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Collective behavior of light in vacuum
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Under the action of light-by-light scattering, light beams show collective behaviors in vacuum. For instance, in
the case of two counterpropagating laser beams with specific initial helicity, the polarization of each beam oscillates
periodically between the left and right helicity. Furthermore, the amplitudes and the corresponding intensities of
each polarization propagate like waves. Such polarization waves might be observationally accessible in future
laser experiments, in a physical regime complementary to those explored by particle accelerators.
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I. INTRODUCTION

Light self-interaction is a purely quantum effect, since
the classical Maxwell equations are linear, and this forbids
processes such as light-by-light scattering (γ γ → γ γ ) that
are allowed in quantum electrodynamics. Indirect evidence of
such processes has been found in particle accelerators [1–8],
while the search for signatures of light-by-light scattering in
optics is still in progress [9–51]. However, this situation might
be overcome in the near future. In fact, it has been shown
[49] that, despite their weakness, quantum corrections due to
light-by-light scattering can change dramatically the dynamics
of the electromagnetic field, inducing effects that can be tested
experimentally.

Quantum corrections to Maxwell equations have been
calculated a long time ago by Heisenberg and Euler [52], and
extensively studied by other authors [53–56]. The effective
Lagrangian of the electromagnetic field, obtained retaining
only the dominant one-electron-loop corrections,1 is [56]

L = 1
4FμνF

μν + ε2
[
(FμνF

μν)2 − 7
16 (FμνF̃

μν)2
]
, (1)

where Fμν = Aμ,ν − Aν,μ is the electromagnetic field,2 Aμ

is the electromagnetic four-potential, F̃ μν ≡ εμναβFαβ, ε2 =
α2(h̄/mec)3/90mec

2, α = e2/4πε0h̄c � 1/137 is the fine
structure constant, ε0 the dielectric permeability of vacuum,
me the electron mass, and c the speed of light.

In this paper we analyze the effect of light-by-light
scattering on the dynamics of the electromagnetic field in
vacuum. Hereafter, we consider low energetic photons with
energies �mec

2, so that particle creation is inhibited, and
light-by-light scattering is the only process involving photons.
Under these hypothesis, the Lagrangian (1) is fit for our
purpose.
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1We are neglecting other contributions to light-by-light scattering,

such as those due to the μ and τ loops, which are suppressed by a factor
∼ (me/mμ)4 ε2 FμνF

μν and ∼ (me/mτ )4 ε2 FμνF
μν , respectively.

2We use the covariant formalism, so that the zeroth coordinate is
defined as x0 = c t .

The terms ∼ε2 in (1) account for light-by-light scat-
tering, introducing cubic corrections in the equations for
the four-potential Aμ. Since ε2 ≈ 4 × 10−31 m3/J, one has
ε2 FμνF

μν � 1 and ε2 FμνF̃
μν � 1 in realistic physical con-

ditions, so that nonlinear corrections to Maxwell equations
are usually negligible.3 However, this is not the case for some
specific configurations of the electromagnetic field that become
unstable due to the action of hidden resonances. In fact, in [49]
it has been shown that such tiny nonlinearities affect heavily the
polarization of the electromagnetic waves in vacuum; indeed,
their polarization oscillates periodically in time between right
and left helicity states.

Here we extend this result, which has been obtained for
counterpropagating homogeneous (in space) plane waves, to
more general configurations. Such extension is mathematically
straightforward, but its physical implications are relevant. We
show that the polarization oscillations occur both in space
and time. It is found that the amplitudes of the different
polarizations, and the corresponding intensities, propagate as
plane waves. The occurrence of superluminal polarization
waves is considered, and possible contradictions with special
relativity, and their solution, are discussed. Finally, we discuss
the possibility of observing polarization waves in laser exper-
iments and argue how the recurrence time of the polarization
oscillations can be reduced in order to favor their detection.

