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Soliton crystals are periodic patterns of multispot optical fields formed from either time or space entanglements
of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained
interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic
crystals, wave-guided wave systems, and most recently optical ring microresonator devices. In this work an
extensive analysis of characteristic features of soliton crystals is carried out, with an emphasis on their one-to-one
correspondence with elliptic solitons. With this purpose in mind, we examine their formation, their stability, and
their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation.
The stability analysis deals with internal modes of the system via a 2×2-matrix Lamé-type eigenvalue problem,
the spectrum of which is shown to possess a rich set of bound states consisting of stable zero-fequency
modes and unstable decaying as well as growing modes. Turning towards the dynamics of elliptic solitons in
ring-shaped fiber resonators with Kerr nonlinearity, we first propose a collective-coordinate approach, based on a
Lagrangian formalism suitable for elliptic-soliton solutions to the nonlinear Schrödinger equation with an arbitrary
perturbation. Next we derive time evolutions of elliptic-soliton parameters in the specific context of ring-shaped
optical fiber resonators, where the optical field evolution is thought to be governed by the Lugiato-Lefever
equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position,
the phase of internal oscillations, the phase velocity, the energy, and phase portraits of the amplitude is carried out
and reveals a complex dynamics of the elliptic soliton in ring-shaped optical microresonators. Direct numerical
simulations of the Lugiato-Lefever equation are also carried out seeking for stationary-wave solutions, and the
numerical results are in very good agreement with the collective-coordinate approach.
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I. INTRODUCTION

Since the observation of solitons in optical fibers and fiber
lasers [1], the optical communication technology has experi-
enced tremendous progress along with a wealth of modern
techniques for information processings and data manipula-
tions. This progress led, among others, to current techniques
of optimized data compression out of which the techniques
of time, wavelength, polarization, and phase multiplexings
[2]. In fiber communication technology, however, the spatial
dimension has been a relatively less relevant issue until the
revolution triggered by the advent of photonic crystals [1,3],
and the recent appearance of optical frequency combs (OFCs)
in fiber lasers [4,5]. On this last point, photonic crystals can
support hundreds of spatial modes, a feature which could
be exploited for the propagation of OFCs in form of space-
division multiplexed (SDM) signals. Indeed the development
of systems using space-division multiplexing in photonic
crystals, offers a promising technological tool for increasing
the capacity of optical networks, namely by increasing the
volume of information per fiber. Note that fibers supporting
several spatial modes provide the most effective means to
increase the fiber-based information capacity, given that the
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capacity increases with the number of modes in the absence of
mode-dependent losses.

OFCs [4,5] are the most recent revolution in the fiber laser
technology, these are discrete high-intensity optical spectra of
equidistant phase-locked lines extending over a broad spectral
range [4]. Since their discovery, they have been reported
in various nonlinear optical media such as semiconductor
microresonators [6] and fiber-laser cavities. They offer wide-
range applications in telecommunication for the generation of
high-repetition rate picosecond pulses, namely for ultra-high
capacity transmission systems based on optical division multi-
plexing [7–9]. OFCs today are widely used in spectroscopy [4],
astronomy, metrology, frequency synthesis, optical clocking
[10,11], and so on.

The mechanism by which optical soliton frequency combs
are generated, as well as their stability, have been some of most
active aspects in recent theoretical and experimental researches
in nonlinear optics [12–14]. Mode-locking has emerged as the
likely mechanism. It consists of the generation of a uniform
train of optical solitons formed from a four-wave mixing
process, associated with the nonlinear interaction between
light and the bulk material of a whispering gallery mode
microresonator. Depending on the frequency and power of the
pump laser, mode-locking can lead to the excitation of equally
spaced optical soliton lines thus forming what is usually termed
“soliton Kerr combs” [15–18].

In view of the periodic structure of optical soliton
Kerr combs generated by space-division multiplexing in the
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microresonator cavity, one might be tempted to think of its
possible connection with the so-called soliton crystals [19–22],
which also has been of considerable interest in the recent past
in harmonic-mode-locked fiber lasers. The idea has indeed
been recently introduced in a recent experimental study by
Cole et al. [23], who reported the observation of spontaneously
and collectively ordered ensembles of copropagating solitons,
whose spatial discretizations allow their temporal separations
within monolithic Kerr microresonator cavities. Relevant to
stress, concerning a discrete ordering of some collection of
several solitons to form a soliton-crystal structure, it has
been established [24] that soliton crystals can result from a
spatial or temporal entanglement of equidistant pulses. Quite
remarkably, the resulting crystal-like ordered soliton field
obeys the cubic nonlinear Schrödinger equation (NLSE), i.e.,
the same equation governing the spatiotemporal evolution of
its elementary (i.e., pulse) constituents. On the other hand,
the dynamics of soliton combs in Kerr microresonators are
thought to be governed by the Lugiato-Lefever equation (LLE)
[25], which is actually a perturbed NLSE. Therefore whether
soliton-crystal structures and soliton Kerr combs are con-
nected, and if so in which way they could be connected,
is a relevant issue for a better understanding of the process
underlying the soliton frequency comb generation and its
robustness vis à vis external factors such as cavity losses,
external detunings and so on.

