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We study the quantum correlations induced by spontaneous parametric down-conversion of a frequency comb.
We derive a theoretical method to find the output state corresponding to a pump with an arbitrary spectral profile.
After applying it to the relevant example of a spectrally chirped pump, we run an optimization algorithm to
numerically find the pump profiles maximizing some target functions. These include the number of independently
squeezed modes and the variances of nullifiers defining cluster states used in many continuous-variable quantum
information protocols. To assess the advantages of pump shaping in real experiments, we take into account the
physical limitations of the pulse shaper.

DOI: 10.1103/PhysRevA.97.033808

I. INTRODUCTION

Quantum information processing using continuous vari-
ables (CVs) of the electromagnetic field requires one to
efficiently generate various kinds of nonclassical states of
light, such as squeezed or Einstein-Podolsky-Rosen (EPR)
entangled states. In addition, in CV quantum optics, it is
relatively easy to scale up the dimensionality of the quantum
system by increasing the number of modes of the field on
which the quantum state spans. One of the most efficient and
widely used techniques to produce in a deterministic way such
multimode nonclassical states of light is to use parametric
down-conversion in a χ (2) crystal. The quantum-correlated,
or “twin,” photons are then produced in different pairs of EPR
entangled modes, the number of which depends on the charac-
teristics of the crystal and of the pump beam. These modes can
be either spatial [1] or time-frequency [2] modes. In the case
of frequency modes, which will be more specifically studied
in this paper, the considered system is simply the extension
to the quantum domain of the classical wavelength division
multiplexing (WDM) technique, which has very successfully
increased, by a large factor, the performances of classical
communications and information processing.

If one uses a single-frequency pump, the different entangled
signal and idler pairs modes, having frequencies symmet-
rically disposed with respect to the half pump frequency,
are independent of each other. This is no longer the case
when the pump spectrum contains more than one frequency.
A bifrequency pump already yields a quantum state with a
complex structure of correlations [3–5]; a mode-locked pump
[6–8], producing trains of ultrashort pulses, i.e., a frequency
comb having millions of teeth, produces an even richer state in
terms of quantum correlations and multipartite entanglement
[9,10]. Both systems are very promising sources of entangled
cluster states, a basic tool in the recently rising domain of CV
measurement-based quantum computing (MBQC) [11,12].
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The problem of optimizing the shape of the pump beam for
a most efficient generation of a specific multimode quantum
state of light is then of paramount importance for quantum
computing applications. In the present paper, we tackle the
problem by the use of an algorithmic approach, having in
view the optimized generation of specific cluster states, and in
mind the experimental way to shape the pump, which consists
in modifying the pump laser spectrum, both in phase and
amplitude, using pulse shapers based on the use of spatial light
modulators. We stress that such a setup allows one to tailor
many different pump shapes with no hardware modification
to the experiment. Moreover, exploiting all the degrees of
freedom provides great flexibility compared to engineering the
phase-matching conditions or simply the width of the pump.
The latter route has been explored before, often for Gaussian
pulses only with at most quadratic spectral phase, especially in
connection to the heralded production of single photons [13]
or Fock states [14]. The focus of most earlier works on the
subject was on the purity and entanglement of the signal and
idler photons, which could be engineered to some extent by
tuning a few parameters. This simplification allowed one to
treat the problem analytically. The degree of control on the
output state was correspondingly low and would not allow, for
example, the optimization of a specific CV cluster state.

In the CV regime, which we are concerned with, the system
is characterized by the quantum fluctuations in each mode. In
this context, an analytic approach to general pump spectra with
no spectral phase was developed for both spatial and temporal
modes in [15]. However, the resulting theoretical profiles were
not achievable with realistic experimental configurations. Here
we show that numerical optimizations can be fruitfully used to
find the pump profiles producing multimode squeezed states
with the properties needed for many different protocols. We
also show that the numerical routines can be modified to take
into account the physical limitations of a realistic pulse shaper,
ensuring that the optimized profiles are also experimentally
realizable.

The article is organized as follows: in the next section we
introduce mathematical tools based on Autonne-Takagi and
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Bloch-Messiah factorizations, which allow us to derive the
covariance matrix of the output state in the frequency-mode
basis for a pump field with an arbitrary spectral profile. We
argue that these techniques are more suited to study type-I
collinear down-conversion, in which signal and idler photons
are indistinguishable, than the singular-value decomposition
commonly used to treat nondegenerate down-conversion [16].
As an example, we apply this formalism to the case of
a spectrally chirped pump. In Sec. III, we detail how the
noise properties of an arbitrary set of temporal modes can be
computed from the covariance matrix in the frequency basis.
We introduce CV cluster states and explain how to compute
their nullifiers for a given pump profile and a given set of
modes. In Sec. IV, we apply the described methods to the
problem of the numerical optimization of the pump spectrum
for several tasks as follows: First we concentrate on the gains of
the parametric down-conversion. We then optimize the pump
to produce cluster states whose nodes coincide with specific
temporal modes having nonoverlapping spectra. In Sec. V,
we summarize our results and comment on the generality of
our approach, outlining how it may be fruitful for tackling
problems beyond those detailed in the present work.

II. DERIVING THE OUTPUT STATE FROM
THE PUMP SPECTRAL PROFILE

We study type-I spatially degenerate parametric down-
conversion of an electric field containing a discrete set of N

frequencies inside a bulk crystal with χ (2) nonlinearity. These
frequencies may be, for example, the teeth of a frequency comb
or they may come from the discretization of a continuous
broadband field, but our treatment can be applied to more
general distributions of frequencies. Denoting by aj the anni-
hilation operator at the frequency ωj , the quantum description
of the process is given by the following Hamiltonian in the
pump interaction picture [15]:

HI = ih̄
η

2

N∑
j = 1
k = 1

Ljka
†
j a

†
k + H.c., (1)

where H.c. means Hermitian conjugate. The real constant η de-
pends on the single-photon energy, the nonlinear susceptibility,
the intensity, and the geometry of the pump field. We assume
that the spectrum is narrow enough so that photons at all of the
relevant frequencies have approximately the same energy. We
consider only one spatial mode and only one polarization for
the pump. Due to the collinear type-I design, the signal will
also be in a single spatial mode and its polarization will be
orthogonal to that of the pump. Frequency is then the only
relevant degree of freedom. The coupling matrix L is the
well-known joint spectral distribution and is given by

Ljk = sinc[φ(ωj ,ωk)]α(ωj + ωk). (2)

The first factor is the phase-matching function, with sinc(x) =
sin (x)/x, and φ the phase mismatch angle,

φ(ωj ,ωk) = [kp(ωj + ωk) − ks(ωj ) − ks(ωk)]
l

2
, (3)

where kp(ωj + ωk) is the wave number of the pump field at
frequency ωj + ωk , ks(ωk) is the wave number of the signal
field at frequencyωk , and l denotes the length of the crystal. The
dispersion relations for pump and signal fields can be computed
using Sellmeier’s equations (see Appendix A). The second
factor in Eq. (2) is the complex spectral amplitude of the pump
field. Earlier theoretical [17] and experimental [5,6] works
have proven that the Hamiltonian (1) accurately describes the
physics of spontaneous parametric down-conversion (SPDC)
in the squeezing regime that we will consider.