The importance of these results is in the fact that they show
that light exhibit collective behaviors in vacuum, which are
triggered by light-by-light scattering. Such collective modes
are represented by polarization waves, whose properties have
been completely characterized. Remarkably, this phenomenol-
ogy has been obtained analytically through a simple multiscale
approach, as described below.

3We note that the next-to-leading terms in the expansion of
the Heisenberg-Euler Lagrangian are suppressed by a factor
∼(ε2 FμνF

μν)2; indeed, they are negligible to any extent in realistic
laboratory conditions for low energetic (E � me c2) photons. What
is more, they are subdominant with respect to contributions due to
other channels in light-by-light scattering, e.g., the μ and τ loops.
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II. MULTISCALE EQUATIONS

Starting from the Lagrangian (1) it is easy to show that
the modified Maxwell equations for the electromagnetic four-
potential Aα in the Lorentz gauge (∂αAα = 0) are

�Aα(1 + 8 ε2 FμνF
μν) + ε2 Bα = 0 , (2)

where � is the d’Alembertian operator and

Bα ≡ 8 [Fαβ∂β(FμνF
μν) − 7

16 F̃ αβ∂β(FμνF̃
μν)] . (3)

At zeroth order in ε Eq. (2) reduces to the Maxwell equations
in vacuum �Aα = 0, which can be solved exactly. Let us
consider a zeroth-order solution A(0)α corresponding to a
system of two plane electromagnetic waves propagating in
the x3 direction. With a proper gauge choice we set A(0)0 =
A(0)3 = 0, so that we can write the four-potential in a more
convenient vector form as

�A(0) = �a + �b + c.c. , (4)

(where c.c. stands for complex conjugate), i.e., as the superpo-
sition of the two plane waves a and b defined as

�a = (aL êL + aR êR) eikx, �b = (bL êL + bR êR)eihx , (5)

with the two wave vectors k = (k0,0,0,k3) andh = (h0,0,0,h3)
satisfying the dispersion relation |k0/k3| = |h0/h3| = 1. Here
êL = (1,i,0)/

√
2 and êR = (1,−i,0)/

√
2 are the left and right

polarization vectors. Therefore, the coefficients aL, aR, bL,
and bR are the complex amplitudes of the left and right
polarizations of the plane waves a and b, and their squared
modules are proportional to the corresponding intensities.

Let us study how the dynamics or the plane waves (4)
are modified due to the effect of quantum corrections. We
anticipate that such dynamics entails slow variations of the
complex amplitudes in space and time. The smallness of ε2

suggests that a complete solution of (2) might be obtained
through a standard perturbative expansion of the four-vector
in powers of ε2. However, such a naive approach fails when the
two waves a and b are counterpropagating, e.g., when k0/k3 =
−h0/h3 = 1, due to the occurrence of secular divergences of
small perturbations. In fact, in such a configuration, evaluating
Bα over the solution (4) one has [49]

�B = 32 k2
0 h2

0{[(−3 aL(|bL|2 + |bR|2) + 22 aRbLb̄R)êL

+ (−3 aR(|bL|2 + |bR|2) + 22 aLbRb̄L)êR]eikx

× [(−3 bL(|aL|2 + |aR|2) + 22 bRaLāR)êL

+ (−3 bR(|aL|2 + |aR|2) + 22 bLaRāL)êR]eihx}
+ c.c. + nonresonant terms. (6)

Therefore �B contains resonant terms ∼eikx and ∼eihx

that make any small perturbation of (4) diverge as δA ≈
ε2 t c k3(A(0))3 eikx , where we have assumed for simplicity
that k0 ≈ h0 ≈ k. See [49] for a discussion of the secular
divergence of small perturbations of (4) in this configuration.

The emergence of secularities and the consequent failure of
perturbative power expansions is quite common in physics.
Usually, this happens in problems in which the solutions
depend simultaneously on widely different scales. In such
cases, the divergences can be handled through a multiscale
expansion, introducing suitable slow variables; see [57] for an

introduction to the multiscale perturbative method. As we will
see, the multiscale approach provides an approximate solution
of (2) that captures all the essential features of the problem
under analysis.

