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Experimental realizations of a variety of atomic binary Bose-Fermi mixtures have brought opportunities for
studying composite quantum systems with different spin statistics. The binary atomic mixtures can exhibit a
structural transition from a mixture into phase separation as the boson-fermion interaction increases. By using a
path-integral formalism to evaluate the grand partition function and the thermodynamic grand potential, we obtain
the effective potential of binary Bose-Fermi mixtures. Thermodynamic quantities in a broad range of temperatures
and interactions are also derived. The structural transition can be identified as a loop of the effective potential
curve, and the volume fraction of phase separation can be determined by the lever rule. For 6Li-7Li and 6Li-41K
mixtures, we present the phase diagrams of the mixtures in a box potential at zero and finite temperatures. Due to
the flexible densities of atomic gases, the construction of phase separation is more complicated when compared to
conventional liquid or solid mixtures where the individual densities are fixed. For harmonically trapped mixtures,
we use the local density approximation to map out the finite-temperature density profiles and present typical trap
structures, including the mixture, partially separated phases, and fully separated phases.
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I. INTRODUCTION

The study of binary atomic Bose-Fermi mixtures has a long
history. 3He-4He mixtures exhibit phase separation between
a 3He-rich phase and a 3He-poor phase at low temperatures
[1–3]. Pumping 3He across the separation is the main mech-
anism of dilution refrigerators [4]. After the observation of
Bose-Einstein condensation (BEC) in ultracold atoms (see
Refs. [5–7] for a review), further advancements have made
it possible to mix ultracold bosons and fermions with different
spin statistics. For example, binary atomic 6Li and 7Li mixtures
were achieved in 2001 [8,9]. Then, other binary atomic Bose-
Fermi mixtures were produced, including 40K and 87Rb [10],
6Li and 87Rb [11], 84Sr and 87Sr [12], 6Li and 41K [13,14], 6Li
and 133Cs [15], etc. A review on trapping and cooling atomic
Bose-Fermi mixtures can be found in Ref. [16]. Interestingly,
the different behavior of the specific heat of bosons and
fermions can limit sympathetic cooling of ultracold atoms [17].
Although the tunable atom-atom interactions can be either
attractive or repulsive [6,16], attractive bosons are unstable
against collapse at low temperatures [18] and may lead to
further complications. Hence, here we focus on binary atomic
Bose-Fermi mixtures with all repulsive interactions.

On the theoretical side, binary atomic Bose-Fermi mixtures
with repulsive interactions at zero temperature in a harmonic
trap have been studied [19,20], and the systems are shown
to exhibit a structural transition into phase separation if the
interspecies repulsion is too strong. The stability conditions
for uniform mixtures have been studied in three dimensions
[21] and in mixed dimensions [22]. Finite-temperature effects
have been included by using semiclassical approximations

*cchien5@ucmerced.edu

to find the density profiles [23,24]. There are proposals of
using atomic Bose-Fermi mixtures to simulate supersymmetry
[25,26] and quantum chromodynamics [27] systems. One
interesting property of the binary atomic Bose-Fermi mix-
ture is that at low temperatures the bosons form BEC in a
broken-symmetry phase while the fermions are in a normal,
symmetric phase. The BEC transition adds additional features
and challenges to the study of stable structures of Bose-Fermi
mixtures.

Here we implement a theoretical framework capable of
describing both fermions and bosons in a broad range of
temperatures and interactions to investigate the properties and
structural transitions of binary atomic Bose-Fermi mixtures.
The framework is based on the path-integral method with
the large-N expansion from quantum field theory, which has
been applied to bosons [28,29] and fermions [30], respectively.
For interacting bosons, the theoretical results compare favor-
ably with the experimental data of trapped Bose gases [31].
Moreover, the bosonic theory predicts a second-order BEC
transition, distinguishing the theory from others predicting
an artificial first-order transition [28]. For two-component
fermions with attractive interactions, the framework shows the
BCS-Leggett theory of the BCS-BEC crossover can be viewed
as a leading-order large-N expansion [30]. One important
feature of the large-N theory is its well-defined free energy,
the grand potential in thermodynamics [28,32], which will be
used to determine the thermodynamics and structures of binary
Bose-Fermi mixtures in box or harmonic potentials.

We remark that there have also been intense studies on
atomic Bose-Fermi superfluid-superfluid mixtures [13,33–35].
However, superfluids of fermions require two components to
form the Cooper pairs, and adding the bosons then requires
at least three components of atoms in the mixture. Here we
focus on binary boson-fermion mixtures, but the theoretical
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framework can be generalized to superfluid mixtures as well.
Since thermodynamics and structures are the main focuses in
the study of atomic mixtures, there are also relevant studies of
boson-boson mixtures [29,36] and fermion-fermion mixtures
[37–40]. However, the different spin-statistics make binary
Bose-Fermi mixtures particularly interesting and challenging.

