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Virial expansion for the Tan contact and Beth-Uhlenbeck formula
from two-dimensional SO(2,1) anomalies
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The relationship between two-dimensional SO(2,1) conformal anomalies in nonrelativistic systems and
the virial expansion is explored using recently developed path-integral methods. In the process, the Beth-
Uhlenbeck formula for the shift of the second virial coefficient b, is obtained, as well as a virial expansion
for the Tan contact. A possible extension of these techniques for higher orders in the virial expansion is

discussed.

DOI: 10.1103/PhysRevA.97.033630

I. INTRODUCTION

Virial expansion has been widely used in the study of
strongly correlated systems and in other contexts, as it captures
the impact of few-body physics on the high-temperature
thermodynamics of many-body systems. The expansion has
recently been used in the study of ultracold atomic Fermi
gases [1,2], where the realization of two-dimensional (2D)
systems has now been achieved by multiple groups around
the world (see, e.g., [3,4]). While the most common form
of the expansion is that of the pressure equation of state, of
particular interest is the virial expansion of the Tan contact
[5], as the latter determines all short-range correlations in
systems with contact interactions. The calculation of virial
coefficients, however, is a challenging problem: in its most
straightforward form, computing the nth order requires solving
the m-body problem for all m < n. Thus, a number of different
approaches have been proposed to calculate the virial coeffi-
cients, all of which aim at producing a reliable and efficient
computational scheme [6,7] that bypasses finding such a full
solution.

In 2D, the existence of a scaling anomaly provides an
appealing conceptual framework to establish relationships
between different relevant aspects of these calculations, as well
as hints for a possible systematic procedure for higher-order
coefficients. A signal of the connection between the virial ex-
pansion and 2D anomalies is already present in the celebrated
Beth-Uhlenbeck (BU) formula for §b,, the shift from the free
value of the second virial coefficient, which in the case of 2D
attractive contact interactions of nonrelativistic Fermi particles
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becomes [2]
dk e 2Pe

Sby=ePPr —2 | ——
2 k n2+ln2(f‘5—i)

6]

Here E}, is the magnitude of the single bound-state energy
allowed by this system. The first term comes precisely from the
presence of this bound state, and the integral term comes from
the scattering sector, once the phase shift for the s channel has
been properly accounted for. This system possesses an SO(2,1)
symmetry [8,9], which includes scaling symmetry. If the sym-
metry is respected at the quantum level, the bound-state term
in (1) would not be included. (The existence of a finite energy
E;, would provide a scale in the system, hence breaking the
classical scaling symmetry.) The scattering term in the original
BU formula contains the derivate of the phase shift with
respect to the momentum or energy; if the scaling symmetry
is preserved, this term would be zero. Therefore, this heuristic
argument seems to signal a direct relationship between 2D
anomalies and 6b,.

In this paper, we show that §b; is indeed produced entirely
by the anomaly. We use a path-integral approach inspired by
the work of [10-16]. In the process, we will describe the virial
expansion of the Tan contact (which in 2D is interpreted as
the anomaly [17]), as well as a procedure to compute b, n >
2, using the Hubbard-Stratonovich (HS) representation of the
partition function.

The rest of the paper is organized as follows: In Sec. II we
will derive the anomaly, showing the identification with the
Tan contact. In this section we will also relate the anomaly with
the virial expansion and will derive the main general formula
for éb,; the explicit calculation for §b, and its connection
with the BU formula will be shown. Section III will sketch
the procedure to calculate §b, and the first results on &bs
will be discussed. Section IV will contain conclusions and
comments. We would like to emphasize that our goal in this
paper is to lay out the framework more than to engage in
applications, although we will naturally connect with other
approaches to assess similarities and differences. We hope that
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our approach will offer insight into the questions addressed
here.