The joint spectral distribution has been widely studied in
the specific case in which α(ωj + ωk) is real for any j , k

[15,16,18], namely, when the pump has no spectral phase up
to a global phase factor. Since by construction L is symmetric,
if the pump has no spectral phase L can be diagonalized with
an orthogonal matrix, leading to uncoupled modes which are
independently squeezed [15]. A slightly more sophisticated
treatment is required to include pump shapes having arbitrary
spectral phases. Examples of nontrivial spectral phases can be
met in fairly common situations, for example, in the presence of
a quadratic phase (spectral chirp). Two different approaches are
possible: either diagonalizing the joint spectral distribution by
congruence [19–21] or applying the Bloch-Messiah decompo-
sition [22,23] to the symplectic transformation corresponding
to a finite-time evolution of the system under the effective
Hamiltonian of the field inside the crystal. Diagonalization of
a complex symmetric matrix by a congruence transformation
through a unitary matrix is also known in the literature as
Autonne-Takagi factorization or symmetric singular-value de-
composition. Bloch-Messiah decomposition is another special
case of singular-value decomposition for symplectic matrices
and is also known in the literature as Euler decomposition for
symplectic matrices. We shall now detail both approaches and
show how they allow one to find modes of the electric field
whose evolution is decoupled inside the crystal.

A. Autonne-Takagi factorization

Every complex symmetric matrix can be diagonalized by
a congruence transformation with a unitary matrix [24]. This
means that for any L in Eq. (2), one can find a unitary matrix
V such that

VLV T = �, (4)

with � a diagonal matrix with real, non-negative entries.
Suppose such matrix V is known for a given L; then one can
define the vector of annihilation operators,

�b ≡ V †�a, (5)

with �a = (a1,a2, . . . ,aN )T , each of which is a linear superposi-
tion of the single-frequency annihilation operators. Since V is
unitary, the operators �b correspond to a set of orthonormal
modes whose spectral profile is given by the rows of V .
Substituting in Eq. (1) and using Eq. (4), one finds

HI = ih̄
η

2

∑
k

�kk(b†k)2 + H.c., (6)

showing that the modes bk evolve independently, each accord-
ing to a squeezing Hamiltonian. These modes are referred
to as supermodes in the literature. The singular values �kk
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(multiplied by the parameter η) correspond to the gains of the
down-conversion process.

Note that having the same matrix V on both sides of L
in Eq. (4) was crucial to find the same decoupled modes for
signal and idler [and thus a single creation operator b

†
k for

each k in Eq. (6)]. Ordinary (nonsymmetric) singular-value
decomposition would in general lead to different mode bases
for the two. This is not a concern when treating nondegenerate
SPDC in either the polarization or spatial mode since the sig-
nal and idler photons are distinguishable. However, for the
problem at hand, the parametric interaction is more naturally
described in terms of independent single-mode squeezers. The
use of singular-value decomposition, as opposed to Autonne-
Takagi factorization, would require additional steps to achieve
this.

B. Bloch-Messiah decomposition

The previous approach solved the problem of finding the
supermodes and the relative gains directly from the Hamilto-
nian, which describes the differential evolution of the system.
Although leading to the same physical results, it is sometimes
more practical to work with the input-output relations corre-
sponding to the evolution of the system for a finite time or its
propagation over a finite crystal length. The main advantage
is that from this approach, it is straightforward to derive
the covariance matrix of the output state, encoding its noise
properties. This is described in the following.

Consider the equations of motion for the annihilation
operators in the Heisenberg picture,

d

dt
�a = i

h̄
[HI ,�a] = ηL�a†. (7)

Complementing this set of equations with their adjoint one
gives

d

dt

( �a
�a†

)
= ηL̃

( �a
�a†

)
, (8)

where

L̃ =
(

0 L
L∗ 0

)
. (9)

Equation (8) is readily integrated for a finite time t ,( �a(t)
�a†(t)

)
= exp

(
ηL̃t

)( �a(0)
�a†(0)

)
. (10)

We define the amplitude and phase quadrature operators,
respectively, as

qj = a + a†
√

2
, (11)

pj = a − a†

i
√

2
. (12)

Introducing the matrix

C = 1√
2

(
I iI
I −iI

)
, (13)

the quadrature operators of the relevant frequency modes are
written as (�q

�p
)

= C†
( �a

�a†

)
. (14)

With this convention, the shot noise �2
0 is normalized to 1/2.

Combining this with Eq. (10), we find the expression for the
finite-time evolution of the quadrature operators of frequency
modes inside the crystal,

S = C† exp(ηL̃t)C, (15)

so that (�q(t)
�p(t)

)
= S

(�q(0)
�p(0)

)
, (16)

and the Hamiltonian HI can being applied for a time t =
l/c. Actually, S is a spatial propagator corresponding to the
input-output relation for the fields before and after the crystal.
Changing the factor η can easily be achieved by adjusting the
pump power (as long as it stays in the low-gain or below-
threshold regime in a cavity setup, which is the domain in
which HI can be derived in the form used here).

Since HI is quadratic in the annihilation and creation
operators, S is a symplectic matrix. The matrix C links it to its
complex representation S(c) = exp(ηL̃t), appearing in Eq. (10)
[22]. We can apply the Bloch-Messiah decomposition and find
a factorization [23],

S = R1KR2, (17)

where R1 and R2 are both symplectic and orthogonal ma-
trices and K = diag{er1 ,er2 , . . . ,erN ,e−r1 ,e−r2 , . . . ,e−rN } is a
squeezing matrix, namely, a symplectic diagonal matrix. Its
diagonal entries are the singular values of S. In our case,
single-frequency modes are the input and output of the overall
process, so R2 = R−1

1 = RT
1 and S is symmetric [25]. The

spectral profiles of the supermodes are the rows of the unitary
matrix U appearing in the complex representation of R1 [22],

R
(c)
1 ≡ CR1C† = diag{U,U ∗}. (18)

As we will see in the next section, the supermodes found in
this way are the same as those obtained through the Autonne-
Takagi factorization.

