ξ ) can
be obtained as

Sm(ξ ) = i

∫ ξ

0
Sm−1(ξ ′)dξ ′. (46)

It is obvious that all the modes Sm(ξ ) inside the grating
satisfy the boundary conditions of S0(0) = 1 and Sm(0) = 0
(m �= 0). Combining the boundary conditions with Eqs. (45)
and (46), all negative diffractive orders are zero, i.e., Sm(ξ ) = 0
(m = −1, − 2, . . .), and the analytic solutions for the mth-
order (m = 0,+1,+2, . . .) diffraction amplitude of 1D atomic
grating at the EP are derived as

Sm(ξ ) = im
ξm

m!
, (47)

which further leads to the diffraction intensity Im = SmS∗
m

being written as

Im(ξ ) =
(

ξm

m!

)2

. (48)

In essence, the diffraction intensity Im represents the corre-
sponding diffraction efficiency because the incident fieldS0 has

a unit amplitude. By substituting ξ = 2πn1L/λp into Eq. (39),
we get the analytic expression of the diffraction efficiencies for
the zeroth and first three positive diffraction orders in Eq. (48)
as

I0 = 1, I+1 = 4π2n2
1L

2

λ2
p

, I+2 = 4π4n4
1L

4

λ4
p

,

I+3 = 16π6n6
1L

6

9λ6
p

, (49)

with n1 = 0.00075V0/2.3831/2.
Correspondingly, Fig. 5(b) plots the diffraction efficiencies

for the zeroth and first three diffraction orders versus the
grating thickness L. The result in Fig. 5(b) indicates that the
numerical results match Eq. (49) well. Due to the coupling
constant κ− = 0 and the boundary condition Sm(0) = δm0,
the zeroth-order diffraction efficiency, i.e., I0(L) = 1, is un-
affected by the grating thickness L. Therefore, the atomic
grating at the EP seems to be a transparent medium for the
probe field. In addition, as shown in Figs. 5(a) and 5(b), the
zero diffraction order dominates when L < 72 μm and then
the diffraction efficiencies of the positive diffraction orders
successively exceed 100% for L > 72 μm. Compared with
the conventional atomic grating [39–42,44], the high-order
diffraction efficiency can be greatly enhanced via increasing
the grating thickness at the EP. Meanwhile, one can find from
Figs. 5(a) and 5(b) that the total energy of the incident probe
field is greater than that of the diffraction probe field, which
means that the diffracted probe field can be amplified when

FIG. 6. The diffraction spectra of the atomic grating in the Raman-Nath regime as a function of the grating thickness L for (a) the unbroken
PT -symmetric phase (UPTP) with W0 = 0.35 < 0.5V0 = 1.5 and (b) the broken PT -symmetric phase (BPTP) with W0 = 2.25 > 0.5V0 = 1.5.
Other parameters are the same as in Fig. 4.
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FIG. 7. The diffraction characteristics of the PT -symmetric
atomic grating at the exceptional point (EP) for incidence from the
(a) left side and the (b) right side. G: PT -symmetric atomic grating;
L: convex lens; P: diffraction screen.

passing through the PT -symmetric atomic grating. The gain
of probe field comes from stimulated Raman gain process of the
85Rb atomic system, which is pumped by an additional optical
pumping laser field and driven by a control laser field. In this
situation, the atomic population distribution satisfies ρ2(ss)

cc 

ρ

2(ss)
bb , Raman inversion takes place, and light amplification

occurs from the stimulated Raman transition |c,2〉 → |b,2〉.
That is to say, the additional optical pumping laser field and
the control laser field provide energy to amplify the incident
probe field.

Then we show the Raman-Nath diffraction spectra of the
atomic grating as a function of the grating thickness L in the
UPTP with W0 = 0.35 and BPTP with W0 = 2.25 in Fig. 6.
In these two phase regions, the diffraction efficiencies in the
positive diffraction orders could be enhanced as L increases.
Meanwhile, the diffraction efficiency in the −1st order has a
small improvement. Compared with the case at the EP shown
in Fig. 5(b), one can find that the grating thickness has different
roles on the zero-order diffraction efficiency for three different
regions: UPTP, EP, and BPTP. More specifically, the zeroth-
order diffraction efficiency can be decreased, unaffected, or
improved with the increase of the grating thickness when the
atomic grating is in the UPTP, at the EP, or in the BPTP.