II. ANOMALY, TAN CONTACT, VIRIAL EXPANSION, AND
DERIVATION OF THE BETH-UHLENBECK FORMULA

A. Structural aspects

The partition function for a 2D dilute gas of nonrelativistic
spin-1/2 fermions is'

Z = e PN = f []‘[dw:dwa]esf, ©)

where

2
sE_/ df/d*[ (a ———M>¢U+C¢TW¢W¢WT:|

The Fermion fields have antiperiodicity f. The index o
is summed over 1,| values in the Euclidean action term.
Following [2], the dimensionless coupling constant ¢ will be
selected to incorporate the nonperturbative physics connected
with the existence of a bound state. For the attractive case, the
Lippmann-Schwinger equation gives the pole of the scattering
matrix 7" describing the bound-state energy E;, of the two-body
problem [18,19]:

T(p'.p.E)=V(',p)
d*k 1
+ | =— V(' o)————Tk,p,E).
/<2n>2 PR T e
3)

In momentum space, the Dirac § potential is V(p’,p) = c.
From the previous equation one gets

1 d%*k 1
T(E) ¢ QA2 E -k +ie
At the bound state, 1/T(—E;) = 0, Ej, > 0, such that

A—o0 dzl_é
Q) / —E, — k% +ie

E
— —In(22 + finite constant. 4)
T A2

The expression for % is singular, and we choose to regularize
it with a large cutoff A. This infinity will be used to cancel a
divergence that will arise in the calculation of the effects of the
interaction in the path integral of Eq. (2).

As is well known, the action Sz has a classical invariance
under the following scaling transformations [part of SO(2,1)
invariance]:

r—>f=k21,
X — X =M,

V(T %) = YHE,X) = A P(r,0). (5)

'In this paper, i = kz =m = 1.

Using dimensional analysis, the following equation was
derived in Ref. [16] (see Appendix A):
apP

26—-DP=-2) E,—, (6)
zk: KOE,

where £ = energy density = “Z%, A = 2D volume, P is the
pressure, and D the dimensionality of space (D = 2 in this
paper). The {E}} are a set of energy parameters that may
include bound-state energies as well as those formed from
dimensionful coupling constants in Sg [16]. In our case, there
is no dimensionful coupling constant (c is dimensionless) and
there is only one bound-state energy — Ej, E, > 0 [we will use
Ej, in Eq. (6) henceforth], such that

oP

26 —2P = 2FE,—— 7

v 3E," (7N

Now, LE = ;ch% and from Eq. OF —C = 471 5 ; therefore
¢t dP

26 —2P = — — 8

21 dc ®)

In the thermodynamic limit (A — 0o, 2 — —PA), BPA =

In Z; hence?
0P _ 1 9z _ Ar o
dc  BAZ dc At "

where

= —/de viviv v, (10)

which is Tan’s contact. Here, we used the fact that, in equi-
librium, (w; 1//1 ¥ ¥4) is T independent to derive Eq. (9). The
scaling anomaly [17,20] is therefore

2
A:ZP—ZS:X(I). an

In Appendix B we also prove this result using the ideas and
techniques of Ref. [10].

B. Virial expansion for the anomaly
From Egq. (9), Tan’s contact can be written as
1 2 i
4rBZ  Odc
Writing Q = Q™ + §Q, where 82 is the contribution from
interactions, Z can be expressed as

2 — P —psQ

() = - (12)

= Zfee z, (13)
Using (4), £ = %% = _4”Ebc_2ai5,, gives
2 0
= —4nBc P ZE,— 5%, 14
e mBc "3E, (14)
and hence
0
1) =—FE,—62. 15
(I) haEb (15)
2(9) = e D,
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The anomaly becomes

a (8Q
A= -2E,—\{— ). 16
"3E, ( 2 ) (16)
Defining the virial expansion by? [21],
sQ =) "7"5Q, a7
n>=2
- Zz”ébn, (17a)
n>2

where 7 = e is the fugacity.4 Equation (15) then becomes
(1) bX}t—wm (18)
and Eq. (16) becomes
iyt

where 8b, = 6b,/A.
The anomaly A can also be formally computed using

the knowledge of Q = Q¢ 4+ §Q 3 and the above virial
expansion,
=-— Zz T—8b
T[ﬂ n>2
2 > 9 sh (20)
= — Z 00y
B = a8
Using Egs. (16), (17), and (20) we get
1 9 0 (89,
— —0by = —Ep— , (21
B ap 0E,\ A

3We use two species of fermions (1, ).