The paper is organized as follows. Section II outlines the
theoretical path-integral framework of binary atomic Bose-
Fermi mixtures. It shows how to construct the thermodynamic
free energy and obtain thermodynamic quantities from the
free energy. Section III shows how to identify phase sep-
aration from the self-intersection of the free-energy curve.
Section IV presents the construction of phase separation of
the atomic mixtures in a box potential by using the lever
rule. The phase diagrams for selected parameters at zero and
finite temperatures are demonstrated. Section V shows the
local density approximation of atomic Bose-Fermi mixtures
in harmonic traps. Typical density profiles of the mixtures are
also presented. In this work we show the results of 6Li-7Li
and 6Li-41K mixtures, but the framework should be applicable
to other binary Bose-Fermi mixtures as well. Finally, Sec. VI
concludes our work. The Appendix summarizes the lever rule
for constructing phase-separation structures in equilibrium.

II. PATH INTEGRAL FORMALISM OF BOSON-FERMION
MIXTURES

The Hamiltonian of a binary Bose-Fermi mixture with
contact interactions is

H =
∫

d3x

[
−1

2

(
φ∗ h̄2∇2

2mB

φ + φ
h̄2∇2

2mB

φ∗
)

− 1

2

(
ψ∗ h̄2∇2

2mF

ψ + ψ
h̄2∇2

2mF

ψ∗
)

+ 1

2
λBB

(
φ∗φ

)2 + λBF ψ∗ψφ∗φ
]
. (1)

Here φ and ψ are the bosonic and fermionic fields, and
mB , mF , λBB , and λBF are the boson mass, fermion mass,
boson-boson coupling constant, and boson-fermion cou-
pling constant, respectively. The coupling constants can be
written as λBB = 4πh̄2aBB/mB and λBF = 2πh̄2aBF (mB +
mF )/mBmF , where aBB (aBF ) is the boson-boson (boson-
fermion) two-body s-wave scattering length. Since there is
only one component of fermions, there is no fermion-fermion
interactions because the Pauli exclusion principle suppresses
the s-wave scattering between identical fermions. In what
follows, we set h̄ = kB = 1.

Using the imaginary time formalism with τ = −it , the
corresponding Euclidean Lagrangian density can be found.
After including the chemical potentials μB and μF for the
bosons and fermions and the source term for the bosonic fields,
we obtain

LE = 1
2�†G−1

0B� − μBφ∗φ + 1
2λBB(φ∗φ)2 − J †�

+ 1
2�†G−1

0F � − μF ψ∗ψ + λBF ψ∗ψφ∗φ, (2)

where G−1
0B = diag(∂τ + ∇2

2mB
, − ∂τ + ∇2

2mB
), G−1

0F = diag

(∂τ + ∇2

2mF
, − ∂τ + ∇2

2mF
), � = (φ, φ∗)T, � = (ψ, ψ∗)T, and

J = (j, j ∗)T. Here J is the source coupled to � and the
superscript T denotes the transpose of a matrix. The grand
partition function is then

Z =
∫

D�D�e−SE , (3)

where SE = ∫
d4xELE is the Euclidean action and d4xE =

dτd3x. From now on we drop the subscript E.
Since the fermion contributions are quadratic, they can be

integrated out similar to the Peierls transition problem [41,42].
Afterwards, the action becomes an effective action for the
bosons:

SB[J,�] =
∫

d4x

(
1

2
�†G−1

0B� − μBφ∗φ + 1

2
λBB

(
φ∗φ

)2

− J †� − 1

2
tr ln G−1

F

)
, (4)

where G−1
F = G−1

F0 + [−μF + λBF φ∗φ]1̄ and 1̄ is the 2 × 2
identity matrix, and tr denotes the trace.

To handle the boson-boson interactions, we implement the
large-N expansion similar to Refs. [28,29,31]. The idea behind
the large-N expansion for bosons is to introduce N fictitious
copies of the original field and assume an internal SU(N )
symmetry. By scaling the interaction strength properly and
introducing a composite field representing φ∗φ, the effective
action and the partition function can be expanded accord-
ing to powers of 1/N . An approximation is then obtained
by truncating the theory at the leading order and setting
N = 1 in the final expression. There are at least two ways
of introducing the composite field. One can either use the
Hubbard-Stratonovic transformation when the interaction is
quartic [28] or use the Dirac delta functional [29]. For systems
with only up to quartic interaction terms, the two methods
are equivalent. Here we follow the latter and introduce 1 =
1
N

∫
DαDχe

∫
d4x

χ

λBB
(α−λBBφ∗φ) to the partition function. Here

N is a normalization constant and the χ integration runs
parallel to the imaginary axis [29]. Then, the action can be
decomposed into a collection of quadratic terms of the bosonic
field:

SB[�,J,�,χ,α] =
∫

d4x

(
1

2
�†G−1

B � − μBα

λBB

+ α2

2λBB

− J †� − χα

λBB

− tr ln G−1
F

)
, (5)

where G−1
B = G−1

B0 + χ 1̄ and G−1
F = G−1

F0 + [−μF +
(λBF /λBB)α]1̄. It is customary to introduce the sources
coupled to χ and α [29], so we include the terms −(sα + gχ ).