In the hypothesis that the system was initially in the vacuum
state, the covariance matrix in the frequency-mode basis can
also be computed from S as [26]

	ω = 1
2SST = 1

2R1K
2RT

1 . (19)

Note that it is not necessary to compute the Bloch-Messiah
decomposition to get the covariance matrix from S.

C. Relating the two approaches

Given the Autonne-Takagi factorization of L, it is straight-
forward to compute the Bloch-Messiah decomposition of S. In
fact, defining

R1 = C†diag{V †,V T }C, (20)

R2 = RT
1 , (21)
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one finds

RT
1 SRT

2 = R
†
1SR

†
2 (22)

= C† exp

{
ηt

(
0 VLV T

V ∗L∗V † 0

)}
C (23)

= exp

{
ηt

(
� 0
0 −�

)}
= K, (24)

where K is the same as in Eq. (17) (up to permutations of the
diagonal elements). The advantage of using Autonne-Takagi
factorization is that it is numerically easier to compute with
respect to Bloch-Messiah decomposition. The link between
Autonne-Takagi factorization and Bloch-Messiah decomposi-
tion was also recently noted in [27].

D. Numerical simulations

Most of our results are obtained through numerical sim-
ulations, the details of which can be found in Appendix B.
For our examples, we take the unshaped pump α(g)(ω) to be
a Gaussian pulse of spectral width �λ ≈ 3.54 nm, full width
at half maximum (FWHM) centered around λ0 = 397.5 nm,
which can be obtained by up-conversion of a 10-nm-pulse
FWHM, corresponding to a duration of about 100 fs, centered
around 795 nm. We consider free-space setups and assume the
nonlinearity is provided by bulk BiB3O6 (BiBO) crystals of
length between 0.5 and 2 mm, whose refractive indexes are
computed using Sellmeyer’s equations (see Appendix A for
details). We denote the unshaped spectral profile by

α(g)(ω) = 1√
σω

√
2π

e
− (ω−ω0)2

4σ2
ω , (25)

with ω0 = 2πc/λ0 and σω = ω2
0�λ/4πc

√
2 ln 2, where c is

the speed of light in vacuum.
In previous works considering a real pump with a Gaussian

spectrum [15], it was noted that the diagonalization of L leads
to alternating signs in the gains, meaning that the supermodes
are squeezed in alternating quadratures. This actually comes
from imposing that the spectral profile of the supermodes is
real, which is possible because the supermodes have a trivial
spectral phase. An equivalent choice would be to define the
supermodes to be all squeezed in the same quadrature, which
amounts to multiplying the spectral amplitudes of half of the
supermodes by i. In fact, multiplying a row of V by i in
Eq. (4) flips the sign of the corresponding diagonal element in
� and rotates the squeezing direction by π/2 in phase space.
Defining the modes such that the phase quadrature is always
the squeezed one is more suited to handle the case in which
the pump has a nontrivial spectral phase. The reason is that in
this case, supermodes may have nontrivial spectral phases as
well, as we shall see, so there is no simple criterion to choose
which quadrature should be squeezed based on supermodes.

To keep close to an experimental scenario, we assume
that the spectral profile of the pump is modified by a pulse
shaper, which can be built with a spatial light modulator in
a 4-f configuration [28]. We model this as a device with a
finite number of degrees of freedom, parametrized by the real
vector �u, corresponding to spectral amplitude and phase at
given frequencies. The resulting pump profile α(�u)(ω) is found

multiplying the unshaped amplitude by a transfer function
I (�u)(ω) interpolating these parameters,

α(�u)(ω) = α(g)(ω)I(�u)(ω). (26)

More details can be found in Appendix C.
It is worth clarifying how we derive physical values for

the squeezing of the supermodes. These are proportional to
the factor η in the Hamiltonian of Eq. (1), which is generally
difficult to compute accurately from first principles. For our
purposes, it will be more convenient to adjust it so that the
squeezing of the first supermode approximately matches the
experimentally measured value. Once the highest squeezing
is fixed, the ratio between the squeezing parameters of the
supermodes is the same for any pump power below threshold
[15].

E. An example: Chirped pump

As a first example of a pump with a nontrivial spectral phase,
we consider a Gaussian pump with a quadratic spectral phase,
namely, a spectrally chirped pump of amplitude

α(ch)(ω) = α(g)(ω)ei
φ2
2 (ω−ω0)2

, (27)

where φ2 is the quadratic phase. Spectral chirp is fairly com-
mon in experimental situations, often as an unwanted effect,
so it is interesting to study its impact on the down-conversion
process. The quadratic spectral phase implies that the pulse is
no longer Fourier limited: the duration of the pulse increases
while the spectrum remains constant. This makes the duration
of the pulse a useful parameter to characterize the amount of
chirp. If �t = 1/(2σω) is the duration of the unchirped pulse
[29] (φ2 = 0), then the duration after chirp is [30]

�t ′ = �t

√
1 +

(
φ2

2�t2

)2

. (28)

Studying the dependence of the output state, it is then natural
to ask how much modification is really due to the spectral
phase and how much is just a consequence of the increased
duration. It turns out that the two situations are very different,
as can be seen from the plots in Fig. 1. We compare, for the
two cases, the largest parametric gain [Fig. 1(a)] as well as the
first one-hundred parametric gains [Fig. 1(b)] as functions of
�t ′/�t . The plots were obtained for a fixed energy in each
pump pulse. We assume the down-conversion of a pulse with
�t ≈ 30 fs takes place in a 0.5 mm BiBO crystal. All the gains
are normalized to the highest gain for φ2 = 0 and �t ′/�t = 1.
In both cases, the gain of the first supermode �11 increases with
�t ′ at first, but then starts decreasing. However, the descent is
steeper in the chirped case. Moreover, numerically we find that
for increasing quadratic phase,

�tot =
∑

j

�2
jj = const, (29)

within machine precision [31], whereas �tot monotonically
increases for unchirped pulses of longer duration. To get a
physical picture of �tot, consider the perturbative expansion
of the evolution for small times, pump power, or nonlinearity.
The �jj are then seen to be proportional to the probability
amplitude for a pump photon to be converted into two photons
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FIG. 1. Comparison between the effect of the quadratic phase and
simply increasing the pulse duration. (a) Largest parametric gain for a
chirped (dotted green curve) and nonchirped (solid blue curve) pulses
as a function of the increase in pulse duration, �t ′/�t . The gains are
all divided by the largest parametric gain for φ2 = 0 and �t ′/�t = 1,
denoted by �

(0)
11 . (b). First one-hundred gains for increasing pulse

duration for chirped (dark blue) and nonchirped (light green) pulses
[normalized as in (a)]. (c) Spectral amplitude (blue, solid line) and
phase (orange, dotted line) of the first supermode obtained with �t ′ =
2�t (φ2 ≈ 2700 fs−2) compared to the first supermode for φ2 = 0
(gray, dashed line). The scale on the left refers to amplitude, while
that for the phase is on the right.

in the supermode j . In fact, applying the evolution operator for
a small time δt to the vacuum, one gets

U (δt)|0〉 =
∞∑
l=0

(−iδtHI )l

l!h̄l
|0〉 (30)

=
[
I + δt

η

2

∑
k

�kk(b†k)2 + O(δt2)

]
|0〉. (31)

The sum of �2
jj is then proportional to the probability of

converting a photon of the pump into two photons in any
supermode within time δt . This can be interpreted as the
conservation of the overall efficiency of the down-conversion
process for increasing quadratic phase. On the other hand,
it is clear that the process is not insensitive to the quadratic
spectral phase: more signal modes are excited as the quadratic
phase increases, while the highest gain for a single mode
decreases. The overall efficiency increases for unchirped pulses
of longer duration, but the magnitude of the gains drops faster.
As a consequence, for large �t ′, the number of modes with
approximately the same squeezing is higher for a chirped
pump, as can be seen from Fig. 1(b). Chirp can be added easily
in experiments at constant pump power, whereas changing the
pulse duration generally involves losses. The former may then
be more convenient.

Figure 1(c) shows the spectral amplitude and phase of the
first supermode obtained forφ2 ≈ 2700 fs2, the quadratic phase
doubling the duration of the pulse. For the plot, we subtracted
a linear term from the spectral phase, which only amounts to
a temporal delay. Interestingly, the remaining spectral phase
is not quadratic, as in the pump. Instead, it is well fitted by a
cubic term,

φfit(ω) = eiφ3(ω−ω0/2)3
. (32)

The same cubic phase fits well the spectral phase of all the
supermodes and is thus an important effect to take into account
in experiments. The coefficient φ3 seems to have a nontrivial
dependence on φ2. A systematic study of the effect of chirp
is, however, beyond the scope of the present work and is
left to future investigations. We only wish to highlight here
that Autonne-Takagi factorization can be used to study pump
fields with arbitrary spectral shapes and this can lead to the
discovery of new and interesting features already in quite
simple situations.

III. NOISE PROPERTIES OF THE OUTPUT STATE

Here we introduce the formalism we will use to compute
the relevant measurable quantities of the output state from the
covariance matrix in the frequency basis.

A. Noise of a set of modes

The noise properties of any mode can be computed from the
covariance matrix in the frequency basis 	ω. Take the mode
corresponding to the annihilation operator,

d =
∑

l

vlal, (33)
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where the vl are complex numbers satisfying
∑

l |vl|2 = 1. vl is
the complex amplitude of the electric-field mode at frequency
ωl . The quadratures of d [32] are given by

q(d) =
∑

l

[Re(vl)ql − Im(vl)pl], (34)

p(d) =
∑

l

[Im(vl)ql + Re(vl)pl]. (35)

Consider now a set of M � N orthogonal modes related to the
frequency modes by

�d = D�a, (36)

where the matrix D has M × N complex entries. The orthonor-
malization condition of the modes takes the form

DD† = IM. (37)

The quadratures of modes �d are then given by(�q(d)

�p(d)

)
=

(
Re(D) −Im(D)
Im(D) Re(D)

)(�q
�p
)

≡ RD

(�q
�p
)

.

(38)

The covariance matrix of the modes �d is then obtained from
that of frequency modes as

	d = RD	ωRT
D. (39)

When M < N , the transformation in Eq. (39) can be under-
stood as changing the modes to a basis of which �d constitute
the first M elements, and then discarding the remaining modes
(which amounts to removing the corresponding rows and
columns from the covariance matrix).

B. Cluster states and nullifiers

One of the main goals of our work is to exploit the methods
outlined above in optimization routines to find the shape of
the pump which is best suited to produce CV cluster states
on a given set of modes. In order to do this, we recall that
a CV cluster state is a multimode state which, in its ideal
version, can be defined as the simultaneous eigenstate of a
set of operators called nullifiers. If G is the graph associated
with the cluster state, which we will identify with its adjacency
matrix, nullifiers can be written as

�δ = �p(d) − G�q(d). (40)

We assumed here that the nodes of the cluster correspond to the
generic modes �d of Eq. (36). Although more general situations
can be considered [33], we will restrict ourselves to unit-weight
cluster states. In this case, Gjk = 1 if and only if modes j and
k are nearest neighbors in the graph and all the other entries
of G are zero. Different conditions may be required to certify
the experimental production of cluster states, but a basic one is
that the noise of the nullifier operators lies below the vacuum
noise. Standard homodyne detection techniques are sufficient
to measure the quantum fluctuations of these operators, as
explained in Appendix E.

IV. PUMP OPTIMIZATION

From the previous sections, it should be clear that the
relation between the spectral profile of the pump and the
properties of the output state is far from trivial. As a conse-
quence, it is generally very difficult to find an analytical form
for the pump optimizing a given property of the output, such
as the entanglement pattern of a given set of modes. Instead,
one could run a numerical optimization algorithm to try and
improve the desired quantities. The results obtained with this
approach are the object of the following sections. For the
optimization, we used an evolutionary algorithm developed
in [34], of which some details are given in Appendix D.

A. Squeezing spectrum

We have already seen in Sec. II E that changing the spectral
profile of the pump can impact the squeezing spectrum. Here
we investigate to what extent this can be used to enhance a
given property. Specifically, we look for the spectral profiles
that flatten the squeezing spectrum, equalizing the first k

gains, or separate the highest gain from the others, effectively
concentrating more squeezing in the first supermode. For the
first task, we run the optimization for the fitness function,

f1(�u) = 1

�11(�u)

k∑
j=1

�jj (�u), (41)

where �u are the shaper’s parameters. At this point, we are not
concerned with the absolute value of the gains, which can, in
principle, be adjusted by changing the power of the pump, so
we divide all the gains by the largest one. For the second task,
we run the optimization with the fitness function,

f2(�u) = �11(�u)

�22(�u)
. (42)

Note that since we are only interested in the gains, which are
the singular values of the joint spectral distribution, and not the
shape of the supermodes, we can use commonly available nu-
merical routines for the singular-value decomposition (SVD).