4One should recall that when T is sufficiently large, the fermion gas
will behave as a classical gas. Therefore the chemical potential o will
become negative as it is for classical gases [22]. Consider the product
B in this limit, for 2D,

— _1 r
Bu=pB(—zm[F]]),
where p is the density of the system, and
F = g(mk/2mh?),

with k the Boltzmann constant and g the degeneracy of the particles,

g = 25 + 1, for particles of spin s. Therefore, in the limit 7 — oo

(notice that we also have p — 0) the product B — —oo. If we now

define the fugacity as z = e, we see that order zero in the fugacity,
lim z =0.

T—o00

SUse (H)=Q —T3Q/oT — ud/ou, P =—Q/A (infinite A
limit) to compute 2P — 2E. We also used the fact that all u depen-
dence in 82 is captured by the fugacity z; this is best seen from
the standard definition of the virial expansion, Z = tr (e #H=#V)) =
>y 2Nty (e7#"), where, by definition, all the p dependence is
therefore contained in z.

_ w+2u—(1/2)
TABLE I. w range. Here f = arctan [ /In (”Tsk)]_

® Disc{ln D™ N(w + i€,k)}
(—00,61/2 — 21 — Ep) 0
(612 — 21 — Ep,e0/2 — 241) _2ni
(ex/2 — 2,61 /2 — 21 + Ep) —2mi —2if
(x/2 =21 + Ep,00) —2if
or

b, = —nEb/ dp’ ,3 ((SQ ). 22)

Equation (22) is one of the main results in this work. Notice it
is defined up to an integration constant, more of which will be
said below. One then has to compute §€2, in order to find 6b,,.
The most efficient way to do this is by means of the Hubbard-
Stratonovich representation of the partition function,®

z= / 1d9"dP] tumG 4 fan fariie?y (23)
N

_ / [d¢p*de] oS @ 0.10) (24)
N

with

G—l

o — 5 —p ¢
¢ 0+ 5 +u
-1
G &)

C. Calculation of §b,: Beth-Uhlenbeck formula

‘We will illustrate this for the case n = 2, for which we need
to keep only up to the quadratic terms in Seg. At this point we
can follow Ref. [2] and write Z as in Eq. (13):

Z _ eiﬂgfmceiﬂag

R RO

62, 46823
=1z 1 +z A

SDisc{ln D™ (w + i€.k)} far(w)

+ 0(@h, (26)

where fgr(w) = (e#® — 1)7! is the Bose-Einstein distribution
function for the frequency w. To extract the z? contribution
from Eq. (26) we will use the zeroth-order (z°) version of

®N is the normalization constant obtained when path
integrating over ¢*,¢ in trading the quadratic fermionic
interaction for (at most) quadratic terms in the action. See
http://www.weizmann.ac.il/condmat/oreg/sites/condmat.oreg/files
/uploads/tutorial11.pdf.
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FIG. 1. Shift in the second virial coefficient 65, as a function
of the physical coupling In(X/a,p), where A = /278 is the thermal
wavelength.

D~ '(w + i€ k) given by’

1 tie+2u—%
D—'<w+ie,k>=4—ln(—” eren 2), @7
T Eb

with g, = %

We recognize several regions for the w integration as seen in
Table I. The discontinuities here been computed by studying
the branch cuts of the complex logarithmic function. Since
some of the subintegrals have Ej-dependent limits, we have
to be careful with taking the E;, derivatives. We obtain (see
Appendix C for details)

3 89, ePEr 2 [ e PR

e V. S Y S T
0E, A B wBJo Eh(n2+ln2(2—h))

