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Entanglement and quantum superposition induced by a single photon
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We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid
quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the
photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated
with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction.
Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly
enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum
superposition with a single photon, which might have potential applications in the engineering of new single-
photon quantum devices, and also fundamentally broaden the regime of cavity QED.
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I. INTRODUCTION

Entanglement and quantum superposition, as the fundamen-
tal concepts of quantum mechanics, have wide applications
in modern quantum technologies [1,2]. Ground-state entan-
glement and quantum superposition are usually connected
with a quantum phase transition (QPT) in strongly correlated
quantum systems [3–8]. The Dicke model, describing a system
of quantized single-mode cavity fields uniformly coupled to N

two-level systems, predicts an equilibrium superradiant QPT
in the thermodynamic limit N → ∞, i.e., the phase transition
from a normal phase (NP) to a superradiant phase (SP) as
increasing the spin-field coupling strength [9]. Different from
the Dicke model, the Rabi model considers a system composed
of a quantized single-mode field (with frequency ω) coupled to
a single two-level system (with transition frequency �), which
is far from being in the thermodynamic limit. However, it is
shown that an equilibrium superradiant QPT also exists in the
Rabi model, when the ratio of � to ω approaches infinity, i.e.,
the classical oscillator limit �/ω → ∞ [10,11]. Associating
with the superradiant QPT, the critical entanglement phe-
nomenon [6,7] and quantum superposition of fields [8] could
be realized in cavity QED systems. However, they are limited
by the so-called A2 term of the spin-field interaction, which
corresponds to the debate on the existence of an equilibrium
superradiant QPT in cavity and circuit QED systems [12–18].

Recent advances in materials science and nanofabrication
have led to spectacular achievements in single-photon tech-
nologies, including single-photon generation in cold atoms
[19,20], quantum dots [21–23], diamond color centers [24],
or superconducting circuits [25], and single-photon detec-
tion based on quantum entanglement [26] or cross-phase
modulation [27–29], etc. These achievements have potential
applications in quantum information science [30], which has
led to the recent explorations of single-photon transistors [31],
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single-photon routers [32], single-photon switches [33], and
single-photon triggered single-phonon sources [34].

To combine the single-photon technologies with entan-
glement and quantum superposition, here we investigate the
ground-state property of a hybrid quantum model, i.e., a Rabi
model coupled to an ancillary cavity mode via a quadratic
optomechanical coupling. Cavity optomechanics is a rapidly
developing research field exploring nonlinear photon-phonon
interactions [35–38]. Typically, the quadratic optomechanical
coupling strength is very weak [39,40], which limits its
application in the quantum realm [41]. Recent proposals have
shown that it might be increased by a measurement-based
method [42], near-field effects [43], good tunability of the
superconducting circuit [44], or modulation of the photon-
phonon interaction [45].

Interestingly, the concepts of single-photon-induced entan-
glement and quantum superposition are proposed in the hybrid
quantum model. Physically, the proposed quantum model has a
photon-dependent quantum property of the ground state, which
corresponds to a single-photon-induced superradiant QPT both
in the cases of ignoring and including the A2 term. This
ultimately leads to the realizations of single-photon-induced
entanglement and quantum superposition even in the weak-
coupling regime of the spin-field interaction, and it is immune
to the A2 term. In general, the realizations of ground-state
entanglement and quantum superposition in normal cavity
QED systems are limited by the A2 term. Moreover, here one
can obtain a squeezed cat state of field, which could be used to
enhance the detection precision in quantum metrology [46,47].
This unconventional single-photon-induced entanglement and
quantum superposition is not only fundamental interesting, but
can also inspire the engineering of new single-photon quantum
devices.