For the optimization to be meaningful, some constraints
have to be imposed. Indeed, if no constraint is imposed, the
algorithm may converge to solutions which have a very small
overlap with the Gaussian pulse that would be obtained without
the shaper. This is a problem because, since the shaper is a
passive optical component, it means that much of the power in
the pulse is thrown away in the process and a very high power
would be needed to realize such profiles. Optimization is,
however, interesting because it makes clear that the “amount”
of squeezing and its distribution among different modes are
very different resources, as will be especially evident in the
following sections about cluster states. More realistic profiles
can be obtained with a modification to the fitness function,
which adds a weight hindering convergence towards profiles
having a small overlap with the original Gaussian. To this end,
one can add a function of the power of the shaped pump,
renormalized by the maximum of the shaper’s transfer function
to impose that the shaper is only attenuating [35]. The power
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FIG. 2. (a) The normalized gain distributions obtained for a Gaussian pump and after optimizing f̄1 in Eq. (45), with a = 3, x(w) = 1/(5w)6,
and k = 100, and f̄2 in Eq. (46), with b = 1, y(w) = 1/(5w)6. (b) The first supermodes resulting from the pump optimizing f̄1 (top) and f̄2

(bottom). The solid blue line represents the amplitude, in arbitrary units, while the orange dashed line represents phase, in radiants (scale on
the right). For clarity of representation, we subtracted a linear phase of 260, 812, and 805 fs from the supermodes arising from the optimization
of f̄1 and of 275, 275, and −390 fs from the supermodes arising from the optimization of f̄2. (c) and (d) show the pump profiles maximizing
f̄1 and f̄2, respectively. The gray dashed line shows the original Gaussian, the solid blue line shows the optimal amplitude profile, and the red
dotted line shows the optimal phase. The scale on the left refers to amplitude, while that for the phase is on the right.

of the shaped pump is given by

w(�u) = 1

m(�u)2

∫
dω|α(�u)(ω)|2, (43)

where

m(�u) = max
ω

|I (�u)(ω)|. (44)

The fitness functions f1 and f2 are then replaced by

f̄1(�u) = 1

�11(�u)

k∑
j=1

�jj (�u) + ax(w(�u)), (45)

f̄2(�u) = �11(�u)

�22(�u)
+ by(w(�u)), (46)

with a and b positive real numbers. x and y may be arbitrary
functions. A possible criterion to choose such a function may be
that it should be negligible if the power is above some fraction
of the original Gaussian and very rapidly becomes negative
and large if the power is below this threshold. Solutions with

a power lower than the threshold are then disfavored, but the
weight does not influence the optimization as long as the power
stays “acceptable.” The magnitude of a and b can then be
used for fine tuning. Figure 2 shows the results of two opti-
mizations starting from a reference Gaussian spectrum with
a shaper working in a window of about 9 nm, corresponding
to ±3 standard deviations (in amplitude) around the central
frequency, and a 1.5 mm BiBO crystal for down-conversion.

The supermodes resulting from the optimized pumps are
shown in Fig. 2(b). At first sight, both amplitude and phase
seem very complicated, except for the first supermode arising
from the optimization f̄2. This is a good sign because the first
supermode is the most interesting one in this case, being by far
the most squeezed. As for the others, the apparent complexity
may be explained and overcome by the quasidegeneracy of the
gains. See Appendix F for details.

We stress that the optimization algorithm is stochastic and
there is no guarantee that the optima are also global optima.
Here our aim is to show that by optimizing the shaper’s
cofiguration, we could find pump profiles giving a significant
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improvement on the initial Gaussian. When f̄1 is optimized,
the squeezing spectrum is made flatter, with �jj > 0.9�11 for
j up to ∼ 80, to be compared with j ∼ 30 for a Gaussian
pump. Optimizing f̄2, we found that a noticeable gap can
be induced between the first and second gains, in this case
�11/�22 ≈ 1.43, to be compared with �11/�22 ≈ 1.00 for
a Gaussian pump. We stress that this quantity is essentially
unrelated to the Schmidt number. Optimizing f2 or f̄2 leads to
a higher Schmidt number than that obtained with an unshaped
pump. The reason is that many modes after the first one have
almost the same squeezing. This kind of configuration could
be interesting, for example, to work in a regime in which only
the first supermode is pumped slightly above threshold. The
classical noise of the pump laser would then be conveyed in
the first supermode, improving the purity of the others, which
would still be squeezed [36]. The pump optimizing f̄1 carries
about 30% of the power of the unshaped Gaussian pump, while
this figure is about 40% for the pump optimizing f̄2, meaning
they may realistically be implemented in the laboratory. The
opportunity of introducing the modifications in Eqs. (45) and
(46) is made more evident by comparison with the power of the
pump profiles optimizing f1 and f2 (not shown here), which
is of the order of 0.1% of the unshaped Gaussian.

The procedure outlined in this section can be carried out
for any function that can be written in terms of the shaper’s
parameters �u, for example, maximizing the gain of the first
supermode for a given maximum power, minimizing the
spectral width of the first supermode, and maximizing or
minimizing the Schmidt number of the parametric gains as
defined in [37,38], which gives a measure of the number
of modes excited in the process. An example of interest for
quantum information processing is treated in the following
section.

B. Cluster states on frexels

Here we detail how to optimize the profile of the pump to
reduce the noise of the nullifiers of CV cluster states when the
nodes of the graph are associated with a specific set of modes
which have nonoverlapping spectra.

1. Defining the detection modes: Frexels

We turn our attention to a specific set of m orthogonal
modes which are slices of a Gaussian pulse. We refer to these
as frexel modes (from “frequency elements”) and denote their
annihilation operators by {πj }. Frexels can be seen as a specific
realization of the modes d in Eq. (36). First, we choose a set of
frequency bands of limits (�1,�2), . . . ,(�m,�m+1). The frexel
modes are then defined by the spectral amplitudes,

πj (ω) = eiθj√
Nj

α(π)(ω), �j � ω � �j+1

πj (ω) = 0 otherwise,
(47)

where α(π) is a Gaussian pulse with a FWHM of 10 nm centered
around 2λ0 = 795 nm, θj are arbitrary phases, which will turn
out to be useful in the following, and [39]

Nj =
∫ �j+1

�j

dω|α(π)(ω)|2. (48)

FIG. 3. (a) Spectral amplitude of four frexels within 3 standard
deviations around the central frequency of the down-converted comb.
The amplitudes are not normalized for clarity of representation. (b) A
linear four-mode cluster state and two possible mappings of frexels
onto its nodes. The second permutation σ2 leads to smaller nullifiers’
noise for an appropriate choice of the global phase of each pixel (not
shown in the drawing).