In this work we propose an extensive analysis of the above
issue by addressing three key aspects, namely the build-up
(i.e., formation) mechanism and characteristic features of the
soliton-crystal structure, its stability vis à vis scattering with
continuous-wave radiations, and finally the effects of cavity
loss and a detuning pump on the soliton-crystal profile, within
the framework of the LLE.

In Sec. II, we present the perturbed NLSE specifically
named LLE and discuss its soliton solutions in the absence
of perturbations. Thus we first consider the artifical pulse-
lattice pattern proposed by Herr et al. [26], represented as
a discrete series of fundamental sech-shaped pulses in the
angular-coordinates representation. We show that this artifi-
cial structure is equivalent to a space-division multiplexing
of identical pulses [24,27–29], and obeys the same NLSE
governing the dynamics of its single-pulse constituents. As a
sequel of the established one-to-one correspondance between
the soliton-crystal structure of Ref. [26] and the elliptic-soliton
solution to the NLSE, we derive characteristic parameters of
the soliton crystals namely its period, amplitude, and pulse
separation, as a function of fundamental parameters of the
individual pulse constituents. In Sec. III we introduce an
approach to the linear stability analysis for elliptic solitons.
The approach rests on a mapping of the soliton crystal-small
amplitude waves scattering problem onto a 2×2 matrix eigen-
value problem involving two coupled Lamé equations [30].
The matrix eigenvalue problem yields a rich and varied discrete
spectrum comprising internal modes, growing modes, and
decaying modes. Spectral parameters of these modes, i.e., their
eigenvalues and eigenfunctions, are determined analytically. In
Sec. IV we discuss the dynamics of soliton frequency combs
within the framework of the collective-coordinate approach for
elliptic-soliton solution to the LLE. We first construct a general
collective-coordinate theory using a Lagrangian formalism for

elliptic-soliton solutions of the cubic NLSE with an arbitrary
perturbation, and then derive the collective-coordinate equa-
tions for elliptic-soliton parameters in the specific context of
the LLE. In Sec. V these collective-coordinate equations are
solved numerically with the help of a sixth-order Runge-Kutta
algorithm [31,32], combined with a 3/8 Simpson rule for
finite integrals, which also enables us to explore some relevant
characteristic features of the system dynamics, namely the
phase portraits and the energy of elliptic solitons. Section VI
is devoted to concluding remarks.

II. MODEL, SOLITON CRYSTALS,
AND ELLIPTIC SOLITONS

The dynamics of soliton Kerr combs in ring-shaped optical
microresonators is usually described by the LLE, which is a
perturbed NLSE given by [25]

i
∂ψ

∂τ
− β2

2

∂2ψ

∂θ2
+ γ |ψ |2ψ = −i(α1 + iα2)ψ + iF, (1)

where ψ = ψ(τ,θ ) is the slow-varying envelope of the field,
θ is the angular coordinate in the ring microresonator, and
τ is time. β2 is the group-velocity dispersion (GVD) of the
microresonator, γ is the nonlinear (i.e., Kerr) coefficient, α1

is the linear loss (damping term), α2 is the pump detuning
frequency, and F is the pump field intensty. In all the following
we focus on the anomalous dispersion regime, i.e., β2 < 0.

In this section we are interested in the solution to the LLE
for α1 = α2 = F = 0. In this case Eq. (1) reduces to the cubic
NLSE

i
∂ψ

∂τ
− β2

2

∂2ψ

∂θ2
+ γ |ψ |2ψ = 0. (2)

Seeking for stationary solutions to the above equation, we
assume an optical field ψ(τ,θ ) of the following form [24]:

ψ(τ,θ ) = a(θ )eiβτ , (3)

where β is the envelope modulation frequency and a(θ ) is
the amplitude of the field envelope assumed real. Substituting
Eq. (3) in Eq. (2) yields

−βa − β2

2

∂2a

∂θ2
+ γ a3 = 0, (4)

which can be transformed into the energy-integral equation(
da

dθ

)2

= −2β

β2
a2 + γ

β2
a4 + C. (5)

The integration constant C determines profiles of the amplitude
a(θ ). The first physical context of interest is that of a localized
profile, where the field envelope a(θ ) has a vanishing shape
as θ → ±∞ such that C = 0. This leads to the pulse soliton
solution

a(θ ) =
√

2β

γ
sech

[√
−2β

β2
θ

]
. (6)

Physically the solution (6) describes a high-intensity single-

pulse signal of amplitude a0 =
√

2β

γ
and width 	0 =

√
β2

−2β
.