Finally, using Eq. (22),

3b E /ﬂdﬂ’ﬂ’ 9 3
= —7T —_—
2 b dE, A
—BE,v?
:eﬁEb_[ood_yﬂ‘ (29)
o Yy m244In’y

This is the well-known Beth-Uhlenbeck formula for &b,
[rescaled version of Eq. (1)]. The overall integration constant in
(29)is chosen to be zero so thatin the limit §2, — 0 werecover
the free case. We now compare our procedure with that of [2].
They obtain b, by explicitly computing 52, and then reading
off the coefficient of the z> term. We do not have to obtain
an explicit expression for §€2,, which contains several terms
in integral form with complicated integrands. The authors of
[2] resort to first computing 06€2,/du in order to get a more

782 in (26) contains an infinite number of powers z" (n > 0), but
to obtain §Q2, we only retain the zeroth-order part of D' (w,k). To
find the complete contributions for higher z”,n > 3, one also has to
consider the contributions from the higher powers in the effective
action (see below).

manageable expression, and then perform an integral over u to
obtain §€2,. In our case, while the original integral expressions
in §€2; are complicated, ggl’ is easily calculated and given by
Eq. (28). We then perform a simple integration over § to get
8b,. We hope that similar simplifications will occur for higher
8b,(n = 3). One can plot the second virial coefficient as seen
in Fig. 1.3

This result agrees with those in the literature, in particular
with [21]. The corresponding term in the virial expansion

Eq. (18), 1 = 3,0, 2", is°

L _ E d0b _ ﬂ)em 1+2/°°dym
A~ Bm OE, B 0 72 4+4In%y |’

(30)

which agrees with Ref. [23], after the identification % =
2ﬂ+ﬂcz is made.

III. EXTENSION FOR 6b,,,n > 3
A. General framework

The emphasis in this paper is on the close connection
between 2D anomalies and the virial expansion for the Tan
contact. Equations (11)—(18) accomplish this, and in particular,
Eq. (29) reflects this relationship for éb,. As a bonus, this for-
mulation naturally suggests a procedure to compute §b,,,n > 3.
In this section we will give a sketch of the procedure and will
report on partial results for §53. While complete analytical and
numerical results will be reported elsewhere, we show here
that even though the complexity of the details increases, the
methodology itself is a direct extension of the calculations for
8by.

We begin by writing Eq. (24) as

Z = Ziee / e, (31

where S, is the quadratic piece of S. that gives the entire
contribution to §2,,'° namely,

5 = [ dxdy §* (DA (y — 0)P(x), (32)
with
1
AT =0 = =8 = )+ Gil = NGy — ), ()

and §S contains an infinite number of nonlocal terms with
even powers (2n) of the fields, n > 2.!" One can then use the
standard expansion of the exponential and the Wick theorem
to calculate Z [19], where the contraction between ¢*(y) and

¢(x)is

1
P*(MP(x) = Ay — x). (34)

$We are plotting 85, vs ln(ﬁ), ap = 2D scattering length, to
compare with Ref. [21]. Here In (BE,) = 21n (%) — In(27).
M Ez ’ ’ “'2
*The nth term is 5= 72-8b, = — % ["dp'p ;Tg(m,,).

B2 OE,
0Here we use “covariant notation,” i.e., x = (7,X), etc.

G, and G, were defined in (25).
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The first term in 8 S is

1 4
Sy = 3 / Edxi¢>*(X1)¢>(X2)¢*(X3)¢(X4)G1(X1 — X2)

xGo(xy — x3)G1(x3 — x4)Ga(x4 — x1). (35)

As for 6b,, it is convenient to work in momentum space.
Equation (26) now receives extra contributions coming also
from these higher terms in the effective action, as well as those
coming from higher orders from D~!(w,k). Collecting all the
similar terms, one then systematically finds §€23, 6€24, ...,
and one then uses Eq. (22) to find §b3,6b4, ..., . The actual
calculations will require explicit treatment of Matsubara sums
(just as for 8b,).