II. MODEL

We consider a hybrid quantum model depicted in Fig. 1(a)
with a total Hamiltonian (h̄ = 1)

H = Han + Hrm − g0a
†a(b† + b)2, (1)
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FIG. 1. (a) A hybrid quantum model including a Rabi model
quadratically coupled to an ancillary cavity mode a with coupling
strength g0. (b) The implementation of this model in a superconduct-
ing circuit with the ability of simulating a quadratic optomechanical
coupling [44] and coupling to a superconducting qubit or spin [49].

where a (a†) and b (b†) are the annihilation (creation) operators
of the ancillary cavity mode and the field mode of the Rabi
model, respectively. The Hamiltonian Hrm is given by Hrm =
(�/2)σz + ωb†b − λ(b† + b)σx + (αλ2/�)(b† + b)2, where
σz and σx are the Pauli operators for the two-level system. It
describes a two-level system σ− coupled to a field mode b with
coupling strength λ, and the A2 term has been included in the
last term. Normally, α � 1 (decided by the Thomas-Reiche-
Kuhn sum rule [14]) corresponds to the case of implementing
the Rabi model in a cavity QED system, and Hrm is reduced
to the Hamiltonian of a standard Rabi model when α = 0. The
ancillary cavity, with Hamiltonian Han = ωaa

†a, quadratically
couples to b with coupling strength g0 [40]. This quadratic term
provides a photon-dependent modification on the potential of
field b. In the classical limit of the ancillary mode a, this model
is approximately equivalent to the model studied in Ref. [48],
where a time-dependent driving magnitude is employed. Here,
we consider the case of a being in a quantum state, i.e., Fock
state |n〉a , which allows for the occurrence of single-photon-
induced entanglement and quantum superposition. Moreover,
the interplay between this quadratic interaction and the A2 term
is considered in our work, which makes our results immune
to the A2 term. Here, we denote |↑〉,|↓〉 as the eigenstates
of σz, and |m〉b as the eigenstate of b†b. Hamiltonian (1) has
Z2 symmetry associating with a well-defined parity operator
� = eiπN (i.e., [�,H ] = 0), whereN = b†b + (1/2)(σz + 1)
is the total excitation number of the system (excluding the
ancillary cavity).

In principle, the proposed hybrid model could be realized
in a quadratically coupled optomechanical system with a
“membrane-in-the-middle” configuration. However, the typ-
ical quadratic coupling in the optomechanical system is too
weak. It might be enhanced by driving the mechanical system
to large occupation numbers, but too strong driving will
make the small displacement approximation used to derive the
optomechanical interaction ineffective. Here, we suggest to use
the superconducting circuit depicted in Fig. 1(b) to implement
our model. Specifically, as shown in Ref. [44], the coupling
capacitor C and the superconducting quantum interference

devices (SQUIDs) forming resonator A offer an effective
fixed semitransparent membrane and movable cavity ends,
respectively. A relative displacement of the fixed membrane
with respect to the center of resonator A is generated by
synchronizing the motion of the movable cavity ends, which is
obtained by applying opposite flux variations ±δ
 through
the SQUIDs. Then, the position quadrature of resonator B
couples quadratically to the photon number of resonator A in
a certain regime. Associating with the interaction between the
circuit cavity and the superconducting qubit or spin [49], our
model could be realized in a superconducting circuit shown in
Fig. 1(b), in which enough large g0/ω might be reached in the
further experiments by optimizing the coupling capacitance
C, the bias flux through the SQUIDs, and the geometrical
arrangement of the circuit [44].

III. PHOTON-DEPENDENT GROUND-STATE QPT

Considering the ancillary mode a is prepared into a
Fock state |n〉a (n = 0,1, . . .), the number operator a†a can
be replaced by an algebraic number n. Then, applying a
squeezing transformation b = cosh(rn)bn + sinh(rn)b†n with
rn = (−1/4) ln[1 + αχ2 − 4ng0/ω] and a rescaled coupling
strength χ = 2λ/

√
�ω, the Hamiltonian (1) becomes

Hn = �

2
σz + ωnb

†
nbn − λn(b†n + bn)σx + Cn, (2)

where ωn = exp(−2rn)ω, λn = exp(rn)λ, and Cn = nωa +
[exp(−2rn) − 1](ω/2). It clearly shows that the proposed
model is essentially equivalent to a photon-dependent Rabi
model.