In the laser-induced atomic grating, if the spatial distribu-
tions of the Stark field and control field remain unchanged, the
spatial modulation of the refractive index along the x axis also
remains the same. Whenever the probe field is incident into the
grating from the left side (propagating along the +z direction
with wave vector kz) or the right side (propagating along the
−z direction with wave vector −kz), the optical lattice with

a reciprocal lattice vector K = 2π/� provides two transverse
wave vectors for the probe field: a component kx = mK in
the +x direction and a component k−x = −mK in the −x

direction (m is a positive integer). For a 1D -symmetric optical
lattice along the x axis, the reflection in the x axis from one
end is zero, while it is enhanced from the other end at the EP
[39]. That is to say, there is no reflection for the component
kx = mK in the +x direction in the condition of the complex
refractive index n(x) = n0 − n1[cos(Kx) + i sin(Kx)]. Thus,
the diffracted field is biased toward the +x direction no matter
whether it is incident into the atomic grating from the left
side [see Fig. 7(a)] or the right side [see Fig. 7(b)]. In other
words, the incident probe field is diffracted to non-negative
diffraction orders for both left-side incident light and right-side
incident light.

Let us now investigate the diffraction characteristics of
2D atomic grating with PT -symmetric optical potential in
the Raman-Nath regime. Similar to the diffraction of 1D
PT -symmetric grating, the gain-absorption parameter W0 also
plays an important role in the energy distribution of different
diffraction orders of 2D atomic grating. Figure 8 shows 2D
diffraction spectra for different values of the gain-absorption
parameter W0 in the Raman-Nath regime. Note that the 2D
diffraction region can be divided into four domains: domain
I (0 � sin θx, sin θy � 1), domain II (−1 < sin θx < 0,0 <

sin θy < 1), domain III (−1 � sin θx, sin θy � 0), and domain
IV (0 < sin θx < 1, − 1 < sin θy < 0). When W0 = 0.35 <

Wc, Raman-Nath diffraction of the atomic grating presents
a 2D asymmetric diffraction spectrum, shown in Fig. 8(a).
This is because 2D amplitude grating and 2D phase grating
generate constructive interference in the diffraction orders of
domain I and destructive interference in the diffraction orders
of domains II–IV. Therefore, the diffraction in domain I is
enhanced, while that in domains II–IV is suppressed. As shown
in Fig. 8(b), in the case of W0 = Wc = 1.5, the perfectly
destructive interference results in the complete disappearance
of the diffraction fields in domains II–IV and the realization of
perfectly asymmetric diffraction. We can regard the perfectly
asymmetric diffraction as 2D lopsided diffraction because all
the diffraction fields only occur in the non-negative diffraction
orders. As W0 = 2.25 > Wc, the atomic grating is pushed
into BPTP and the diffraction orders appear predominantly in
domain I. However, some relative weak diffraction fields can
also be observed in the other domains due to the imperfectly
destructive interference [see Fig. 8(c)]. From Figs. 8(a)–8(c), it
is clear that we can greatly improve the diffraction efficiencies

FIG. 8. The Raman-Nath diffraction intensities as a function of (sin θx, sin θy) for three values of the gain-loss parameter W0: (a) W0 = 0.35,
(b) W0 = 1.5, and (c) W0 = 2.25. Other parameters are the same as in Fig. 4.
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FIG. 9. The Raman-Nath diffraction intensities for some diffrac-
tion orders in domain I as a function of the grating thickness L. Other
parameters are the same as in Fig. 4.

of the diffraction orders in domain I via adjusting the PT
phase from an unbroken PT -symmetric regime to a broken
PT -symmetric regime.