Now the action is quadratic in the bosonic field φ, so
we integrate out φ and obtain Z = ∫

DχDα exp[−Seff ]. The
effective action is

Seff [J,s,g] =
∫

d4x

(
1

2
tr G−1

B − μBα

λBB

+ α2

2λBB

− χα

λBB

− 1

2
J †GBJ − 1

2
tr ln G−1

F −sα−gχ

)
. (6)

However, Seff is a functional of the sources j , s, and g; therefore
it is inconvenient for deriving thermodynamic relations. It has
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been shown that [28,29] a Legendre transform of Seff gives the
grand potential (the subscript c denotes the expectation value)

� =
∫

d4x(J †�c + gχc + sαc) + Seff . (7)

Importantly, � is a functional of the expectations of φ, α,
and χ ; therefore it is suitable for studying thermodynamics.
Moreover, we have the relation δ�/δ�∗

c = ∫
G−1

B �c = J . For
static homogeneous fields, we define the effective potential
Veff = �/(Vβ), where V is the volume and β = (kBT )−1. In
equilibrium, the effective potential is the volume density of
the grand potential [32] in thermodynamics, and it is related to
the pressure by Veff = −p [29]. In the following we drop the
subscript c and focus on the expectation values.

To the leading order of 1/N , the effective potential is

Veff = χφ∗φ − μBα

λBB

+ α2

2λBB

− χα

λBB

+ 1

2
tr G−1

B − 1

2
tr G−1

F . (8)

Here we have set N = 1 to match the atomic gas. Af-
ter summing up the Matsubara frequencies [43], the last
two terms become 1

2 tr ln G−1
B = ∑

q[ωB

2 + 1
β

ln(1 − e−βωB )]

and 1
2 tr ln G−1

F = ∑
k[ωF

2 + 1
β

ln(1 + e−βωF )], where ωB =
q2

2mB
+ χ and ωF = k2

2mF
− μF + λBF

λBB
α. Since the contact po-

tential introduces infinities in the integrals, we follow the
standard renormalization procedure [28,29] and obtain the
renormalized effective potential

Veff = χφ∗φ−μBα

λBB

+ α2

2λBB

− χα

λBB

+
∑

q

1

β
ln(1 − e−βωB )

−
∑

k

1

β
ln(1 + e−βωF ). (9)

The equations of state are obtained by minimizing the
effective potential:

∂Veff

∂φ∗ = χφ = 0, (10)

∂Veff

∂α
= − μB

λBB

+ α

λBB

− χ

λBB

+ λBF

λBB

∑
k

nB(ωF )

= 0, (11)

∂Veff

∂χ
= φ∗φ − α

λBB

+
∑

q

nB(ωB) = 0. (12)

There are additional relations from thermodynamics:

−∂Veff

∂μB

= α

λBB

= ρB, (13)

−∂Veff

∂μF

=
∑

k

nF (ωF ) = ρF . (14)

Here nB (nF ) is the Bose (Fermi) distribution function and ρB

(ρF ) is the boson (fermion) density. By solving the equations of
state and finding the corresponding Veff when the parameters
are varied, we show how to map out the stability of binary
atomic Bose-Fermi mixtures in the next section.
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FIG. 1. The pressure p of a uniform, equal-mass binary Bose-
Fermi mixture as a function of the boson chemical potential μB . We
fix aBBk0 = 0.1, aBF k0 = 0.5, and μF /E0 = 20. The corresponding
temperature is labeled next to each curve. Here k3

0 = (NF + NB )/V ,
E0 = h̄2k2

0/(2mF ) and kBT0 = E0. At high temperatures (for ex-
ample, T/T0 = 20), p increases monotonically with μB . At low
temperatures, the curve exhibits a loop. The point where the curve
intersects itself is where phase separation occurs, as demonstrated
by the black dot on the T/T0 = 0.01 curve. After following the
Maxwell construction, the system moves from one phase to the
phase-separation point and then to another phase, as indicated by
the arrows shown on the T/T0 = 0.01 curve without traversing the
loop. The two vertices in the loop (marked by the black squares on
the T/T0 = 0.01 curve) correspond to the spinodal points. Here the
boson and fermion masses are set to the mass of an 6Li atom.

We remark that here we only introduce an auxiliary field
representing the normal density in the large-N expansion. By
introducing two auxiliary fields representing the normal and
anomalous densities, the theory is called the leading-order
auxiliary field (LOAF) theory [28]. The LOAF theory naturally
recovers the Bogoliubov theory at low temperatures when the
interaction is weak, but it is not fully compatible with the local
density approximation in the strongly interacting regime when
dealing with harmonically trapped Bose gases [31].

III. PHASE SEPARATION AND STRUCTURAL
TRANSITION

By examining the kinetic and interaction energies of the
bosons and fermions, it has been argued [21] there is a
structural transition. Across the transition, a miscible state
will transform into phase separation, where two phases with
different ratios of fermions and bosons coexist. The phase
separation has been observed in recent experiments [14]. After
obtaining the effective potential, we elucidate the thermody-
namics behind the structural transition. First, we remark that
Eq. (9) is the free energy of a miscible mixture. However,
it will show instabilities where phase separation should be
constructed in the parameter space.