When C �= 0, localized structures become unstable and
no pulse can form. Nevertheless the NLSE still admits
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FIG. 1. Elliptic-soliton solution to the NLSE: β2 = −0.5,
β = 0.5 and γ = 0.9, κ = 0.97.

nonlinear-wave solutions. Indeed, for finite nonzero values
of C, Eq. (5) is an elliptic first-order differential equation
admitting a solution [24,33–36]

a(θ ) = a0√
2 − k2

dn

[
θ√

2 − k2	0

,κ

]
, (7)

where dn is a Jacobi elliptic function of modulus κ (0�κ�1).
The spatial profile of the envelope solution Eq. (7) is plotted in
Fig. 1 for β2 = −0.5, β = 0.5, γ = 0.9, and κ = 0.97 (values
chosen for illustration).

The figure suggests a comb structure consisting of a periodic
network of pulse-shaped signals, where the periodic nature of
the pulse comb is actually characteristic of the Jacobi elliptic
function dn which is periodic in its argument with a period

θp = 2K
√

2 − κ2	0, (8)

with K = K(κ) the elliptic integral of first kind. This period,
which we assimilate to the pulse spatial repetition rate in the
soliton-comb pattern, appears to be proportional to the width of
individual pulses. It is also worth remarking that according to
formula (7), the pulse amplitude in the pulse comb is smaller. In
the limit κ → 1 the spatial repetition rate θp becomes infinite
and the elliptic-soliton solution (7) decays into the single-pulse
solution (6).

To probe the inner structure of the artificial soliton-crystal
pattern proposed in Ref. [26], in the light of the two distinct
exact soliton solutions to the NLSE obtained above, we remark
that the authors suggested that the soliton crystal formed by
SDM of pulses in microresonators could readily be represented
as [26]

a(θ ) =
∑

J

Cj sech

(√
2(ω0 − ωp)

D2
(θ − θj )

)
, (9)

D2 = − c

n0
D2

1β2, (10)

where θj is the angular position of the j th pulse, while ω0 and
ωp are, respectively, the resonance frequency of the resonator
and the pump Laser frequency. n0 is the refractive index, D1

is the free spectral range, and D2 is the resonator anomalous
dispersion. In Eq. (9) each pulse soliton is regarded as an
eigenfunction with a normalized amplitude Cj representing
an existing mode within the soliton comb. In the specific case

when pulses are identical such that Cj = C0, and moreover
are equally spaced such that θj = jθ0, the SDM soliton crystal
Eq. (9) reduces to

a(θ ) = C0

∑
J

sech

(√
2(ω0 − ωp)

D2
(θ − jθ0)

)
, (11)

where θ0 is the pulse repetition rate. If the series (11) corre-
sponds to a comb of sech-type pulses in which constituents
are solutions to the NLSE, then in terms of the single-pulse
solution (6) we can set

β = n0

cD2
1

(ω0 − ωp), C0 =
√

2β

γ
. (12)

In this case the sum in Eq. (11) becomes exact if we assume
an infinitely large ensemble of pulses giving [24]

a(θ ) = θHC0dn

[
θ

	H

,κ

]
, (13)

θH = 2K ′

π
C0, 	H = π

2K ′

√
D2

2(ω0 − ωp)
, (14)

where K ′ = K(1 − κ2). It turns out that the spatial multiplex
of sech pulses (11) is nothing else but an elliptic soliton, and
as such it is a soliton crystal equivalent to the elliptic-soliton
solution (7) of the NLSE with a spatial repetition rate θ0 given
by

θ0 = 2K	H , (15)

where 	H , the pulse width in the comb structure, has been
defined in formula (14).

The elliptic solitons (7) or (13) form a multisoliton complex
that decay into a harmonic wavepacket when κ → 0. When
κ → 1, both reduce to a single-pulse field. In the context
of laser applications they exhibit interesting features among
which the dependence of their amplitude on both the coupled
resonance width and the pulse repetition rate. As it is apparent
from formula (15), the pulse repetition rate is relevant in the
sense that it determines the existence and stability of the soliton
crystal in the ring resonator device: the smaller the pulse
repetition rate the larger the pulse amplitude. Also, according
to the above relations, the elliptic soliton amplitude is inversely
proportional to the cavity resonance width β as defined in
Eq. (12). Consequently, the elliptic soliton envelope should be
widened as the amplitude grows, thereby reducing collisions
between pulses in th soliton-comb structure.

III. SOLITON CRYSTAL STABILITY

The stability of nonlinear signals in optical media is a
key requirement for their processing, storage or transmission.
While the issue has been investigated at length for single-pulse
solutions (see, e.g., Ref. [37]), recent interest in multiplexed
solitons has shifted attention to the stability of these particular
structures from both experimental [26] and theoretical stand-
points within the framework of the linear stability analysis [29].