For the case that the 2D diffraction system is at the EP, σ−
x =

σ−
y = 0 and σ+

x = σ+
y = 2; and then Eq. (33) is rewritten as

dS(m,n)(ξ )

dξ
= i[S(m−1,n)(ξ ) + S(m,n−1)(ξ )]. (50)

Therefore, we can obtain the solution of S(m,n)(ξ ) by
integrating Eq. (41) as follows:

S(m,n)(ξ ) = i

∫ ξ

0
[Sm−1,n(ξ ′) + Sm,n−1(ξ ′)]dξ ′. (51)

Note that the boundary conditions of S(0,0)(ξ ) = 1 and
S(m,n)(ξ ) = 0 (m �= 0 or n �= 0) should be satisfied in 2D
atomic grating with PT -symmetric refractive index. For the
cases of (m = 0, n > 0) or (n = 0, m > 0), one can find
that Eq. (51) has the same expression with Eq. (37), which
leads to S(m,0)(ξ ) = S(0,m)(ξ ) = imξm/m!. Thus, S(m,n)(ξ ) =
S(n,m)(ξ ) is satisfied in domain I. The analytic expression of
the diffraction efficiencies for the first six diffraction orders in
domain I can be obtained as

I(0,0) = 1, I(0,1) = 4π2n2
1L

2

λ2
p

, I(1,1) = 16π4n4
1L

4

λ4
p

,

I(0,2) = 4π4n4
1L

4

λ4
p

, I(1,2) = 16π6n6
1L

6

λ6
p

, I(2,2) = 16π8n8
1L

8

λ8
p

,

(52)

with n1 = 0.00075V0/2.3831/2.

The numerical and analytic solutions for the diffraction effi-
ciencies in (0,0), (0,1), (1,0), (0,2), (1,2), and (2,0) diffraction
orders of 2D atomic grating with PT -symmetric refractive
index at the EP are shown in Fig. 9. Our result illustrates
that the coupled-wave analysis is valid to study Raman-Nath
diffraction of 2D atomic grating. Figure 9 also shows that
the (0,0)-order diffraction field is unaffected by the grating
thickness when the probe field passes through 2D atomic
grating at the EP, which is the same as 1D grating diffraction
in Fig. 5(b). It is clear that the change of the grating thickness
leads to a redistribution of the amplified diffraction fields
in domain I (except the zeroth order). More interestingly,
some diffractions fields in domain I have identical diffraction
efficiencies for some particular values of the grating thickness.

In order to see more details, we present the diffraction
spectra for three different grating thicknesses at the EP in
Fig. 10. When the grating thickness has a small value, i.e.,
L = 20 μm, the atomic grating gathers the most probe energy
in the (0,0) diffraction order and diffracts slight energy into
the (0,1) and (1,0) orders, as shown in Fig. 10(a). As the
thickness increases to 72 μm, some higher diffraction orders
appears in domain I and the diffraction efficiencies of the (0,0),
(0,1), (1,0), and (1,1) orders in domain I are all equal to 1, as
shown in Fig. 10(b). In the case of L = 102 μm, as shown
in Fig. 10(c), the (1,1)-order diffraction dominates and the
diffraction efficiencies of the four adjacent diffraction orders
are uniform. Therefore, we can accurately control the relative
intensities of the diffraction fields in the Raman-Nath regime
via adjusting the grating thickness when the probe field passes
through 2D atomic grating at the EP.

IV. SUMMARY

In summary, we have theoretically investigated the diffrac-
tion characteristics of 1D and 2D atomic gratings with periodic
PT -symmetric refractive index in the Raman-Nath regime.
In the proposed atomic system, the PT -symmetric refractive
index created by the interference of two Raman resonances
can be continuously tuned via adjusting the spatial intensities
of control and far-detuning Stark fields. It is demonstrated that
the π/2 phase shift between the amplitude and phase gratings
breaks the diffraction symmetry in the conventional atomic
gratings [44–49] and generates the asymmetric diffraction
effect. We give a suitable physical interpretation for the
phenomenon of asymmetric diffraction via the interference of
the amplitude and phase gratings in the Raman-Nath regime. At