An example with four frexels is depicted in Fig. 3(a). The
interest of these modes resides in the fact that, having nonover-
lapping spectra, they can be physically separated rather easily
from one another using a prism or a grating [40]. It is worth
noting that, in principle, modes with an arbitrary spectral
profile could be separated from a bunch of copropagating
modes [41,42], but this would involve nonlinear interactions
which would make it unpractical to separate more than one
mode from all the others. MBQC with frequency or spatial
pixel modes was also introduced in [43]. After being separated,
frexels could be sent to different parties in a network or directly
subject to independent homodyne measurements, for example.
Indeed, the availability of multipixel homodyne detection
schemes [44,45] is the main reason to introduce an overall
Gaussian spectrum in the definition of frexel modes and an
individual phase θj for each of them. The latter could be
adjusted by simply changing the phase of the local oscillator in
each frequency band. This is an important degree of freedom
to consider, as a phase shift of the local oscillator implies the
measurement of a different quadrature, which is at the heart
of CV-MBQC [11]. Also, although a local phase shift cannot
change the amount of entanglement between frexels, it can
change the kind of quantum correlations. As it will be clear
from the next section, this is especially relevant for CV cluster
states, which have a very specific type of correlations, resulting
in the reduction of noise in the nullifier operators.

2. Finding the optimal frexel permutation

We consider, as an example, four frexels, and associate πj

to the j th node of the four-mode linear cluster state depicted
in Fig. 3(b), corresponding to the graph with adjacency matrix

Glin =

⎛
⎜⎝

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

⎞
⎟⎠. (49)

This cluster state is universal for single-mode Gaussian MBQC
[45]. We can compute the variance of nullifiers using the
procedure explained in Sec. III B for a general set of modes.
The choice of the local phases θj defines which quadratures
correspond to amplitude �qπ and which to phase �pπ . Since we
assumed to be free to choose an independent phase reference
for each pixel, we can use the θj giving the lowest fluctuations
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for the nullifiers on average. For the numerical calculation, we
assume that the unshaped pump is a Gaussian of amplitude α(g)

[see Eq. (25)] and that down-conversion happens in a 0.5 mm
BiBO crystal. We fix the pump power so that the squeezing in
the leading supermode is 7 dB. We take 2πc/�1 � 808 nm and
2πc/�5 � 782 nm. The average of the nullifiers’ variances
is found to be �2

avgδ � 0.49 (vacuum is normalized to 0.5),
which amounts to a noise reduction of about −0.08 dB. The
same calculation may be carried out for any permutation σ

of frexels, namely, assigning πσ (j ) to node j on the graph.
It turns out that some permutations allow one to sensibly
reduce the average noise of the nullifiers. For example,�2

avgδ �
0.29 for the permutation σ2 = (π1,π4,π2,π3), corresponding
to about −2.35 dB. This may look surprising at first since a
simple relabeling of the modes cannot change the amount of
entanglement. The point is that the nullifiers’ noise reduction
is not just a signature of entanglement, but rather of very
specific correlations among the nodes of the corresponding
graph, and these may very well vary from one permutation to
the other. In our example, the linear graph has a link between
nodes 1 and 2, corresponding to frexels π1 and π2 if the trivial
permutation is considered and to frexels π1 and π4 if one
instead considers the σ2. Being symmetric with respect to the
central frequency, we expect frexels π1 and π4 to be more
entangled after the down-conversion than frexels π1 and π2

whose spectra are on the same side of the central frequency
of the down-converted field. We then expect a better noise
reduction in the corresponding nullifier. The permutation σ2 is
actually optimal for the conditions considered here.

3. Optimal pump profiles

Starting from the best permutation in the previous section,
we used numerical optimization to find the pump profiles
minimizing the function [46]

f3(�u) = Tr[	δ̄δ̄(�u)], (50)

with 	δ̄δ̄ defined as in Eq. (E4) for the four-mode linear cluster.
For the optimization, we start from a reference Gaussian pump
and assume the shaper is acting on a spectral window of ±2
standard deviations around the central frequency, correspond-
ing to approximately 95% of the pump power. First, we fixed
the squeezing of the leading supermode to 7 dB, which is
consistent with the highest values measured in experiments
with frequency combs [7]. Analogously to the case of the
squeezing spectrum, the algorithm converges to pump profiles
which have a small overlap with the original pulse, so we also
ran the optimization for the modified function

f̄3(�u) = Tr[	δ̄δ̄(�u)] − hw(�u), (51)

where h is a positive real number and w is defined as in Eq. (43).
The results are shown in Fig. 4. Optimization of f3 leads to a
larger improvement of the nullifiers squeezing on average, but,
as shown in Fig. 4(b), the corresponding pump profile has a
small overlap with the original Gaussian. As a consequence, the
shaped pulse only contains ∼2% of the power of the unshaped
pulse. Optimization of f̄3 leads to a profile [Fig. 4(c)] that
still allows one to reduce the average nullifiers’ noise of about
0.5 dB with respect to the Gaussian profile, while containing
∼ 80% of the Gaussian pulse’s power. This could lead to a

FIG. 4. Results of the optimization of the pump shape to reduce
the average noise of the nullifiers of a four-mode linear cluster. (a)
The nullifiers’ noise reduction in dB for a Gaussian pump and for
the optimal profiles found optimizing f3 [Eq. (50)] and f̄3 [Eq. (51)]
with c = 1.35. The squeezing of the leading supermode was fixed to
7 dB. The bar on the left of each triplet (dark blue) corresponds to
the Gaussian case, the central bar (dark green) corresponds to f̄3, and
the bar on the right (light green) corresponds to f3. The horizontal
lines show the average squeezing in each case (the Gaussian case, f3,
and f̄3 correspond to the top, middle, and bottom lines, respectively).
The pump profiles optimizing f3 and f̄3 are shown in (b) and (c),
respectively. The scale on the left refers to amplitude, while that for
the phase is on the right.

measurable improvement in realistic experimental conditions.
The compromise between power in the shaped pump and noise
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FIG. 5. Average nullifiers’ noise for a linear cluster on four frexel
modes as a function of the squeezing of the leading supermode. The
curves in (a) are obtained for a Gaussian pump (solid blue line) and the
pump profiles obtained optimizing f3 (dashed light-green line) and
f̄3 (dotted dark-green line) fixing the leading supermode’s squeezing
to 7 dB, while in (b) the curves for a Gaussian pump (solid blue line)
and the configurations optimizing f3 for a squeezing of 7 dB (dashed
light-green line) and 20 dB (dot-dashed purple line) of the leading
supermode are shown.

reduction can be tuned by changing the parameter h in Eq. (51)
in order to adapt to specific experimental constraints. If more
power is available, for example, the optimization could be
performed for smaller values of h.