In the �/ω → ∞ limit (corresponding to �/ωn → ∞),
Hamiltonian (2) can be diagonalized analytically (see the
Appendix). A photon-dependent quantum critical point
χn = 2λn/

√
�ωn = 1 is obtained, corresponding to χ =

exp(−2rn) =
√

1 + αχ2 − 4ng0/ω in terms of the original
system parameters. When χ < exp(−2rn), the system is in
the NP, featured by an excitation energy ωe. The ground state
of the system is |G〉np, and it has a conserved Z2 symmetry
(i.e., �|G〉np = |G〉np), confirmed by the zero ground-state
coherence of field 〈b〉g = 0. The excitation energy ωe vanishes
when χ = exp(−2rn), locating the superradiant QPT. When
χ > exp(−2rn), the system enters into the SP and has an exci-
tation energy ω̃e. Now the ground state of the system becomes
twofold degenerate, i.e., |G〉±sp (the detailed expression shown
in the Appendix). It corresponds to a spontaneous Z2 sym-
metry breaking (i.e., �|G〉+sp = |G〉−sp), as is evident from the
nonzero ground-state coherence of field 〈b〉±g = ± exp(rn)β.
The rescaled ground-state occupation of field b, i.e., ψq =
[exp(−4rn)ω/�]〈b†b〉g , can be defined as the order parameter
characterizing this superradiant QPT. Because ψq = 0 when
χ < exp(−2rn), ψq = (1/4)(χ2

n − χ−2
n ) becomes finite when

χ > exp(−2rn), which is clearly displayed by the solid lines
of Figs. 2(a)–2(c).

Interestingly, the above photon-dependent quantum criti-
cality leads to a single-photon-induced QPT, when we focus
on the cases of n = 0,1. Specifically, when the ancillary mode
a is in the vacuum state |0〉a , Hamiltonian (2) is reduced to a
standard Rabi Hamiltonian. The superradiant QPT occurs at
χ = 1 when α = 0, and it is prevented when α � 1 due to the
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FIG. 2. The order parameter ψq vs χ (and g0/ω in the insets)
for different �/ω when (a), (b) α = 0 and (c), (d) α = 1.5. The bar
graphs in the insets present �/ωn when mode a is in |0〉a,|1〉a , and
� = ω. The blue dots indicate the quantum critical point, where
ψq becomes finite from zero. The pink shaded areas indicate the
parameter range τ used to demonstrate single-photon-induced QPT.
The system parameters are chosen as (a), (b) g0/ω = 0.245 and (c),
(d) g0/ω = 0.26.

no-go theorem [10]. When a is in the single-photon Fock state
|1〉a , the superradiant QPT occurs at χ = exp(−2r1), which
could be much smaller than 1 for both cases of α = 0 and
α � 1, by properly choosing the system parameters. Let us
consider a parameter range χ ∈ τ to check the occurrence of
the superradiant QPT (τ covering the single-photon-induced
quantum critical point, χ = e−2r1 ). As shown in Fig. 2, in
�/ω → ∞, the superradiant QPT during τ is triggered by
exciting a single photon in mode a (i.e., |0〉a → |1〉a). It cor-
responds to a single-photon-induced Z2 symmetry breaking,
demonstrated by the ground-state coherence of field 〈b〉g . Note
that this QPT describes the sudden change in the ground
state in a closed system as changing the system parameter
χ at zero temperature. It belongs to the equilibrium phase
transition [9,10], which is different from the nonequilibrium
phase transition characterized by the steady state of the driven
open systems [50–52].