FIG. 10. The Raman-Nath diffraction intensities as a function of (sin θx, sin θy) for three different grating thicknesses L: (a) L = 20 μm,
(b) L = 72 μm, and (c) L = 102 μm. Other parameters are the same as in Fig. 4.
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the EP (W0 = Wc), perfectly destructive interference exists in
the 1D and 2D atomic gratings. As a result, the atomic gratings
show a lopsided diffraction phenomenon, where the diffraction
field only occurs in non-negative diffraction orders. Further-
more, we investigate the influence of the grating thickness on
the Raman-Nath diffraction in different PT -phase regions.
It is found that some higher-order diffraction fields and a
redistribution of the diffraction efficiencies in the Raman-Nath
regime can be generated via increasing the grating thickness.
More importantly, the zeroth-order diffraction field at the EP
is unaffected by the change of the grating thickness. Our
proposed scheme may be used to design a gain-beam splitter
with tunable splitting ratio and other optical components in
integrated optics.
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APPENDIX: ARRANGEMENT FOR THE STARK
AND CONTROL FIELDS

In order to construct the spatially refractive index with PT
symmetry, we should give the arrangement for the Stark and
control fields with spatial dependence.

For the 1D PT -symmetric refractive index, the Stark field
ES(x) and the control field �c(x) are given by

ES(x) = ES0 + ES1 cos(xkS sin θS + φS1)

+ES2 cos(xkS sin θS + φS2),

= ES0 + ES1 cos(Kx + φS1)

+ES2 cos(Kx + φS2),

�c(x) = �c0 + �c1 cos(xkc sin θc + φc1)

+�c2 cos(xkc sin θc + φc2),

= �c0 + �c1 cos(Kx + φc1)

+�c2 cos(Kx + φc2), (A1)

where K = 2π/� = kS sin θS = kc sin θc and � is the period
of the standing waves. φij (i = S,c and j = 1,2) is the initial
phase of the corresponding standing wave. Note that �cj =−→μ ac · −→

e cEcj /2h̄ (j = 0,1,2).
Based on the approach, i.e., numerical algorithm of the

searching optimization, if taking ES0 = (0.97 + 0.004V0)E0,
ES1 = 0.004V0E0, ES2 = 0.021V0E0, φS1 = −π , and φS2 =
−π/2 with E0 = 104V/cm for the Stark field ES(x) and �c0 =
(2.553 − 0.001V0)�, �c1 = 0.001V0�, �c2 = 0.0032W0�,
φc1 = 0, and φc2 = π/2 for the control field �c(x), then we
obtain

ES(x)/E0 = 0.97 + 0.004V0 − 0.004V0 cos(Kx)

+ 0.021W0 sin(Kx),

�c(x)/� = 2.553 − 0.001V0 + 0.001V0 cos(Kx)

− 0.032W0 sin(Kx). (A2)

As a result, we can obtain 1DPT -symmetric probe suscep-
tibility, shown in Eq. (8), and a 1D PT -symmetric refractive
index, shown in Eq. (9).

For a 2D PT -symmetric refractive index, the Stark field
Es(x,y) and the control field �c(x,y) are written as

ES(x,y)/E0 = 0.97 + 0.008V0

− 0.004V0[cos(Kx) + cos(Ky)]

+ 0.021W0[sin(Kx) + sin(Ky)],

�c(x,y)/� = 2.553 − 0.002V0

+ 0.001V0[cos(Kx) + cos(Ky)]

− 0.032W0[sin(Kx) + sin(Ky)], (A3)

when ES0 = (0.97 + 0.008V0)E0, ES1 = ES3 = 0.004V0E0,
ES2 = ES4 = 0.021V0E0, φS1 = φS3 = −π , φS2 = φS4 =
−π/2, �c0 = (2.553 − 0.002V0)�, �c1 = �c3 = 0.001V0�,
�c2 = �c4 = 0.0032W0�, φc1 = φc3 = 0, and φc2 = φc4 =
π/2. Consequently, 2D PT -symmetric susceptibility, shown
in Eq. (10), and the 2D PT -symmetric refractive index, shown
in Eq. (11), are achieved.
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