In this section we wish to investigate the stability of
soliton crystals, represented by elliptic solitons as established
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in the previous section. In this purpose we consider small-
amplitude noises in the ring microresonator propagating to-
gether with the elliptic-soliton signal. For the sake of formal
mathematical analysis, we shall deal with the elliptic soliton
(7) obtained as exact solution to the NLSE (2). In the presence
of small-amplitude noises this solution now becomes

ψ(τ,θ ) = {a(θ ) + [u(θ ) − v(θ )]eiωτ

+ [u∗(θ ) + v∗(θ )]e−iωτ }eiβτ , (16)

where a(θ ) is the elliptic-soliton envelope given by Eq. (7),
while u(θ ) and v(θ ) are the spatial amplitudes of two complex
noise fields having a common frequency ω [37]. Substituting
Eq. (16) in the NLSE (2), and keeping only linear terms in
u(θ ) and v(θ ), we find the following set of coupled Lamé [30]
equations: [

∂2

∂ϕ2
+ 2dn2(ϕ) + ε

]
v + νu = 0, (17)

[
∂2

∂ϕ2
+ 6dn2(ϕ) + ε′

]
u + νv = 0, (18)

with ϕ =
√

− 2β

β2(2−κ2)θ , ε=ε′=(2 − κ2)β, and ν=(2 − κ2)ω.

The set Eqs. (17) and (18) can be mapped onto a 2×2-
matrix linear eigenvalue problem with eigenfunctions forming
a family of two-component complex vectors (u, v), whose
eigenvalues are the couples of scalars (ε, ε′). In matrix form
the eigenvalue problem reads

HU = ε(κ)U, (19)

where

H =
[

∂2

∂ϕ2 + 2dn2(ϕ) ν

ν ∂2

∂ϕ2 + 6dn2(ϕ)

]
, U =

[
v

u

]
.

We look for solutions to the above matrix eigenvalue
problem, which are linear combinations of the exact eigen-
functions of Eqs. (17) and (18) in the absence of coupling.
To find these exact eigenfunctions we remark that for ω = 0,
i.e., when the noise fields are in steady state, the set
Eqs. (17) and (18) bursts into two independent Lamé equa-
tions: the first becomes a Lamé equation of first order and
the second to a Lamé equation of second order. Instruc-
tively, an nth-order Lamé eigenvalue problem has the general
form [24,38,39]

−
[

∂2

∂z2
+ n(n + 1)κ2sn2(z)

]
ψ(z) = λ(κ)ψ(z), (20)

where sn is a Jacobi elliptic function and n a positive integer.
Considering the discrete spectrum of this eigenvalue equation,
it is known that for a given value of n the Lamé equation
possesses exactly 2n + 1 bound-state solutions. For Eqs. (17)
and (18) this leads to the eigenfunctions listed in Tables I and
II, together with their corresponding eigenvalues.

When ω �= 0, solutions to the coupled eigenvalue Eqs. (17)
and (18) are vectors [u(ϕ), v(ϕ)] whose components are
orthogonal linear combinations of the two-component basis
vector u0(ϕ), v0(ϕ), which are exact eigenmodes given in
Tables I and II. Two new basis vectors ensuing from the

TABLE I. Eigenvalues ε(κ) and eigenfunctions v(ϕ) of the
first-order Lamé equation (17), when ω = 0. v

(i)
0 are normalization

constants.

Eigenvalues Eigenfunctions

ε(κ) = (1 + κ2) v(1)(κ) = v
(1)
0 sn(ϕ)

ε(κ) = 1 v(2)(κ) = v
(2)
0 cn(ϕ)

ε(κ) = κ2 v(3)(κ) = v
(3)
0 dn(ϕ)

requirement of an orthonormalized basis for the two coupled
Lamé equations (17) and (18) are[

a1

1

]
cn(ϕ)eiη +

[
0
b1

]
sn(ϕ)dn(ϕ)eiη,

[
a2

1

]
sn(ϕ)eiη +

[
0
b2

]
cn(ϕ)dn(ϕ)eiη,

where the functions f (x,κ) = {cn(x),sn(x)} and gi(x,κ) =
{sn(x)dn(x),cn(x)dn(x)} should be mutually orthogonal, i.e.,∫ K

−K

fi(x,κ)gi(x,κ)dx = 0. (21)

In this new two-component basis we obtain the following
solutions.

(1) On the basis [cn(x),sn(x)dn(x)]:

v(ϕ) = ∓ iκ√
1 − κ2

cn(ϕ,κ)e2i
√

1−κ2ϕ, (22)

u(ϕ) =
[
cn(ϕ,κ) + i√

1 − κ2
sn(ϕ,κ)dn(ϕ,κ)

]
e2i

√
1−κ2ϕ,

(23)

with spectral parameters

ν(κ) = ∓2iκ
√

1 − κ2, ε(κ) = 1 − 2κ2. (24)

(2) On the basis [sn(x),cn(x)dn(x)]:

v(ϕ) = ±sn(ϕ,κ)e2iϕ, (25)

u(ϕ) = [sn(ϕ,κ) ∓ icn(ϕ,κ)dn(ϕ,κ)]e2iϕ, (26)

TABLE II. Eigenvalues ε′(κ) and eigenfunctions u(ϕ) of the
second-order Lamé equation (18), when ω = 0. κ2

1 = 1 − κ2, u(i)
0 are

normalization constants.