We introduce the slow variable y0 as

y0 ≡ ε2(n0 x0 + n3 x3) , (7)

where n0,n3 ∈ R are the covariant components of a four-vector
n = (n0,0,0,n3), so that the relativistic covariance of (7),
as well as that of the multiscale approximate solutions, is
preserved. We choose n dimensionless, so that y0 is measured
in m4/J. The multiscale treatment requires that n0 and n3 are
such that |n0| + |n3| ≈ 1. Moreover, to have meaningful mul-
tiscale equations, it will be necessary to impose the condition
n0 �= ±n3. Using (7) one has ∂x0 → ∂x0 + ε2 n0 ∂y0 and ∂x3 →
∂x3 + ε2 n3 ∂y0 , which finally gives the d’Alembertian in terms
of the derivatives with respect to slow and fast variables as

� → � + 2ε2(n0 ∂x0 − n3 ∂x3 )∂y0 + o(ε4) . (8)

We split the dependence of the four-potential into slow and
fast variables, assuming that the amplitudes aL, aR, bL, and bR

depend only on the slow variable y0. We search the solutions
of the Eq. (2) in the form �A = �A(0) + ε2δ �A, so that at order
∼ε2 Eq. (2) gives

2(n0 ∂x0 − n3 ∂x3 )∂y0 �A(0) + �δ �A + �B = 0. (9)

The multiscale equations are obtained by imposing that the first
term in (9) cancels the resonant terms in �B, while �δ �A equals
the remaining nonresonant terms so that the small perturbation
δ �A is stable. In that way, we obtain the dynamical equations
for the complex amplitudes as

ia′
L + 16

k0h
2
0

n0 − n3
[−3 aL(|bL|2 + |bR|2) + 22 aRbLb̄R] = 0,

ia′
R + 16

k0h
2
0

n0 − n3
[−3 aR(|bL|2 + |bR|2) + 22 aLbRb̄L] = 0,

ib′
L + 16

k2
0h0

n0 + n3
[−3 bL(|aL|2 + |aR|2) + 22 bRaLāR] = 0,

ib′
R + 16

k2
0h0

n0 + n3
[−3 bR(|aL|2 + |aR|2) + 22 bLaRāL] = 0 ,

(10)

where f ′ ≡ df/dy0. It is now evident why the condition
n0 �= ±n3 is necessary in order to have meaningful multiscale
equations.

III. RESULTS

Let us study (10) in detail. First of all, it is quite immediate
to recognize that the energy densities 〈ρa〉 = k2

0(|aL|2 + |aR|2)
and 〈ρb〉 = h2

0(|bL|2 + |bR|2) of the two beams a and b are
constant; therefore, the intensities of the two plane waves a

and b are conserved separately. Furthermore, the quantity S =
k0(n0 − n3)(|aL|2 − |aR|2) + h0(n0 − n3)(|bL|2 − |bR|2), that
in the case n0 = 1 and n3 = 0 corresponds to the spin density,
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is also conserved.4 Exploiting these relations, the system (10)
can be simplified and then resolved exactly [49], showing that
the evolution of the modules of the complex amplitudes is
periodic.

We can now estimate the period �y0 of the polarization
oscillations. This is roughly given by the scale at which the
amplitudes change significantly. Assuming that aL ≈ aR ≈ a0

and bL ≈ bR ≈ b0, such a scale is given by the conditions
�aL,R/aL,R ≈ 1 and �bL,R/bL,R ≈ 1, which, using (10),
gives the two scales �y0

a ≈ |n0+n3|
k0h

2
0|b0|2 and �y0

a ≈ |n0−n3|
k2

0h0|a0|2 . Since

the solutions of (10) are periodic in y0, �y0 will be the
minimum between �y0

a and �y0
b , i.e.,

�y0 ≈ inf

{ |n0 + n3|
k0h

2
0|b0|2

,
|n0 − n3|
k2

0h0|a0|2
}

. (11)