Figure 1 shows p = −Veff of a uniform, equal-mass binary
Bose-Fermi mixture as a function of μB for different values
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of T with fixed aBB , aBF , and μF . Here we set the boson and
fermion masses to the mass of an 6Li atom, and the solution
to the equations of state has been found numerically. The
units k0 and E0 are fixed by external scales from the trapping
potentials. We specify those units in the discussions of the box
and harmonic potentials. At high temperatures the p curve
is smooth and monotonic. However, at low temperatures the
curve can form a loop and intersect itself. Such a loop structure
in the free energy is a typical example of a first-order transition
in thermodynamics [32,44,45].

Although the free energy (in this case the effective potential)
exhibits a loop, the equilibrium system does not traverse the
loop. Instead, following the Maxwell construction [32,44,45]
the system transforms from one phase to another by going
through a phase-coexistence (phase-separation) point indi-
cated by where the free-energy curve intersects itself. The
ratios between the bosons and fermions in the two phases
at the phase-separation point can also be inferred by the two
intersecting lines at the intersection. Therefore, by analyzing
the free-energy curve and performing the Maxwell construc-
tion if a loop is found, the stable structure at each point in
the parameter space can be mapped out in a systematic way.
We mention that although the interior of the free-energy loop
cannot be traversed by a real system in equilibrium, it offers
additional information. For instance, the vertices of the loop
are the spinodal points separating different types of dynamics
when the system is driven into the phase-separation regime
[46].

One also observes that at the intersecting point of the
free-energy curve, the two coexisting phases have the same
pressure and chemical potentials of the two species. Those
conditions guarantee mechanical and chemical equilibrium
[21,47]. However, the densities usually differ in the two phases,
which is a common feature of phase separation. If the total
particle numbers of the bosons and fermions in the initial
unstable mixture are known instead of the chemical potentials,
one can construct the stable structures by finding the correct
volume ratio according to the level rule, which balances the
extensive variables. (See the Appendix for a summary of the
lever rule.) In the following sections, we show how to map out
the structures and phase diagrams by examining the behavior
of Veff . We discuss two types of confining potentials, the box
[48–50] and harmonic [6,51] potentials, commonly used in
cold-atom experiments.

IV. BOX POTENTIAL

The realization of optical box potentials for trapping cold
atoms [48–50] allows a direct comparison between theories
derived for uniform gases and experiments. For a binary Bose-
Fermi mixture in a box potential, the mixture will separate
into a boson-rich phase and a fermion-rich phase if the boson-
fermion interaction is strong and the temperature is low. In
such a system, the fixed variables are the volume V and the
particle numbers NB and NF . Here we choose m0 as the mass
of 6Li. The box volume V0 in Ref. [48] is chosen as the unit
of volume, and the relation V0 = k−3

0 gives the length unit
1/k0 ≈ 44.1 μm. The energy and temperature units for the box
potential are E0 = h̄2k2

0/(2m0) and T0 = E0/kB , respectively.
Given the temperature T and interaction strengths, the stable

equilibrium corresponds to the minimum of the Helmholtz free
energy A = VeffV + ∑

i=B,F μiNi . Importantly, the phase-
separation point is independent of which free energy one uses
to locate it as long as the Legendre transform is implemented
correctly.

To find out the volume ratio of the atomic mixture in phase
separation, we use the lever rule [32,44], which determines
the balance of the extensive variables. An important differ-
ence between gaseous mixtures and liquid or solid mixtures
drastically complicates how to apply the lever rule for phase
separation. In liquid or solid mixtures, the density of each
constituent is constant. For example, the density of water
and the density of phenol in a phase-separation structure are
indistinguishable from their densities in a miscible mixture
[52]. Assuming there are two species 1 and 2, if the total
particle fraction x = N1/(N1 + N2) is specified and the two
species are incompressible, the lever rule of the Helmholtz free
energy is identical to that of the Gibbs free energy for liquid
or solid mixtures [44]. Hence, the fraction in each separated
phase can be determined straightforwardly. However, atomic
gases are compressible and their densities can be flexible. As
a consequence, it is not enough to search for the minimum of
A by varying x only. Instead, one has to apply the lever rule
to the Helmholtz free energy by considering possible changes
of x as well as Vα/Vβ , where Vα and Vβ denote the volumes
of the two separated phases. The minimization problem in a
two-dimensional parameter space is much more complicated
than the conventional minimization of liquid or solid mixtures.

Nevertheless, the complication can be circumvented by
using the effective potential and locating the loop to map out the
phases intersected at the phase-coexistence point, as illustrated
in Fig. 1. To match the fixed volume and total particle numbers,
we construct the phase boundary by tuning the extensive
variables so that their sums from the separated phases match the
original mixture according to the lever rule (see the Appendix
for details). Specifically, the initial condition of the system
has fixed numbers of bosons NBo and fermions NFo, and the
total volume Vo is also fixed. Here the subscript o denotes the
quantities in the initial (unstable) mixture. The conservation of
extensive variables impose the following constraints, known as
the lever rules.∑

i

ρBivi = ρBo,
∑

i

ρF ivi = ρFo,
∑

i

vi = 1. (15)

Here the subscript i denotes the quantities in the ith phase
when the system is in phase separation, and vi = Vi/Vo is the
volume fraction of the ith phase.