4. Relation between highest squeezing and nullifiers’ noise

It is interesting to compute what happens when one changes
the pump power, keeping the shaper’s configuration fixed.
As long as the low-gain or below-threshold conditions are
satisfied, this should just multiply the gains by a common
factor. One could try and guess that more power, meaning
a higher squeezing in all supermodes, would imply better
noise reduction for the nullifiers. This is not actually the case,
as can be seen from Fig. 5. In fact, the average nullifiers’
noise is reduced from the shot noise until a certain value
of the squeezing of the first supermode. If the power of the
pump is further increased, the average nullifiers’ noise starts
increasing as well. One explanation could be that the number
of squeezed modes in the system largely exceeds the number
of frexels, so the contribution of all antisqueezed quadratures
to the nullifiers cannot be made arbitrarily small. The optimal

configuration is found by minimizing the contribution of the
leading antisqueezed quadratures. But even if the remaining
antisqueezed quadratures appear in the nullifiers with very
small coefficients, at some point the corresponding noise will
dominate since it grows indefinitely with the gain.

Running the optimization with the squeezing of the leading
supermode set to a different value results in a different optimal
pump profile. With this different profile, the average nullifiers’
noise will attain a minimum when the squeezing of the first
supermode is close to the one chosen for the optimization. An
example is shown in Fig. 5(b), where the average nullifiers’
noise as a function of the leading squeezing for a Gaussian
pump and two profiles optimized at different leading squeezing
are compared.

V. CONCLUSIONS

In summary, we showed that pump shaping can be ef-
fectively used to engineer the quantum state produced by
the spontaneous parametric down-conversion of a frequency
comb. To this end, we introduced a method, based on either
Autonne-Takagi or, equivalently, Bloch-Messiah decomposi-
tion, that can be applied to the numerical study of any spectral
profile, including pulses with a general frequency-dependent
phase. As a first example, we used this method to study
the effect of spectral chirping, which is commonly met in
experiments with frequency combs, on the down-conversion
process. We found that the quadratic phase has a nontrivial
effect on the parametric gains and on the spectral profile of the
supermodes. Furthermore, using an optimization algorithm,
we found optimal profiles for flattening the values of the
parametric gains or creating a gap between the gain of the
first and second supermodes. In both cases, we showed that
the shape of the pump has a macroscopic effect on the output
state, which can lead to measurable improvements in realistic
experimental conditions. We then applied the same technique
to find the pump profiles which are optimal to produce CV
cluster states when the nodes of the cluster correspond to
spectral slices of a Gaussian pulse. We focused on a four-mode
linear cluster state. This is universal for single-mode Gaussian
CV-MBQC, so our results are directly applicable to CV-MBQC
with frexel modes. Similar results can be obtained for different
graphs, such as the six-mode centered pentagon used for CV
secret sharing protocols in [8,47].

We stress that our approach is very general and, besides the
examples cited here, it can be applied with small modifications
to optimize any property of the output state after the down-
conversion, such as the squeezing of the leading supermode
or the Schmidt number. The same approach was used, for
example, in a recent work proposing the simulation of quantum
complex networks with an all-optical setup [48].

Finally, we note that our results rely on the use of a non-
deterministic optimization routine. Our goal was to show the
effectiveness of the overall approach, but we did not compare
the performances of this specific algorithm with others. On
the other hand, the general procedure is the same if a different
routine is used. The results may then be potentially improved
using a different optimization algorithm. Also, conceptually,
the same approach can be used in closed-loop experiments in
which the fitness function is replaced by a measured quantity.
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APPENDIX A: PHASE-MATCHING SPDC IN BIBO

This appendix briefly reviews how phase matching is
achieved for SPDC in BiB3O6 crystals, commonly known as
BiBO [50]. In practice, birefringence is exploited to match the
propagation velocity of pump and signal or idler fields.

BiBO is a biaxial crystal. The dispersion relations for
polarized light propagating along one of the axes x, y, or z

can be computed using Sellmeier’s equations,

ni(λ) =
√

Ai + Bi

λ2 − Ci

− Diλ2, (A1)

where i = x, y, z and λ is the wavelength. The Sellmeier’s
coefficients are as follows:

Index Ai Bi Ci Di

nx 3.07403 0.03231 0.03163 0.013376
ny 3.16940 0.03717 0.03483 0.01827
nz 3.6545 0.05112 0.03713 0.02261

Consider a plane wave of wave vector ‖ propagating in
the medium. We denote by � the plane perpendicular to ‖ and
containing the origin of the ellipsoid E of indices. For historical
reasons, the phase-matching angles θ and φ describing the
rotation of E with respect to its axes are described with
geographical coordinates, so the triad of axis is lefthanded.
φ is the angle from the xz plane to the yz plane, and θ is the
angle from y to z. The refractive index for given wavelength
and propagation direction is determined through

1

n(λ,θ,φ)
=

√
cos2 θ cos2 φ

n2
x(λ)

+ cos2 θ sin2 φ

n2
y(λ)

+ sin2 θ

n2
z(λ)

.

(A2)

According to [50], BiBO can phase match type-I (e + e → o)
processes with φ = π/2 for signal and idler and θ varying
depending on the fundamental wavelength. For SPDC, this
means that we can take the pump field polarized along x (θ =
0) and the polarization of signal and idler in the yz plane.
Equation (A2) gives, for the the refraction index of signal and
idler,

ne(λ,θ ) =
[

cos2 θ

n2
y(λ)

+ sin2 θ

n2
z(λ)

]− 1
2

. (A3)

We consider a collinear configuration and denote by 2ω0 the
central frequency of the pump. The down-converted field will
then be centered around ω0. The phase-matching condition
requires that the phase mismatch [Eq. (3)] is zero for the central
frequencies,

kp(2ω0) − 2ke(ω0,θ ) = 0, (A4)

with

kp(ω) = ωnx

(
2πc
ω

)
c

, (A5)

ke(ω,θ ) = ωne

(
2πc
ω

,θ
)

c
. (A6)

Equation (A4) is then satisfied if ne(2πc/ω0,θ ) = nx(πc/ω0).
Assuming that the central wavelength of the pump is
2πc/2ω0 = 397.5 nm, this is achieved for θ = 2.63214 (θ =
150.811◦).