At this point we can characterize the dynamics of the
system. Some of the solutions of (10) are easily found. In fact,
if aL aR = 0 and bL bR = 0 at y0 = 0 so that the waves a and
b have circular polarization, such products remain always zero
and the solutions of (10) are complex exponentials ∼eiωy0

.
This is true also in the case of two linearly polarized waves
with aL = ±aR and bL = ±bR . However, such solutions are
not interesting, since the modules of the complex amplitudes
remains constant, and the effect of light-by-light scattering is
just a negligibly small ∼ε2 correction to the dispersion relation
of the plane waves a and b. (See [49] for possible implications
for quantum gravity phenomenology [58].)

Other solutions show a behavior much more interesting,
since the polarizations of the light beams change dramatically
during the evolution of the system. These solutions correspond
to initial conditions such that at least one of the products aL aR

or bL bR is different from zero. This is due to the fact that
when nonzero, the last terms in Eqs. (10) are responsible for
the oscillatory behavior that we describe below. The system
(10) can be solved analytically [49]; however, for our purposes
it will be sufficient to discuss numerical solutions. Solving (10)
numerically, it is possible to see that the polarizations of the
two counterpropagating waves oscillate periodically between
left and right configurations.

This effect is particularly evident when only one of the
waves a and b is initially polarized circularly, e.g., aL aR = 0
and bL bR �= 0. For instance, we solve (10) for k0 = h0 = 0.1
and initial values a0

R = 0, a0
L = 1, b0

L = 1, b0
R = i, n0 = 10−3,

and n3 = 1. From Fig. 1 we see that |aR| is initially zero but
it grows to |aR| = |a0

L|, while |aL| goes to zero. Thus, the
beam a is initially in the left-handed polarization, but then
it switches to the right-handed polarization. It remains in this
state until it jumps back to its initial left-handed configuration
after the first period. The behavior of the beam b is similar.
In fact, |bL| goes to zero, while |bR| goes to

√
|b0

L|2 + |b0
R|2 ,

4It is worth mentioning that 〈ρa〉, 〈ρb〉, and S are the zeroth-order
approximations of the energy and spin densities in the nonlinear
classical theory [44], and they coincide with the corresponding
quantities in perturbative quantum field theory. This is reasonable,
since Eqs. (10) have been obtained in perturbation theory, and the
quantum corrections have been calculated in perturbative quantum
field theory.

FIG. 1. We plot the evolution of |aL|2/|a0
L|2 + |a0

R|2 (solid red
line) and |aR|2/|a0

L|2 + |a0
R|2 (dashed blue line) against y0 (in units

of m4/J). The plot shows the oscillatory behavior of the polarization
of the light beam a.

and after the first period |bL| and |bR| go back to their initial
values. The difference with respect the beam a is that |bL|
never reaches the zero. From Figs. 1 and 2 it is also evident
that the evolution of the modules of the complex amplitudes is
periodic.

Numerical investigation of (10) shows that the oscillatory
behavior of the system is not affected (qualitatively) by the
choice of the parameters in (10), while the period of the
oscillations depends on such parameters (in order magnitude)
as in (11). For instance, for the solution plotted in Figs. 1 and 2,
Eq. (11) gives a period �y0 ≈ 3.9, which is a good estimation
(as an order of magnitude) of the actual period �20, as seen in
the plots.

At that point it becomes necessary to discuss the physical
meaning of the two parameters n0 and n3. Such parameters are
not fixed by the multiscale, except for the conditions |n0| +
|n3| ≈ 1 and n0 �= ±n3. The freedom in their choice reflects
the fact that our multiscale solution is not the general solution
of (2), but it still contains some residual freedom in the choice
of the initial values of the derivatives of the complex amplitudes
of a and b.