Including the A2 term, this superradiant QPT can still occur,
since the parameter condition χ > exp(−2r1) can be satisfied
even when α � 1. Moreover, the present superradiant QPT is
reversed compared with the case in a standard Rabi model [10],
i.e., the transition from the NP to the SP occurs as decreasing
the original system parameter χ , as shown in Fig. 2(c). This
originally comes from the competition between the quadratic
term and the A2 term in Hamiltonian (1), which ultimately

FIG. 3. The order parameter ψq vs χ and �/ω when (a), (b) α = 0,
and (c), (d) α = 1.5. (a), (c) and (b), (d) correspond to mode a being
in the Fock states |0〉a and |1〉a , respectively. The inset of (d) presents
the dependence of χn on χ , and the system parameters are the same
as in Fig. 2.

leads to the result that χn increases along with decreasing χ

[see the inset of Fig. 3(d)].
In finite �/ω (corresponding to finite �/ωn), the depen-

dence of the order parameter ψq on χ (or g0/ω) clearly
approaches the case of a QPT occurring exactly with increasing
�/ω (see Figs. 2 and 3). This tendency could be faster when
n = 1, compared with the case of n = 0. Physically, in our
model, a single photon can induce a dramatic increase in the

FIG. 4. The von Neumann entropy S vs χ for different n when
(a) α = 0 and (b) α = 1.5. The insets indicate the values of S

corresponding to the blue dots. The red dashed arrows indicate single-
photon-induced quantum entanglement. The system parameters are
the same as in Fig. 2.
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FIG. 5. The Wigner function of the reduced density matrix ρb when (a)–(d) α = 0 and (e)–(h) α = 1.5. The quadrature variables are
x = (b + b†)/2 andy = −i(b − b†)/2. Corresponding to (a), (e), (c), and (g),ρb is obtained by diagonalizing the system Hamiltonian numerically
and tracing out the qubit degree of freedom. (b), (f) and (d), (h) correspond to the approximate analytic ground state |G〉0 and |G〉1, respectively.
The insets of (c) and (g) present the interference fringe of the cat state. The system parameters are the same as in Fig. 2 except for the value of
χ corresponding to the blue dots of Fig. 4.

value of �/ωn (see the bar graphs in Fig. 2). This leads to
the result that, choosing the same value of �/ω, the case of
n = 1 can be closer to the �/ωn → ∞ limit, where the QPT
occurs exactly. Here, the results of finite �/ω are obtained by
numerically diagonalizing Hamiltonian (2) in a large Hilbert
space consisting of 1000 base vectors, and considering the
squeezing transformation between modes b and bn. This
Hilbert space also has been used in the following numerical
calculations.

IV. SINGLE-PHOTON-INDUCED ENTANGLEMENT
AND QUANTUM SUPERPOSITION

Figures 2 and 3 also show the approximate occurrence of
superradiant QPT induced by a single photon in the finite
�/ω, which leads to single-photon-induced entanglement and
quantum superposition.

Qualitatively, when the ancillary mode a is in the vacuum
state |0〉a , Hamiltonian (2) is reduced to a standard Rabi
Hamiltonian. Under the conditions of e−2r1 < χ 
 1 and
� ≈ ω, the ground state of the system is approximately |G〉0 =
|0〉b|↓〉, which is neither an entangled state nor a quantum
superposition state. When the mode a is in the single-photon
Fock state |1〉a , the frequency ratio �/ωn � 1 (see the bar
graphs in Fig. 2), which allows the approximate occurrence
of superradiant QPT when χ > e−2r1 . Correspondingly, the
ground state of the system approximately becomes |G〉1 =
(1/

√
2)(|G〉+sp + |G〉−sp) when χ > e−2r1 , which is a qubit-

cavity entangled state. Moreover, from the ground state |G〉1,
we also could obtain the quantum superposition of the field b.
One could measure the qubit in the (|↓〉+ ± |↓〉−)/