Figure 2(a) shows the zero-temperature phase diagram of
an equal-mass Bose-Fermi mixture with selected values of
aBB and aBF , respectively. The phase-separation regime has
a skewed dome-shape boundary. If an initially mixed state
is prepared inside the phase-separation regime, it will reach
equilibrium by separating into two phases with different ratios
of the bosons and fermions. We illustrate this by showing
two initial conditions and their corresponding phase-separation
compositions. It has been argued that when phase separation
occurs at zero temperature, one of the phases will be of
only fermions with no bosons, but the other phase does not
necessarily have pure bosons only [21,53]. Our result confirms
this observation. As one can see in Fig. 2(a), the separation
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FIG. 2. (a) Zero-temperature phase diagram of an equal-mass
binary Bose-Fermi mixture. Here 1/k0 is fixed by an external length
scale, λBBk3

0/E0/(λBF k3
0/E0)2 = 1/4π , and k0aBF = 0.5. NB (NF )

is the total number of bosons (fermions). The solid lines are the phase
boundary of phase separation. Above the boundary the system is a
stable mixture and below it phase separation occurs. The dotted line
is the spinodal line. Two examples of phase separation are shown
by the circles and arrows. The circles show the initial (unstable)
mixture compositions, and the systems will reach equilibrium by
separating into the solid dots that are collinear with the circles.
The concentrations of the separated phases can be found from the
solid dots. (b) Fraction of bosons in the boson-rich phase of a
system in the phase-separation regime at zero temperature with
k3

0V/(NB + NF ) = 1. As shown in panel (a), the other phase is a
pure-fermion phase. The fraction of bosons in the boson-rich phase
decreases as the boson-boson interaction increases. For the param-
eters selected here, the mixture is stable against phase separation
if (λBBk3

0/E0)/(λBF k3
0/E0)2

> 0.099. Here the boson and fermion
masses are set to the mass of an 6Li atom.

can be either into a boson-only phase and a fermion-only
phase near the bottom of the phase-separation regime or into
a fermion-only phase and a partially mixed phase in the upper
regime of phase separation.

Our method of using the loop of the free energy to locate
and construct phase separation has the advantage that the
fraction of bosons in the boson-rich phase can be evaluated
as the interactions are varied. Figure 2(b) shows the boson
fraction for an equal-mass Bose-Fermi mixture in the phase-
separation regime at zero temperature. We recall that the other
phase is a fermion-only phase. One can see that when the
boson-boson interaction is weak (strong) compared to the
boson-fermion interaction, the boson fraction approaches 1 (is
below 1). When the boson-boson interaction is too strong, the

mixture remains stable and no phase separation is observed.
Incidentally, 3He-4He liquid mixtures have been shown to
separate into a fermion-only phase and a partially mixed phase
at low temperatures [54,55].

Our theoretical framework naturally applies to binary Bose-
Fermi mixtures in a box potential at finite temperatures.
Figure 3 (a) shows the finite-temperature phase diagram of
an equal-mass binary Bose-Fermi mixture in a box potential.
Figures 3(b) and 3(c) show the phase diagrams of 6Li-7Li
and 6Li-41K mixtures, respectively. The phase diagrams are
specific to a selected total boson fraction because we construct
the phase-separation boundary by locating the self-intersecting
point of the effective potential and then tuning the extensive
variables to match the selected total boson fraction according
to the lever rule. We select the boson ratios so that the different
mixtures with different mass ratios shown in Fig. 3 all start
to phase separate around T/T0 = 100. If a different boson
ratio is used, the dome-shape boundary will only change
quantitatively.

For atomic mixtures, the individual phases in the phase-
separation structure do not necessarily have the same densities
as the initial unstable mixture because the gaseous phases
adjust their densities to reach the lowest total free energy.
Thus, the full phase diagram would require a three-dimensional
(3D) plot. However, if the pressure is fixed, or if the change
in the densities are negligible like conventional liquid or solid
mixtures, a 2D plot would be sufficient. Here, we do not fix the
pressure because it is unphysical to fix both the pressure and
the volume of a compressible gas. Therefore, Fig. 3 does not
explicitly specify the densities of the separated phases. If one
needs the density of each phase, a full 3D plot with the overall
density as the third axis can be constructed. Nevertheless, Fig. 3
is a 2D projection of the full plot showing the correct boson
fraction in each phase. Importantly, the construction guarantees
the system in both mechanical and diffusive equilibrium.

The BEC transition temperature is also presented for each
case in Fig. 3. The leading-order large-N theory of a uniform
Bose gas leads to the same BEC transition temperature as the
noninteracting Bose gas [29]. Here the BEC transition line is
obtain by using the boson density in the corresponding phase
if the system is in the phase-separation regime. Below (above)
the transition temperature, the phase has (has no) BEC of the
bosons. For a homogeneous Bose gas,

Tc

T0
=

(
ρB/k3

0

ζ (3/2)

)2/3
4π

mB/m0
, (16)

where ζ (y) is the Riemann zeta function. The Fermi temper-
ature of single-component, homogeneous and noninteracting
fermions is

TF

T0
= 1

mF /m0

(
6π2ρF /k3

0

)2/3
. (17)

The Fermi temperature of Fig. 3 is given by a noninteracting
Fermi gas with the same fermion mass and density.