FIG. 2. We plot the evolution of |bL|2/(|b0
L|2 + |b0

R|2) (solid red
line) and |bR|2/(|b0

L|2 + |b0
R|2) (dashed blue line) against y0 (in units

of m4/J). The plot shows the oscillatory behavior of the polarization
of the light beam b.
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For instance, imposing n0 = 1 and n3 = 0, we have y0 =
ε2 x0, so that the amplitudes are homogeneous in space and
periodic in the slow variable y0 = ε2 c t , indeed, periodic in
time. This class of solutions has been discussed extensively
in [49]. On the contrary, the choice n0 = 0 and n3 = 1
corresponds to static solutions that are periodic in space, since
in this case y0 = ε2 x3.

In general, the complex amplitudes are periodic functions
of the slow variable y0 = ε2(n0 x0 + n3 x3); therefore they
propagate as plane waves with speed vp = |n0/n3|. A first
remark is that the superposition principle is not valid for these
waves, since the system (10) is nonlinear. Furthermore, it
must be emphasized that that such “polarization waves” cannot
travel at the speed of light, since it must be n0 �= ±n3, while
they can—at least in principle—travel faster than light when
|n0/n3| > 1.

It is not evident that the existence of superluminal polar-
ization waves is in contradiction with special relativity. For
instance, there is no manner to control the polarization wave
form and therefore encode information that can travel faster
than light. Instead, light beams self-organize in such a way
that their polarizations evolve as waves which might propagate
faster than light. What is more, since the partial intensities of
the two beams are conserved separately, polarization waves do
not carry energy. Moreover, it is know that the group velocity
of a light beam, i.e., the velocity of its envelope, exceeds the
speed of light in some circumstances [59]; but also in this
case there is no contradiction with special relativity, since
there is no propagation of signals or energy with a velocity
above c.

However, it might result that the existence of superlumi-
nal polarization waves contradicts special relativity. In such
eventuality, these superluminal polarization waves must be
considered unphysical, and we must impose the condition
|n0/n3| < 0; the meaning of these conditions would be that
we should avoid unphysical initial conditions.

We mention that the search for the effects of light self-
interactions in optics is already under study [9–51]. A review
of solutions in nonlinear QED is given in [37]. Moreover, the
self-interactions of magnetic and electric moments have been
studied in [38], linear and nonlinear responses of constant
background to electric charge have been studied in [39–41],
the linear response in the form of a magnetic monopole has
been studied in [42,43], and the finiteness of the self-energy of
the pointlike charge has been analyzed in [44–47].

It is also worth mentioning that the interaction of two coun-
terpropagating plane waves under the action of light-by-light
scattering was already studied in [48]. In that paper the authors
used the standard perturbation theory to study the evolution of
initially small perturbations �E over a background electro-
magnetic field E(0). They found that at some finite time the
perturbations �E become dominant over the background, i.e.,
they incidentally find the divergence of perturbations due to
secularities discussed in the Introduction and outlined in [49].
However, when the (initially small) perturbations overcome
the background, the perturbative solution is no longer valid.
Indeed, such solution does not uncover the oscillatory behavior
of polarizations, since this effect appears only on long time
scales, when standard perturbation theory is unapplicable and
one must recur to multiscale perturbation expansion.

FIG. 3. We plot the evolution of |aL|2/|a0
L|2 + |a0

R|2 (solid red
line) and |aR|2/|a0

L|2 + |a0
R|2 (dashed blue line) against y0 (in units

of m4/J) for n0 = 1, n3 = 2, and |a0
L|2 = 103 J/m, a0

R = 0, |b0
L|2 =

|b0
R|2 = 103 J/m, k0 = h0 = 107 m−1.

The novelty of the results reported here and in [49] is that,
by means of multiscale analysis, we have obtained precise
analytical results enlightening the most important features
of the collective behavior of light in vacuum induced by
light-by-light scattering. Moreover, we have understood that
we have to look at the polarization rather than at light
intensity, and we know that the case of two counterprop-
agating laser beams is the best configuration to observe
polarization oscillations.