√
2 basis

(the definition of |↓〉± is shown in the Appendix). Depending
on the outcome of the measurement, the state of the field b

is approximately projected into one of the following squeezed
cat states,

|�〉sup
1 = 1√

2
S(r̃tot)[D(|β|)|0〉b ± D(−|β|)|0〉b]. (3)

Quantitatively, to show the above single-photon-induced
quantum entanglement more clearly, we numerically calculate
the von Neumann entropy S = −tr(ρb log2 ρb) of the reduced
density matrix ρb of the field mode, and present the dependence
of S on χ in Fig. 4. It is shown that strong qubit-field quantum
entanglement is triggered by injecting a single photon into
the ancillary cavity, i.e., |0〉a → |1〉a . This single-photon-
induced quantum entanglement is immune to the A2 term
[see Fig. 4(b)]. Moreover, this strong qubit-field entanglement
could be realized in a relatively weak-coupling regime, i.e.,
χ 
 1. However, in the normal Rabi model (see the case
of n = 0 corresponding to the black solid lines in Fig. 4),
the realization of strong qubit-field entanglement requires
an ultrastrong-coupling regime χ > 1 and ignoring the A2

term.
To show single-photon-induced quantum superposition, in

Fig. 5, we present the Wigner function of the reduced density
matrices ρb with the numerical results and the approximate
analytic ground states |G〉0,|G〉1, respectively. First of all,
it clearly presents that the single-photon-induced quantum
superposition can be realized both in the cases of ignoring
and including the A2 term. Here, the quantum superposition
state is actually a squeezed cat state, as shown in Figs. 5(c),
5(d), 5(g), and 5(h). Second, comparing the exactly numerical
results [i.e., Figs. 5(a) and 5(e) and Figs. 5(c) and 5(g)] with
the analytic results [i.e., Figs. 5(b) and 5(f) and Figs. 5(d) and
5(h)], it is shown that the analytic ground states |G〉0 and |G〉1

can represent the system ground states with high fidelity. Then
one could obtain a squeezed cat state |�〉sup

1 with high fidelity
after doing the qubit measurement into the ground state of
system |G〉1.

V. CONCLUSIONS

In conclusion, we have proposed a hybrid quantum model,
which is equivalent to a photon-dependent Rabi model. In-
terestingly, this hybrid quantum model allows for the occur-
rence of single-photon-induced entanglement and quantum
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superposition. We also showed that these single-photon-
induced quantum properties will not be limited by the so-called
A2 term. Moreover, here, the obtained quantum superposition
state induced by a single photon actually is a squeezed cat
state, which has potential applications in quantum metrology
[46]. This work may offer the prospect of exploring the single-
photon-induced ground-state quantum property together with
its applications in high-precision single-photon quantum tech-
nologies.

Note added. Recently, two related works by Clerk’s group
[48] and Nori’s group [53] appeared.
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APPENDIX: DIAGONALIZATION PROCEDURE
OF HAMILTONIAN (2)

According to the diagonalization procedure used in
Ref. [10], we can diagonalize Hamiltonian (2) in the �/ωn →
∞ limit (corresponding to the �/ω → ∞ limit in terms of the
original system parameters).

Specifically, when χ < exp(−2rn) (corresponding to the
NP), Hamiltonian (2) can be diagonalized according to the fol-
lowing procedure. Applying a unitary transformation U †HnU

with

U = exp(S) = exp

[
λn

�
(bn + b†n)(σ+ − σ−)

]
, (A1)

we obtain

H ′
n = U †HnU =

∞∑
j=0

1

j !
[Hn,S](j ), (A2)

where the commutation rule is defined as [Hn,S](j ) ≡
[[Hn,S](j−1),S] with [Hn,S](0) = Hn. Expanding Eq. (A2), we
can obtain

H ′ = �

2
σz + ωnb

†b + χ2
nωn

4
(b†n + bn)2σz + Cn

+ χnωn

2

√
ωn

�
(b†n − bn)(σ+ − σ−)

+ χ3
nωn

6

√
ωn

�
(bn + b†n)3σx + O

(√
ωn

�

)
, (A3)

where the last term denotes the high-order terms of
√

ωn/�.
In the limit �/ωn → ∞ (originally from �/ω → ∞), the
fifth and sixth terms of Eq. (A3) and the high-order terms of√

ωn/� [i.e., the last term of Eq. (A3)] become zero. Then,
projecting the Hamiltonian into the spin-down subspace, the
system Hamiltonian becomes

Hnp =ωnb
†
nbn − χ2

nωn

4
(b†n + bn)2 − �

2
+ Cn. (A4)