As one can see in Fig. 3, only one branch of the phase-
separation boundary can have BEC of the bosons. We found
this to be a generic feature from our theory. When the mass
difference between the fermions and the bosons is large, such as
the case shown in Fig. 3(c), BEC can only be found at relatively
low temperatures on one of the phase-separation boundaries.
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FIG. 3. (a) Phase diagram of an equal-mass Bose-Fermi mixture
in a box potential with a fixed volume V and total boson fraction
NB/(NB + NF ) = 0.39 as indicated by the vertical black dashed line.
The black lines forming a dome is the phase-separation boundary
showing the boson fractions in the two separated phases. Here
V k3

0/(NB + NF ) = 0.067, aBBk0 = aBF k0 = 0.1, and TF /T0 = 31.
For the parameters chosen here, the critical temperature of phase
separation is Tc/T0 = 100. Below Tc (above Tc) phase separation
(uniform mixture) is stable. The blue dashed curves are the spinodal
lines indicating the two vertices in the loop of the free energy.
The red dotted curve is the BEC transition line, under which BEC
of bosons can be found. Here the boson and fermion masses are
set to the mass of an 6Li atom. (b) Phase diagram of a 6Li and
7Li mixture with a fixed volume and NB/(NB + NF ) = 0.45. Here
k3

0V/(NB + NF ) = 0.0061, k0aBB = k0aBF = 0.1, TF /T0 = 31, and
Tc/T0 = 100. (c) Phase diagram of a 6Li and 41K mixture with a
fixed volume and NB/(NB + NF ) = 0.70. Here k3

0V/(NB + NF ) =
0.0036, k0aBB = k0aBF = 0.1, TF /T0 = 290, and Tc/T0 = 100.

This is because the BEC transition temperature decreases with
the boson mass according to Eq. (16). Therefore, the mass
ratio affects whether BEC can survive across the structural
transition.

We also show the spinodal lines inside the phase-separation
regime by locating the vertices of the loop of the free energy.
The spinodal lines imply divergence of the density susceptibil-
ities (∂ρi/∂μj )

T ,μk �=j
, where i,j,k = B,F , if one assumes the

system remains miscible. In equilibrium, however, the spinodal
lines are preempted by phase separation.

V. HARMONIC POTENTIAL

For binary atomic Bose-Fermi mixtures in harmonic traps,
we use the local density approximation (LDA) [5,6] to approx-
imate the inhomogeneous density profiles. The assumption be-
hind the LDA is that the trap potential varies slowly so that each
point in the trap can be treated as a homogeneous system with
an effective local chemical potential for each species. After
obtaining the physical quantities at different points, the overall
physical quantities can be found by an integration over the
trap. The leading-order large-N theory of interacting bosons
has been shown to be compatible with the LDA [31]. Here,
we assume the harmonic traps for the bosons and fermions
are isotropic with trap frequencies ωoB and ωoF , respectively.
The trap centers are assumed to be at the same location. For
harmonically trapped Bose-Fermi mixtures, we still choose
the mass unit m0 as the mass of 6Li. The length unit is given
by the fermion harmonic length, aHF = √

h̄/mF ωoF ≡ 1/k0.
We take a typical value of ωoF = 2π × 140 Hz from Ref. [56],
and it translates to 1/k0 = 3.45 μm. Moreover, we choose the
boson harmonic length and fermion harmonic length equal
to each other, aHB = aHF , where aHB = √

h̄/mBωoB . The
energy unit is given by E0 = 1

2 h̄ωoF , which also determines
the temperature unit T0 = E0/kB .

The local chemical potentials in the LDA are given by
μB(r) = μB(r = 0) − 1

2mBω2
oBr2 and μF (r) = μF (r = 0) −

1
2mF ω2

oF r2. Using them to solve the equations of state at given
T , aBB , and aBF , we obtain the densities ρB,F (r) at radius r

in the traps. The boson condensate density ρBEC(r) can also be
found. The total particle numbers can be obtained by using

NB,F =
∫

d3rρB,F (r). (18)

Moreover, the BEC transition temperature of a har-
monically trapped noninteracting Bose gas [57] is Tc

T0
=

ζ (3)−1/3 h̄ωoBN
1/3
B /kB

E0/kB
= 2[NB/ζ (3)]1/3

(aHBk0)2 . The Fermi temperature of a
harmonically trapped noninteracting single-component Fermi

gas [16] is TF

T0
= 61/3 h̄ωoF N

1/3
F /kB

E0/kB
= 2(6NF )1/3

(aHF k0)2 . Here NB and NF

are the total boson and fermion numbers, respectively.
In the following we present the results of 6Li-7Li and

6Li-41K mixtures in harmonic traps. We emphasize that our
method is general for other binary atomic Bose-Fermi mix-
tures, too. Figsures 4(a) and 5(a) show the phase-separation
boundary in the μB-μF parameter space with given values of
aBB , aBF , and T . The phase-separation boundary was con-
structed according to Fig. 1, and it shows where the structural
transition occurs. Since small chemical potentials imply dilute
densities, there is no phase separation in the regime with small
chemical potentials. Therefore, a critical point terminates the
lower end of the phase-separation boundary.