B. Sketch of the calculation of 3b;

While the calculational scheme for §b, described above is
systematic and straightforward, the actual details are not trivial.
We will present here the first details, including preliminary
numerical evaluations, of §b3. Beyond what will be discussed
below, we have produced further analytical expressions coming
from the Wick expansion term, Eq. (43), below. Extensive
numerical work is currently underway; full details will be
published elsewhere.

Let us start by writing the quadratic part of the grand
potential, Eq. (26), as

S K. /ko Disc{ln D~ (@-+i€.b)} fur(@)
_— = ——Disc{ln €, )
A "2 ). YY) any @THERJBEL®
(36)
which comes from the quadratic partition function
do*d
Zo= / %e*&. (37)

On the other hand, the general form for the partition function
is written as

do*d
Z = Zfree/ [ ¢N_¢] e_(SZ-HSS)

= Zfreezo(l - Zo_l / [d(li:lﬂesz(SS)

- Zfreeeil%ga 0 = (SQO + (SQ (38)

8bj is therefore expected to have contributions from both §€2
and §€2.

(i) From 89: Let us remember that the term D~! has an
expansion in the fugacity'? z,

D' = D7'(°)(1 - zD(°)B) 4+ 0(z%), (39)
where
42k e B2 1 p=Blk+a)/2

B = : , (40
Qr) w+ie— (8 + &5 +2p

2This comes when one expands the Fermi Dirac distribution as

o ,—BKE2 2 ,—Bk? 3y i _ 1
Jie = ze Ze N+ 0@ I fi =

05 == Ngampruetikorn et al. 6b30 ]

e Quadratic 6bs 0
T o-10f
—15F
-20 L - ! ! ‘
0.0 0.2 04 0.6 0.8 10
BEy
FIG. 2. Contribution from §€2 to §b3 compared with [21].
and hence

InD ' =In D% — zDE")B + 0(?). 41
(ii) From §2'3:

Z = zﬁeezo[l —z! / %e‘%ﬂ}

= ZfreeZO[l - <8S>0] = ZfreeZO[l - Cl. (42)

Using Eq. (35) and defining x;; = x; — x;, the quantity C is
given by

: 4
C= 5/EdxiGl(x12)G2(x23)G1(X34)G2(X41)

x (¢' (x1)P(x2)p! (x3)p(x4))o, (43)

where what is left to do is evaluate the expectation value by
using Wick’s theorem, taking into account the order in fugacity
for the product in the Gs. This is to be done in momentum space
[x = (w,,k)] such that

1
P*(MPp(x) = Ay — x) (44)

will introduce terms proportional to the Bose-Einstein distri-
bution and therefore both Fermi and Bose Matsubara sums
will appear. Using Eq. (41) in Eq. (36), one can show that the
contribution from 82 to the third virial coefficient is

00 d —4w E
5b2=4/ #[E,-(w)—i—ln (Mﬂ
o In(£2)" 42 3w

(45)

where E;(x) is the exponential integral [24].

(iii) Figure 2 shows Bbg vs BE,. The comparison with
the results by the authors of Ref. [21] who computed §b3
using other methods shows that it is indeed necessary to
compute the Wick term contribution to 8b3, the analytical
expressions of which we have. Once the numerical evaluation

BNote (A)g = 2, [ e dle—n4,
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is completed, we will compare with Ref. [21] in a forthcoming
publication [25].