Eigenvalues Eigenfunctions

ε′(κ) = (4 + κ2) u(1)(κ) = u
(1)
0 sn(ϕ)cn(ϕ)

ε′(κ) = (1 + 4κ2) u(2)(κ) = u
(2)
0 sn(ϕ)dn(ϕ)

ε′(κ) = (1 + κ2) u(3)(κ) = u
(3)
0 cn(ϕ)dn(ϕ)

ε′(κ) = 2[(1 + κ2) ∓
√

1 − κ2κ2
1 ] u(4,5)(κ) = u

(4,5)
0 sn2(ϕ) − u

4,5
0

× (1+κ2)±
√

1−κ2κ2
1

3k2
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FIG. 2. Real parts of the internal modes v(ϕ) (left) and u(ϕ) (right) given in (25) and (26). Top: κ = 0.8, bottom: κ = 97.

for which the spectral parameters are

ν(κ) = ±2κ, ε(κ) = 1 + κ2. (27)

According to Eq. (24) eigenvalues of the internal modes (22)
to (23) are purely imaginary, therefore these modes will either
decay or grow and hence are unstable. We refer to the internal
mode with a growing amplitude as “growing modes,” whereas
the internal mode with decreasing amplitude is referred to as
“decaying modes.” In fact their instability affects the elliptic-
soliton stability, indeed the ansatz formula (16) clearly shows
that the exponential growth or decay of internal modes are the
result of a combination with the exponential modulation of the
Elliptic soliton envelope a(ϕ). On the contrary eigenvalues of
the pair of internal modes (25) to (26) are real, as evidenced by
formula (27). Hence they are stable bound states, coexisting
with the elliptic soliton, but distinct from the elliptic soliton
by their amplitudes and frequencies. They can be regarded as
long-term (i.e., nonlinear) periodic oscillations in the elliptic-

soliton background. Their amplitudes are represented in Fig. 2,
while their eigenvalues are sketched in Fig. 3.

IV. DYNAMICS OF ELLIPTIC SOLITONS IN RING
MICRORESONATORS: COLLECTIVE

COORDINATE APPROACH

A. Collective-coordinate equations for the general
perturbed NLSE

Unlike the NLSE for which the elliptic-soliton solution has
been obtained in Sec. II and shown to be equivalent to a pulse-
shaped soliton comb, the LLE Eq. (1) is a member of a wide
family of inhomogeneous NLSEs which are usually not exactly
integrable [40,41]. Nevertheless, an approximate solution for
this last equation can be obtained by means of a perturbation
theory, such as the collective-coordinate method which is more
explicitly an adiabatic perturbation theory. While this method
has been widely utilized for perturbed NLSEs in the context of
single-pulse soliton [41], the possible existence of multipulse

FIG. 3. Plots of the internal-mode eigenvalues ν (right) and ω (left) given by (27), as a function of the Jacobi elliptic modulus κ . In the two
plots the shaded region (blue region in color) denotes the stability domain.
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solutions and particularly soliton-crystal solutions to the same
equations recently motivated its extension [27] to these particu-
lar physical contexts. To start we shall construct the collective-
coordinate theory for the Elliptic-soliton solution to the NLSE
with an arbitrary perturbation, and next apply the theory to the
LLE.

Consider the perturbed cubic NLSE

i
∂ψ

∂t
+ 1

2

∂2ψ

∂ϑ2
+ γ |ψ |2ψ(t,ϑ) = iεQ[ψ,ψ (n,m)], (28)

where εQ(ψ,ψ (n,m)) represents the perturbation and ψ (n,m)

refer to the nth and mth derivatives of ψ(t,ϑ) with respect to t

and ϑ , respectively. Let the elliptic-soliton solution to Eq. (28)
be of a general form

ψ(t,ϑ) = η(t)dn{η(t)[ϑ − q(t)]}exp[iφ(t) − δ(t)ϑ], (29)

where η(t) is the amplitude, q(t) is the position, φ(t) is the
phase of internal oscillations, and δ(t) is the phase velocity of
the elliptic soliton. Our aim is to determine the set of differential
equations governing time evolutions of these four collective-
coordinate variables. Within the framework of the Lagrangian
formalism [27], we define the Lagrangian density associated
to the perturbed Eq. (28) as:

ld = i

2
(ψψ∗

t − ψtψ
∗) − 1

2
(|ψ |4 − |ψt |2)

+ xi(εQψ∗ − εQ∗ψ), (30)

where the subscripts refer to derivatives with respect to the
variable. The Lagrangian L can be computed via the formula