The effective local chemical potentials of bosons and
fermions in the LDA follow the r2 decay. Thus, the values
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FIG. 4. Harmonically trapped atomic 6Li-7Li mixtures. (a) Phase-
separation boundary (thick line) and selected cases of the effective
local chemical potentials (thin lines) according to the LDA. On
the left (right) of the phase boundary is a fermion-rich (boson-
rich) phase. The density profiles of the three lines labeled by (b),
(c), and (d) are shown below. Here T/T0 = 100, aBBk0 = 0.1, and
aBF k0 = 0.2 for all panels. The solid black, solid red, and dashed
blue lines are the boson density, the fermion density, and the boson
condensate density, respectively. (b) The number of bosons (fermions)
is NB = 1.15 × 105 (NF = 2.19 × 105). The densities of bosons and
fermions both decrease monotonically from the trap center. (c) NB =
2.31 × 105 and NF = 4.33 × 105. The fermions are pushed away
from the trap center, but the local chemical potentials have not crossed
the phase boundary, and the density profiles are smooth. (d) NB =
2.95 × 105 and NF = 9.28 × 105. The local chemical potentials cross
the phase boundary once, and the boson-rich region discontinuously
changes to the fermion-rich region. (e) Here, NB = 2.45 × 107 and
NF = 2.02 × 107. The density profiles have a boson-rich region
sandwiched between two fermion-rich regions because the local
chemical potentials cross the phase boundary twice. The inset shows
the phase boundary (thick line) and the effective chemical potentials
(thin line) of panel (e). Here, u = 0.65μB/E0 − 0.76μF /E0 and
v = 0.76μB/E0 + 0.65μF /E0.
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FIG. 5. Harmonically trapped atomic mixtures of 6Li and 41K.
(a) Phase-separation boundary (thick line) and selected cases of the
effective local chemical potentials (thin lines). The curves labeled
(b), (c), and (d) show the chemical potentials corresponding to the
density profiles shown in panels (b), (c), and (d). The convention
follows Fig. 4. Here T/T0 = 100 and aBBk0 = aBF k0 = 0.1. (b)
NB = 2.09 × 103 and NF = 4.39 × 104. The densities of bosons
and fermions both decrease monotonically from the trap center. (c)
NB = 4.21 × 104 and NF = 1.16 × 106. The fermions are partially
pushed away from the trap center, but the chemical potentials have
not crossed the phase-separation boundary. (d) NB = 7.00 × 106

and NF = 2.07 × 107. The effective local chemical potentials now
cross the phase-separation boundary once, and the boson-rich region
discontinuously changes to the fermion-rich region.

of μB(r) and μF (r) of a trapped mixture represent a straight
line in the μB-μF parameter space with its upper-right end
being the values at the trap center. Therefore, one can generate
various trap density profiles by choosing different lines in the
μB-μF space. For the two types of Bose-Fermi mixtures shown
in Figs. 4 and 5, there are three typical cases. The first one is
when the μB(r)-μF (r) line is below the critical point of the
phase-separation boundary, which corresponds to the case with
weak boson-fermion interactions or low densities. In this case,
the two species both show monotonically decreasing density
profiles. The second one is when the μB(r)-μF (r) line is close
to the phase-separation boundary but there is no intersection.
In this case, the fermions are pushed away from the trap center
and exhibit a nonmonotonic trap profile. However, there is
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no discontinuity in the density profiles. Thus, the boson-rich
region and the fermion-rich region are smoothly connected.
The third case is when the μB(r)-μF (r) line intersects the
phase-separation boundary. Then, a genuine phase-separation
structure emerges, where discontinuities of the density profiles
can be observed.

The density profiles of the three typical cases are illustrated
in Figs. 4(b)-4(d) and 5(b)-5(d) for 6Li-7Li and 6Li-41K
mixtures, respectively. In those plots, we fixed the temperature
and interaction strengths but tune the total particle numbers.
One can generate similar structures by tuning the temperature
or interactions as well. We also notice it is possible the
μB(r)-μF (r) line can intersect the phase-separation boundary
more than once. When that happens, the density profiles will
exhibit sandwich structures where multiple boson-rich (or
fermion-rich) regions can be found. We remark that sand-
wich structures of binary Bose-Fermi mixtures have been
discussed in Ref. [19]. Here, we use a unified theoretical
framework to show how various structures can emerge in a
broader range of temperature and interactions accessible in
experiments.

Figure 4(e) illustrates a possible sandwich structure with
two fermion-rich regions in a harmonically trapped 6Li-7Li
mixture. For the 6Li-41K mixture, it will require much
larger local chemical potentials at the trap center to generate
sandwich structures because of the larger mass difference.
Since the mass affects both the kinetic energy and trap
potential (via the change of the harmonic length aHB or
aHF ), the structures of harmonically trapped Bose-Fermi
mixtures with different mass ratios may differ from each other
even when the other parameters are the same. Nevertheless,
our framework allows a consistent description and offers
a fair comparison of different types of binary Bose-Fermi
mixtures.