IV. CONCLUSIONS AND COMMENTS

In this paper we have demonstrated an intimate connection
between 2D SO(2,1) scaling anomalies and the existence of
the Tan contact, namely, the contact is essentially the anomaly,
Eq. (11). This identification allowed us to derive an expression
for the shift of the nth virial coefficient, Eq. (22), in terms
of % where €2, is the corresponding part of &2 coming
from interactions, Eq. (17). In particular, we were able to
derive 8b,, which coincides with the Beth-Uhlenbeck formula,
validating in this fashion the original heuristic motivation for
this work, i.e., the connection between 2D SO(2,1) scaling
anomalies and the nonzero value of §b;. In the process, we
also derived the nth virial expansion for the Tan contact,
and a systematic and self-consistent procedure to calculate
8b,,n > 3 was developed through a formal expansion of the
path integral. Partial results for §b3 were discussed; the full
calculation will be reported elsewhere. We have also recently
discovered a mapping of the anomalous 2D two-body contact
interaction studied in this paper and the anomalous 1D three-
body contact interaction [26]. Applications of these ideas to
other systems with SO(2,1) symmetry in molecular, atomic,
condensed-matter, high-energy, and biological physics are
underway.
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APPENDIX A: DERIVATION OF EQ. (6)

Consider the set of microscopic parameters g; (cou-
pling constants from the Lagrangian). We can form en-
ergy parameters E; taking suitable powers of g;; con-
sider also possible bound states and energies of the
system FEj;, hence forming the set of energy parame-
ters Ey = {E;,Ep}. The grand thermodynamical poten-
tial Q = Q(B,u;,V,Er) for a homogeneous system in D-
spatial dimensions must have the form (2 is an extensive
variable)

QB,wi, V. Ex) = VB P2 f(z;, BEY), (A1)

where f(z;,B Ey) is adimensionless function of dimensionless
variables and z; = e#" is the fugacity corresponding to ;. It
is straightforward to show that [16]
02 D 092
— =|-1-—=]Q E,—.
: (-1-3) DI

Y. (A2)

zi,V

Using the thermodynamic identity E = 3(539) Ly =2+
ﬁ%'&yv’ we get (alsouse 2 = —PV)
o
2E —DPV =2(Q+B— Py
aﬂ zi,V
D IQ
(2-(1+3)a T i)
oP
=L Bgg Y A3
zk: “OEL (A3)
Therefore
apP
Xk: “9E (Ad)

APPENDIX B: HEURISTIC DERIVATION OF EQ. (11)

Consider the partition function for the scaled system 7 —
AT, X = A,

7 7= / [dytdyt]e STV

=JZ, (B1)
where
B VZ
Syt oyl = / df/dz)? [Iﬂfﬁ (&—7—/1)%
0
+ cw;wfwm] (B2)

and where J is the Jacobian of the transformation ¥, ¥} —

Aokt = A’u, and Z is

7 = tr(e*ﬂ(H(/\)*th))’ (B3)

where
Hm=/fﬂm+&wwmw> (B4)

In Eq. (B4) Hj is the free Hamiltonian and ¢ is the rescaled
coupling constant (under k — A~ 'k):

1 1 1

/Z\_AIA—>00 d2]§

c  (@nyP —E,— k2 +ie

1 /A%O 4’k 1

2] RE-Rtie co(BR)
(B5)

Under an infinitesimal dilation A = 1 + §A,
SZ|)\.=1 = Z)»=1+5)n -7
. 0z
=8J(N)Z|=1 + J(M)|r=1 o sx. (B6)
AJ =

It is straightforward to show that

B
azuzl==8Jthzlz-+zz[uﬂ<N>+:/ dt<zqax,
’ (B7)
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where the angle brackets ( ) denote the thermal average and
is Tan’s contact,

_ < / 25yl . (B8)
On the other hand, in the large-A (volume in 2D) limit,
Z = e P = PP, (B9)
and
Zh = T PA (B10)

and with A = 1 + §A, using thermodynamic identities [10],
after some algebra one obtains

8Z =2BZ[u(N)+ PA — (H)]S\. (B11)
Comparing Egs. (B7) and (B11) we get (€ = <T)
PA — (H) = Jacobian term + (/). (B12)

In Refs. [10-13,15,16] the Jacobian term was shown to be
proportional to Cz(l/f%kl/f ¢)2 where ¥y, is a constant back-
ground value (finite). In our case, ¢ = c(Ep/ A?) — 0 when
A — 00, and below, when we calculate the virial coefficients,
an expansion around v, = 0 will be performed. In either
case, the Jacobian term in this case is zero and the anomaly is
completely captured by the Tan contact [17]. The final result
is then