L =
∫ K

−K

ld dϑ, (31)

which after the substitution of Eq. (29) and integration yields

L = (φt − δtq)ηE − 4

3
(2 − κ2)η3E + η[(2 − κ2)η2 + δ2]E

+ i

∫ K

−K

(εQψ∗ − εQ∗ψ)dϑ, (32)

where E is the elliptic integral of second kind. Applying
the Lagrangian formalism with respect to the four collective-
coordinate variables on L [27], we obtain the following set of
coupled first-order time ordinary differential equations

ηt = 1

E
Re

∫ K

−K

εQ(ψ)ψ dϑ, (33)

δt = −κ2

E
Im

∫ K

−K

sn[η(ϑ − q)]εQ(ψ)ψ dϑ, (34)

qt = −δ + 1

η2E
Re

∫ K

−K

(ϑ − q)εQ(ψ)ψ dϑ, (35)

φt = 1

E
Im

∫ K

−K

εQ(ψ)

{
1

η
ψ∗ − κ2(ϑ − q)sn[η(ϑ − q)]

×ψ∗
cn

}
dϑ + 1

2
[(2 − κ2)η2 − δ2] + qδt . (36)

In the last set we defined

ψcn(t,ϑ) = η(t)cn{η(t)[θ − q(t)]}exp[iφ(t) − δ(t)ϑ], (37)

while “Re” and “Im” stand for the real and imaginary parts,
respectively.

B. Collective-coordinate equations for the LLE

By setting t = γ

2 τ and ϑ =
√

γ

2|β2|θ , the LLE Eq. (1) can

be expressed as the perturbed NLSE Eq. (28) with

εQ(ψ) = f − 2

γ
(α1 + iα2)ψ(t,ϑ), (38)

where f = 2
γ
F . Replacing Eq. (38) in the set Eqs. (33) to (36)

we obtain

ηt = −2αrη + 2f

E
cos(δq − φ)

∫ K

0
dn(ϑ)cos

(
δ

η
ϑ

)
dϑ,

(39)

δt = −2κ2

E
f cos(δq − φ)

∫ K

0
dn(ϑ)sn(ϑ)sin

(
δ

η
ϑ ′

)
dϑ,

(40)

qt = −δ − 2f

η3E
sin(δq − φ)

∫ K

0
ϑdn(ϑ)sin

(
δ

η
ϑ

)
dϑ,

(41)

φt = −2αi − αi

E
[E − (1 − κ2)K] + 2f

ηE
sin(δq − φ)

×
∫ K

0
dn(ϑ)cos

(
δ

η
ϑ ′

)
dϑ − 2κ2

ηE
f cos(δq − φ)

×
∫ K

0
cn(ϑ)sn(ϑ)sin

(
δ

η
ϑ

)
dϑ

+ 1

2
[(2 − κ2)η2 − δ2] + qδt , (42)

where we define αr = 2α1
γ

, αi = 2α2
γ

. In the next section we
present numerical simulations of the collective-coordinate
equations (39) to (42), and explore some important aspects
of the system dynamics including the phase portraits and the
energy of the elliptic soliton for some values of the perturbation
parameters.

V. NUMERICAL RESULTS

The collective-coordinate equations (39) to (42) were
solved numerically using a sixth-order Runge-Kutta scheme
[31,32], in conjunction with a 3/8 Simpson rule for the in-
tegrals. The Jacobi elliptic functions dn, sn, and cn were
generated numerically by employing an algorithm proposed
in Ref. [42]. In all our simulations we considered κ = 0.97,
γ = 1, and F = 0.01.

Figure 4 shows time series of the amplitude η(t), the
position q(t), the phase of internal oscillations φ(t). and the
phase velocity δ(t) of the elliptic soliton, obtained numerically
for α1 = 0.001 and α2 = 0.5. A main dominant behavior of
characteristic parameters of the elliptic soliton emerging from
the figures is a damped oscillation, except the position which
is only very slightly oscillating and suggests more a linear
acceleration. The time series of the amplitude seems more
appealing and informative about the elliptic soliton stability,
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FIG. 4. Time evolutions of the elliptic-soliton parameters η(t), q(t), φ(t), and δ(t) for α1 = 0.001 and α2 = 0.5.

so we followed the evolution of this specific parameter for
different combinations of the two perturbation coefficients α1

and α2. In particular Fig. 5 represents the time evolution of η(t)
for a fixed value of α2 but varying α1, whereas in Fig. 6 α1 is

kept fix but α2 is varied. If the exponentially damped oscillating
behavior remains most dominant, the two figures clearly
suggest that the linear loss coefficient α1 effectively controls
the elliptic soliton stability while an increase in α2 enhances
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FIG. 5. Time evolutions of the elliptic-soliton amplitude η(t) for α2 = 0.01. From (a) to (d): α1 = 0.001, α1 = 0.005 α1 = 0.01, α1 = 1.
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the oscillatory feature of its amplitude. The apparent control of
the elliptic-soliton stability by the linear loss coefficient α1 has
an important implication as concerns the dynamics of optical