Let us analyze the observational aspects of the polarization
waves. To have an idea of the observation time required to
reveal the polarization waves, we estimate their recurrence
time T for light beams produced in petawatt-class lasers. The
intensities attainable in these lasers reaches I ≈ 1023 W/cm2

[60,61]. Thus, according to (11) the recurrence time T ≈
�y0/c will be

T ≈ inf {|n0 + n3|,|n0 − n3|}(ε2 k0 I )−1

≈ 4 × 102 × inf {|n0 + n3|,|n0 − n3|}(λ/m) s , (12)

where λ/m is the laser wavelength in meters (we used k0 ≈
h0 ≈ 2π/λ and k2

0a
2 ≈ k2

0b
2 ≈ 〈ρ〉 ∼ I/c). Therefore, for

|n0 + n3| ≈ |n0 − n3| ≈ 1 and λ ≈ 1 μm [60,61], observation
time is of the order of 4 × 10−4 s.

This estimation is confirmed numerically. For instance,
in Fig. 3 we plot |aL|2/|a0

L|2 + |a0
R|2 and |aR|2/|a0

L|2 +
|a0

R|2 for the solution of (10) with n0 = 1, n3 = 2,
and |a0

L|2 = 103 J/m, a0
R = 0, |b0

L|2 = |b0
R|2 = 103 J/m, k0 =

h0 = 107 m−1, corresponding to I � 1023 W/cm2 and λ ≈
1 μm. The value of �y0 � 10−26 m4/J that can be read
from the plot corresponds to a period T = �y0/ε2 c � 10−4 s,
which is in good agreement with (12).

We stress that the recurrence time can be lowered further,
choosing n0 and n3 in a proper way. In fact, one can make
T smaller while preserving the validity of the multiscale
treatment, e.g., taking n0 + n3 = η and n0 − n3 = 1. From
(12) it is then evident that we can reduce the recurrence time
T choosing η � 1. This fact is confirmed numerically by
solving (10) for different values of η. For instance, in Fig. 4
we plot |aL|/a0

L as a function of y0 for η = 0.3, 0.15, 0.05
and k0 = h0 = 0.1, a0

R = 0, a0
L = 1, b0

L = 1, b0
R = i, showing
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FIG. 4. We plot the evolution of |aL|2/|a0
L|2 + |a0

R|2 against y0

(in units of m4/J) for η = 0.3 (solid blue line), η = 0.1 (dashed black
line), η = 0.05 (dashed-dotted red line), and k0 = h0 = 0.1, a0

R =
0, a0

L = 1, b0
L = 1, b0

R = i. The plot shows that the period of the
oscillations decreases for decreasing η.

that the period of the oscillations decreases for decreasing η.
Indeed, T is considerably reduced for η � 1, corresponding
to polarization waves traveling nearly at the speed of light.
However, the practical issue of preparing the system in the
proper initial conditions corresponding to a specific choice of
n0 and n3 remains.

Finally, we mention that polarization oscillations cannot
be detected in the cosmic microwave background (CMB)
radiation [62], since its energy density ∼10−14 J/m3 gives

extremely small corrections to the linear dynamics, see [49].
Moreover, polarization waves can be of interest in astrophysics,
for instance, they can play a role in the behavior of magnetized
neutron stars [63–69] and in astrophysical electromagnetic
shocks [70,71]; however we will discuss these issues else-
where.

IV. CONCLUSIONS

It has been shown that the extremely weak light-by-light
interaction can induce unexpectedly strong deviations from
the free dynamics of light. In particular, it is responsible for
the generation of polarization waves that, in principle, can
propagate faster than light. The phenomenology described
above is quite surprising for different reasons. First, it is a
notable example of how an extremely thin correction, such as
that arising from light-by-light scattering, can produce a strong
deviation from the free dynamics of a system. Furthermore, it is
remarkable that photons have such an ordered behavior, show-
ing a collective response to the quantum-induced nonlinear
effects considered here rather than behaving in a chaotic way.
Last but not least, polarization waves might be observationally
accessible in laser experiments, and light-by-light scattering
tested in a physical regime complementary to that explored by
particle accelerators.
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