This Hamiltonian could be diagonalized to Hnp = ωee
†e +

Eg by a squeezing transformation bn = e cosh(l) + e† sinh(l)

with a squeezing parameter l = −(1/4) ln (1 − χ2
n ). Here,

the excitation energy ωe and the ground-state energy Eg are
given by

ωe = ωn

√
1 − χ2

n , (A5a)

Eg = ωn

2

(√
1 − χ2

n − 1
) − �

2
+ Cn. (A5b)

The corresponding ground state of the system is |G〉np =
S(rtot)|0〉b|↓〉 with S(rtot) = exp [rtot(b†2 − b2)/2] and rtot =
rn + l. This ground state has a conserved Z2 symmetry (i.e.,
�|G〉np = |G〉np), confirmed by the zero ground-state coher-
ence of field 〈b〉g = 0.

The excitation energy ωe is real only for χ � exp(−2rn)
(corresponding to χn � 1) and vanishes when χ = exp(−2rn),
locating the occurrence of superradiant QPT. When χ >

exp(−2rn), the system enters into the SP, and Eq. (A4) becomes
invalid due to the field bn being macroscopically occupied
(being proportional to �/ωn). In this case, we first displace
the field mode bn with an amplitude β = ±

√
�

4ωn
(χ2

n − χ−2
n )

(i.e., bn → b̃n + β), and then the system Hamiltonian
becomes

H̃n = ωnb̃
†
nb̃n + �̃

2
σ̃z − λ̃(b̃†n + b̃n)σ̃x + ωnβ

2 + Cn, (A6)

where the rescaled system coefficients �̃ = χ2
n�, λ̃ =√

�ωn/(2χn). Here, σ̃z,σ̃x are the redefined Pauli operators
in the rotated spin eigenstates given by

˜|↓〉 = cos θ |↓〉 − sin θ |↑〉, (A7a)

˜|↑〉 = sin θ |↓〉 + cos θ |↑〉, (A7b)

and tan(2θ ) = −4λnβ/�. Note that Hamiltonian (A6) has the
same formation as Hamiltonian (2). Then, by employing a
similar procedure used to derive Hnp, Hamiltonian (A6) can
be diagonalized to Hsp = ω̃eẽ

†ẽ + Ẽg with

ω̃e = ωn

√
1 − χ−4

n , (A8a)

Ẽg = ωn

2

(√
1 − χ−4

n − 1
) − �

4

(
χ2

n + χ−2
n

) + Cn. (A8b)

Here, the introduced operator ẽ is decided by a squeezing
transformation ẽ = b̃n cosh(l̃) − b̃

†
n sinh(l̃) with a squeezing

parameter l̃ = −(1/4) ln (1 − χ−4
n ). Now, the ground state

of the system becomes twofold degenerate given by |G〉±sp =
Dn(±|β|)S(r̃tot)|0〉b|↓〉± with Dn(β) = exp (βb

†
n − β∗

r bn),
r̃tot = rn + l̃, and the spin states |↓〉± given by

|↓〉± =
√

1 + χ−2
n

2
|↓〉 ±

√
1 − χ−2

n

2
|↑〉. (A9)

Consequently, the Z2 symmetry of this ground state is spon-
taneously broken (i.e., �|G〉+sp = |G〉−sp), confirmed by the
nonzero ground-state coherence of field 〈b〉±g = ±ern |β|.

To characterize this superradiant QPT more clearly, the
rescaled ground-state occupation of field b could be defined
as the order parameter, i.e., ψq = [e−4rnω/�]〈b†b〉g . Based
on the obtained ground state in the normal phase |G〉np and the
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superradiant phase |G〉±sp, we analytically calculate this order
parameter, and obtain that ψq = 0 for χ < exp(−2rn) (corre-
sponding to the NP) and ψq = (1/4)(χ2

n − χ−2
n ) becomes finite

for χ > exp(−2rn) (corresponding to the SP). This property
ensures the validity of the defined ψq as an order parameter for
characterizing the QPT.
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