soliton frequency combs. Indeed, besides characterizing noise
in the phase spectrum of the soliton and thus affecting its
repetition frequency, the quality factor Q (a dimensionless
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parameter describing how underdamped a resonator is) of the
microresonator is inversely proportional to the microresonator
loss coefficient. This means that the average lifetime of a comb
structure in the soliton state will depend on the linear loss:
when the linear loss of the cavity is increased, the soliton comb
should fade away more or less shortly after its emission. On
the contrary, a decrease in the linear loss will enhance the
signal intensity in the cavity. The later phenomenon is quite
common in laser processings and is known as Q switching.
Note that at very high values of the linear loss α1, compared to
the pump detuning frequency α2, the evolution of the soliton
comb becomes chaotic as seen in Fig. 5(d).

The changes observed in Fig. 6 on the time-series evolution
of the elliptic soliton amplitude due to a variation of the pump
detuning frequency α2, suggest a very rich dynamics of the

system related to this parameter. To this last point, Fig. 6
shows that as we increase α2 we move from regularly oscillat-
ing elliptic-soliton structures to “rolling” patterns [Figs. 6(c)
and 6(d)]. This behavior is more apparent by looking at the
phase portrait of the amplitude, which we represented in Fig. 7
for a fixed value of α1. For values of α2 around 1 and above,
the three-dimensional representation of the elliptic-soliton
amplitude exhibits a spin-like behavior. Note that these patterns
are in agreement with experiments [14,18,43], where it is
observed that roll patterns are formed when the resonator is
pumped above a certain threshold.

To provide a more global picture of the temporal evolution
of the elliptic-soliton amplitude in the LLE, we also plotted
the phase portrait for varying loss coefficient α1 and fixed
pump detuning frequency α2. Figure 8 are plots of these phase
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FIG. 9. Time variation of the elliptic-soliton energy. From graphs (a) to (f) the linear loss parameter is constant (i.e., α1 = 0.001), while the
pump detuning frequency is varied as: (a) α2 = 0.001, (b) α2 = 0.01, (c) α2 = 0.1, (d) α2 = 0.5.
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FIG. 10. Soliton-crystal profiles from numerical simulations for
F0 = α1 = α2 = 0.

portraits. Essentially Fig. 8 suggests that when the coefficient
of linear loss α1 is increased, the oscillatory feature of the
eliptic-soliton amplitude in the resonator cavity tends to die
down, thus confirming the stabilizing role played by this
parameter in the elliptic-soliton dynamics.

In the final analysis we examine the time variation of
the “topological” energy of the elliptic soliton, considered
as another relevant indicator of the soliton-comb stability as
it propagates in the ring microresonator. In our analysis we
consider numerical results only for variations of the pump
detuning frequency, avoiding chaotic evolutions by fixing the
linear loss coefficient in the regime of regular motion.

We derive the energy from the Lagrangian using the general
relation

E =
(∑

i

q̇i

∂

∂q̇i

− 1

)
L, (43)

where qi is one of the collective-coordinate variables η, q, φ,
δ. With the help of Eq. (32), we find the energy

E = 4

3
(2 − κ2)η3E(κ) − η[(2 − κ2)η2 + δ2]E(κ)

+ 2Im

∫ K

−K

εψ∗dϑ. (44)

The time variation of the elliptic-soliton energy is depicted in
Fig. 9, for some values of linear loss and the pump detuning
frequency. The figures show that as one increases the pump
detuning frequency, a second oscillatory curve shows up which
overtakes gradually the elliptic-soliton energy. This second
energy may be attributed to the emergence of roll patterns in
the system. When α2 > 0.6, the roll patterns completely wipe
out solitonic structures in the system.

Before closing this section, we find it worth checking
the consistency of our assumption in the choice of Eq. (29)
as an appropriate variational solution to the LLE. Indeed,
we assume that profile of the soliton-crystal structure (7)
was preserved within the framework of the LLE, except its
characteristic parameters that were expected to change in time
due to the perturbations. To this end we will solve the LLE
numerically, putting particular emphasis on its stationary-wave
solutions.

As already stressed above, the LLE is a perturbed NLSE
and in this respect can be simulated, from a general standpoint,
using the split-step Fourier transform scheme [44]. This algo-
rithm combines a standard numerical scheme for ordinary dif-
ferential equations in one of the two coordinates, and a numer-
ical spectral transform in the other coordinate of the equation.
More explicitely, for Eq. (1) the split-step scheme will combine
a spatial integration using any classic algorithm for ordinary-
differential equation as, for instance, the Runge-Kutta scheme,
whereas the time derivative is treated by means of Fourier
transform. Most generally the split-step Fourier transform will
give rise to a traveling-wave solution, which is expected to
reproduce more or less accurately the exact analytical pulse
solution.