2
Anomaly = A =2P — 28 = Z([). (B13)

APPENDIX C: DERIVATION OF EQ. (28)

The definition for the complex logarithm is

TABLE II. Discontinuities and drops.

w Discontinuity (/) Drop
(00,6¢/2 =2 — Ep) 0 —
(ex/2 —2u — Ep,&1 /2 —21) —2mi +2mi
(ex/2 — 2,8 /2 — 2 + Ep) —2mi + h3 0
(ex/2 = 2u + Ep,00) h3 0

Let us analyze the different possibilities for w in h =

Disc(InD~!):
1 2u — &%
h=1n [4—ln (-—w+ ; 2 —ie)} (C3)
T b
w+2u —
—_— +l€ (C4)

1
—In|—1n
|:47T ( Eb

Therefore we recognize two regions for the variable w,
() o <% —2u, where

h= O <%—2/L EB,
- 2l77.'_]’l1,

€k

S —=2u—Ep <w<% —2u.
(Cs5)

(i) @ > 5 —2pu, where

h— —27i + h3y = hy, —2u<w< % —-2u+ Es,
| hs, a)>8—k—2u+EB,
(C6)
where
Vg
hy = —2iarctan | ———————~—— |. C7)
3 |:1n(w+2;t£;1/2)£k):|

In(x +iy) = Iny/x2 + y2 + iArg(y,x), (C1)  The results for the regions of @ are summarized in Table II.
Consider the following expression:
where 00 b(t) (1)
arctan(y/x), x>0 / h(x,t)dx = / hy(x,t)dx +/ ho(x,t)dx
arctan(y/x)+m, x<0,y>0 a() a() b
arctan — 7, <0,y<0 o
Arg(y,x) = iy (»/x) i:o i -0 (C2) +/ hs(x,t)dx, (C8)
—m/2, x=0,y<0 <
Undefined, x=y=0. where h = Disc(InD~'), x =w, and t = Ep. Following
Eq. (22), we need to take the derivative with respect to ¢:
|
I ( ) ab(1) de(?)
% h(x,t)dx = hia(®),1) + —[h1(b(t) 1) — ha(b(2),0] + —[hz( (2),1) — h3(c(2),1)]
)

_da(n) ab(1)
ot

b(t) 9 c® g
+/ —hl(x,t)dx—i-/ —hz(x,t)dx—i-/
a(t) 8t b(t) 8t

*© 9
—hs(x,t)dx
o) 0t

de(r) b0
(.0 + = Cidrop 1+ = 2 ibro p2]+/ i

O]

c(t) P 00 P
+/ —hz(x,t)dx—i—/ —h3(x,t)dx. (C9)
b(t) 3[ c(r) 8[

Here Drop; corresponds to the drop of the function #; when its argument x goes from x — § to a value x + § with § < 1. These

terms are recorded in Table II.
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We then obtain the following expression:

2 5@ 1 Pk (9 (e * o9
B {—<——2p, EB>(21n)fB(CU—Ek)+/ —fB(a))da)}

8EB 27Tl (27T)2 8EB 2 £ /2—2u BEB
1 d*k o d*k 2i
= 2_ 277)2 -z eﬂEB(Q'T”)e Peu2 / 277)2 fB(w)( ;:T_z) ek + 0(23)
i) (2m) e1/2—2p (2m) EB[,Tanz(#)]
dk eP@=)
= ——e —_ +0(°
/ o[ Gay Bt (2)) T O
Z oPE 77 e P 3
__ b2 f diF +0(), (C10)
B 0 Ep(r2+1n? (L))
where &, = ¢;/2 — 2 — E, and we have used the change of variables w = & — 2 + %k and the substitution @ — k2.
Thus, at second order in the fugacity we obtain
d 8Q 1 o b
o _ PED +2/ ARk ¢ — (C11)
9E, A 7P 0 Ep(r+m? (L))
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