APPENDIX B: DETAILS
OF THE NUMERICAL SIMULATION

We are mainly concerned with optical frequency combs, in
which case the number of frequency modes involved is of the
order of 105. Using the full comb to describe the system would
make the problem numerically intractable. We adopt then a
coarse-grained description of the system, treating first the comb
as a continuum and then discretizing the problem. This may
also be motivated by the fact that the free spectral range is
too small for the single teeth of the comb to be resolved in
the experiments. Moreover, the average photon number for the
single frequency is too low to display quantum features, with
each frequency mode being essentially in the vacuum state. We
took about 500 points for the discretization, which is close to
the number of the physical pixels of commercially available
pulse shapers. Obviously, ideally the state is mixed in this
coarse-grained description, but our approximation turns out to
be very good as long as the number of frequencies we take into
account is large enough to represent all the supermodes which
are significantly squeezed. Throughout this work, frequency
modes will be identified with the coarse-grained frequency
pixels, although analytical calculations rigorously hold only
for the teeth of the comb.

APPENDIX C: MODEL OF THE PULSE SHAPER

The shaper is modeled as a function interpolating the values
�u of amplitude and phase at 32 frequencies within a spectral
window centered at the central frequency of the Gaussian pump
comb ω0. For our calculations, we chose the half width of the
window to be two or three times the standard deviation of
the Gaussian. The Gaussian comb is then multiplied by the
function I (�u)(ω) to obtain the shaped pump. The number of
frequencies independently controlled by the shaper is taken to
be between 20 and 40, which is compatible with the spectral
resolution of the shaper in a 4-f configuration [28]. As a
consequence, the complex amplitude of the pump pulse after
shaping, as well as the spectrum of the supermodes and the
respective gains, will depend on the vector of real parameters
�u. Interpolation is needed to smooth the solution for the output
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comb and obtain pulse shapes which could be practically
realized in experiments. In fact, despite the large number of
pixels in the shaper, the configuration of neighboring pixels is
correlated due to electromagnetic interactions, which makes,
for example, a π phase between neighboring pixels practically
impossible to realize. We chose to interpolate the function with
cubic polynomials.

APPENDIX D: OPTIMIZATION ALGORITHM

The algorithm mimics Darwinian evolution to stochasti-
cally explore the parameter space and uses statistical analysis
to find the direction of fastest ascent of a fitness function.
It goes as follows: first, a point in the parameter space is
chosen at random. A new generation, that is, a number of
mutations (which grows logarithmically with the dimension
of the parameter space) is generated around the first point.
At the first iteration, the mutations are generated according
to an isotropic Gaussian distribution. The fitness function
is evaluated for each mutant. The best half of the mutants
is linearly combined to generate a new starting point for
the algorithm. Since the algorithm was initially developed
for applications in experiments, to mitigate the effect of
experimental noise the new point is actually a combination
of the mutants and the starting points of previous generations.
Statistical analysis is then performed on the current generation
to find the axes corresponding to greater improvement of the
fitness function. The covariance matrix for the next generation
is modified accordingly, stretching the corresponding axes.
A general step-size parameter is also adjusted as follows: if
the direction of fastest ascent was roughly the same in the
last generations, then the algorithm is traveling in the good
direction and the step size is increased. If the direction changed
many times over the last generations, the algorithm is probably
close to an optimum and the step size is decreased to accelerate
convergence.

In our case, the parameters of the optimization will be the
vector �u of amplitude and phase parameters of the shaper
introduced in Sec. II D and the fitness functions will be derived
from properties of the output state obtained by pumping the
down-conversion process with the corresponding shaped pulse.

APPENDIX E: NULLIFIERS’ FLUCTUATIONS THROUGH
HOMODYNE DETECTION

It is a fact that even though each δj in Eq. (40) is not the
quadrature of a mode, its normalized version is. Let us define
δ̄j ≡ rj δj , where rj is a real number such that

�2
0δ̄j = 1

2 , (E1)

if the field is in the vacuum state. Then it is possible to
find a mode whose amplitude quadrature is precisely δ̄j . The

normalization rj is readily computed as rj = 1/
√

1 + N (j ),
with N (j ) the number of nearest neighbors of node j .

Using the definition of quadratures for the �d modes, dj =
(q(d)

j + ip
(d)
j )/

√
2, and Eq. (36), δ̄j may be rewritten as

δ̄j = 1√
2

(∑
l

Wjlal +
∑

l

W ∗
j la

†
l

)
≡ 1√

2
(Aj + A

†
j ),

(E2)

where Aj is the annihilation operator associated with the mode
defined by the spectral amplitudes,

Wjl = −rj

(
iDjl +

∑
k

GjkDkl

)
. (E3)

These are the amplitudes of the electric field to print on the
local oscillator in order to measure δ̄j . They may as well
be used to define a transformation RW analogous to RD

in Eq. (38). Accordingly, one finds the covariance matrix
associated with the nullifiers, which contains their squeezing as
well as correlations between them and the conjugated operators
ζ̄j ,

	δ̄ = RW	ωRT
W =

(
	δ̄δ̄ 	δ̄ζ̄

	T
δ̄ζ̄

	ζ̄ ζ̄

)
. (E4)

For an ideal cluster state, 	δ̄δ̄ → 0 [33]. Note that 	δ̄ is a
legitimate covariance matrix, in the sense that it contains
variances and covariances of the normalized nullifier operators,
even if the corresponding modes, defined by the rows of W in
Eq. (E3), are not always orthogonal.

APPENDIX F: LINEAR COMBINATIONS
OF QUASIDEGENERATE SUPERMODES

Consider the first supermodes resulting from the optimiza-
tion of f̄1 and the associated gains λj ≡ �jj . Since λ20 >

0.99λ1 and λ30 > 0.97λ1, when the first supermode has 5 dB
of squeezing, the difference of squeezing with the 30th super-
mode is ≈ 0.13 dB, while the squeezing of the 20th supermode
differs by less than 0.05 dB from that of the first. This difference
would hardly be detectable in experiments. As a consequence,
it is reasonable to ask whether a linear combination of the
first supermodes could by approximated by a simpler shape.
Note that the coefficients in these linear combinations need
to be real if one wants the resulting mode to be squeezed.
One finds that a real Gaussian mode of about 37 nm FWHM
has more than 92% overlap with a real combination of the 30
first supermodes. If one allows for a linear phase, which only
amounts to a delay, as we noted earlier, the overlap is about 98%
for a Gaussian amplitude of about 24 nm FWHM considering
a real combination of 22 supermodes. The state of the modes
resulting from these superpositions of supermodes would be
slightly impure, but would nonetheless display squeezing in
one quadrature which would exceed that of the least squeezed
supermode in the linear combination.
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