In our specific context, however, we are concerned with
stationary waves, which we believe provide a better represen-
tation of the soliton-crystal structure observed experimentally
[23,26]. To check that Eq. (29) is an appropriate choice
for variational soliton-crystal-type solution for the LLE, we
simulated Eq. (1) seeking for stationary-wave solutions. To
this end, it is useful to remark that such solutions should be in
the following general form:

ψ(τ,θ ) = a0 b[X(θ )]eiβτ ,

X(θ ) =
√

−2β

β2
θ, a0 =

√
2β

γ
. (45)

FIG. 11. Soliton-crystal profiles from numerical simulations for F0 = 0.1, βτ = 0.5, and α1 = 0.1. α2 is varied as 0.05 (left graph), 0.1
(middle graph), and 0.5 (right graph).
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FIG. 12. Oscillating amplitude, width, and repetition rate of pulses in the soliton-crystal structure, as suggested by direct numerical
simulations of Eq. (46) at different times τ . F0 = 0.1, α1 = 0.1, α2 = 0.5 and from left to right: βτ = 0.5, 10, 15, and 20.

Substituting Eq. (45) in Eq. (1), and imposing that b[X(θ )]
should be a real function, we obtain

−b + bXX + 2b3 = (−iα1 − α2)b + i
F

β

√
γ

2β
e−iβτ , (46)

where

F0 = F

β

√
γ

2β
, α0 =

√
α2

1 + α2
2, ξ = arctan(α1/α2). (47)

Equation (46) provides the accurate representation of the sta-
tionary profile of nonlinear solutions to Eq. (1). We simulated
Eq. (46) for some couples of values of (α1,α2), at selected
(i.e., fixed) times τ . First we consider the soliton-crystal profile
suggested by numerical simulations in the absence of pertur-
bations (i.e., α1 = 0, α2 = 0, F = 0), which we represented in
Fig. 10. Next we consider numerical solutions in the presence
of perturbations, setting F0 = 0.1 throughout the simulations.
In Fig. 11 we plot the numerical results at a fixed time τ , when
α1 = 0.1 and α2 is varied. We see that an increase of α2 for a
fixed value of α1 causes an increase in amplitudes of pulses in
the soliton-crystal structure. To check the oscillating features of
the amplitude, width, and repetition rate (hence the position)
of the soliton crystal, predicted by the collective-coordinate
approach, we also generated numerical solutions of Eq. (46)
at four different times. The four graphs shown in Fig. 12
clearly indicate that the soliton-crystal amplitude, width as
well as repetition rate are changing with time. Particularly the
extreme right and extreme left graphs are regular and similar,
reminiscent of periodic oscillations of these characteristic
parameters with time.

VI. CONCLUSION

Optical frequency combs stem from outstanding progress
achieved over the last two decades in precision control and
stabilization of mode-locked ultrafast lasers. Soliton combs
[15–17] in particular have emerged as cavity solitons [45]
consisting of a regular comb of sharp pulse lines, produced by
mode-locked lasers from femtosecond optical frequency comb
generators. These specific laser patterns have revolutionized
optical frequency metrology and synthesis, they serve as basis
for demonstrations of atomic clocks that utilize an optical

frequency transition and have recently shown efficiencies in
time-domain applications, including phase-sensitive extreme
nonlinear optics and pulse manipulation as well as control
[10,46–49].

The aim of the present work is to propose an extensive study
of the mechanism of generation and the dynamics of soliton
combs in ring-shaped optical microresonators, within the
framework of the Lugiato-Levefer equation. Being a specific
form of perturbed cubic nonlinear Schrödinger equation, it is
ready to assume that the solitonic feature of pulses composing
the soliton comb arises from the NLSE while the perturbation,
related to the cavity loss and the pump fields, are expected
to determine the comb dynamics. Based on this consideration
we first address the issue of the generation of soliton-crystal
structures that have recently been observed in monolithic Kerr
optical frequency comb microresonators. We establish that
these structures, which have previously been represented as
a periodic train of spatially entangled pulses, are equivalent
to the elliptic-soliton solution to the homogeneous NLSE
governing equally their pulse components. We analyze the
stability of the elliptic soliton and obtained a rich bound-state
spectrum consisting of unstable as well as stable long-term
internal oscillations existing in the elliptic-soliton backgound.
A collective-coordinate approach to the Lugiato-Lefever equa-
tion was developed, and numerical simulations were carried
out to point out the effects of loss and pump detuning on the
elliptic-soliton profiles. In particular, we find that while the
time evolution of the elliptic-soliton amplitude is dominantly
oscillatory, a variation of the two perturbation parameters gives
rise to a quite rich dynamics including rolling patterns and
chaotic evolutions.

The values of α1 and α2 that were considered in the
numerical analysis of Sec. V, actually underscore only a very
little aspect of the extremely rich dynamics of the system.
Nevertheless, the few values considered provide a valuable
insight onto the system dynamics, as reflected in time series of
the elliptic-soliton amplitude and the associate phase portraits,
as well as the time variation of the elliptic-soliton energy.
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