VI. CONCLUSION

A path-integral framework for describing binary atomic
Bose-Fermi mixtures has been presented here. By integrating
out the fermions in the effective action and using the large-N
expansion to find the leading-order effective potential of the
composite system, the nature of the mixture–phase-separation
transition can be visualized clearly as the free-energy curve
intersects itself. For atomic gases in box potentials, the con-
struction of phase separation is complicated by the compress-
ibility of atomic gases, which differentiate this work from
conventional liquid or solid mixtures. The phase diagrams
presented here guarantee mechanical and diffusive equilibrium
because the lever rule has been implemented. By using the
LDA, we show typical density profiles of harmonically trapped
atomic mixtures. The framework is versatile and applicable to
other binary atomic mixtures.

However, the theory has not included the higher-order
effective fermion-fermion interactions due to the fermion-
boson interactions, and the leading-order large-N theory un-
derestimates the BEC transition temperature [28,31]. The more
sophisticated LOAF theory offers a better estimation, but its
integration with the LDA in the strongly interacting regime
remains a challenge. Therefore, while the theory presented
here offers an overview of binary atomic Bose-Fermi mixtures

and captures the main features, future investigations with more
complicated treatments will further improve the theoretical
framework.
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APPENDIX: LEVER RULE

Here we explain the lever rule and how it can be applied to
binary gaseous mixtures. Our method generalizes the conven-
tional one [32,47] applicable to liquid or solid mixtures with
fixed densities. We label the two species of a binary mixture by
1 and 2. We use the Gibbs free energy to illustrate the lever rule
because of its simple relation to the chemical potential [32],
but the derivation applies to any thermodynamic free energy
by using the suitable Legendre transform.

We first divide the Gibbs free energy by the total particle
number to obtain g ≡ G/N , where N = N1 + N2. Since G =
N1μ1 + N2μ2 [32], g becomes

g = wμ1 + (1 − w)μ2, (A1)

where w ≡ N1/N . If g has a negative curvature, i.e.,
∂w∂w(g)T ,p,N < 0, the system is unstable against phase sep-
aration. If the system starts with an initial mixture ratio
wo and phase separates into the α and β phases, the lever
rule guarantees the sum of the extensive variables from the
separated phases equal to the extensive variables in the initial
mixture. For the present case, the lever rule is

Xwα + (1 − X)wβ = wo ⇒ X = wo − wβ

wα − wβ

, (A2)

where X is the number of particles (including both species 1
and 2) in the α phase divided by the total particle number, and
wα (wβ) is the ratio between the number of species 1 in the α

(β) phase and the total number of particles in phase α (β). In
the phase-separation regime, the total free energy becomes

g = Xg(wα) + (1 − X)g(wβ). (A3)

The second property of the lever rule is that it guarantees
the intensive variables take the same values in the separated
phases. This can be demonstrated as follows. In equilibrium,
the free energy reaches a local minimum. Thus, its derivatives
should vanish:

∂wα
g = [g(wβ) − g(wα)]

wo − wβ

(wα − wβ)2

+ wo − wβ

wα − wβ

∂wα
g(wα) = 0, (A4)

where the partial derivatives assume the variables p, T , and
N are fixed. After simplifying the expression, the equation
becomes ∂wα

g(wα) = g(wα)−g(wβ )
wα−wβ

. A similar derivation shows
the same expression for ∂wβ

g(wβ).
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Hence, we obtain

∂wα
g(wα) = ∂wβ

g(wβ) = g(wα) − g(wβ)

wα − wβ

⇔ g(wα) − wα∂wα
g(wα) = g(wβ) − wβ∂wβ

g(wβ). (A5)

Next, we apply Eq. (A1) to phase α and phase β sepa-
rately: g(ωα,β ) = wα,βμ1(wα,β) + (1 − wα,β)μ2(wα,β). Then,
Eq. (A5) leads to

μ2(wα) = μ2(wβ). (A6)

Likewise, one can show that μ1(wα) = μ1(wβ). Thus, diffusive
equilibrium between phases α and β is established. A similar
derivation for the pressure will lead to mechanical equilibrium
of each species between the two phases.

In this work, we use the grand potential because the
chemical potentials μB,F are parts of its arguments [29,32].
The effective potential Veff is the volume density of the
grand potential. When the Veff curve intersects itself as the

chemical potentials vary, the intersection has two solutions
of the extensive variable with the same values of the system
parameters. The two solutions correspond to the two branches
of the phase-separation boundary. The lever rule then allows us
to find the correct ratio of the extensive variable in each phase.
The lever rule used here is∑

j=α,β

Xj∂Iij
Veff = ηi

o, (A7)

where Xα = X and Xβ = 1 − X, Iij denotes the ith intensive
variable in the j th phase, and ηi

o denotes the volume density
of the ith extensive variable in the original mixture. Here, the
index i covers only the extensive variables that need to be fixed.
For example, the arguments of the grand potential only have
one extensive variable V [32]. Thus, we use Iij = −μBj , −
μFj and ηi

o = ρBo,ρFo to obtain the lever rules (15) for binary
atomic Bose-Fermi mixtures in a box potential. Here μBj (μFj )
is the boson (fermion) chemical potential in the j th phase and
ρBo (ρFo) is the boson (fermion) density in the original unstable
mixture.
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