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Quantum and thermal fluctuations in two-component Bose gases
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We study the effects of quantum and thermal fluctuations on Bose-Bose mixtures at finite temperature employing
the time-dependent Hartree-Fock-Bogoliubov (TDHFB) theory. The theory governs self-consistently the motion
of the condensates, the noncondensates, and of the anomalous components on an equal footing. The finite
temperature criterion for the phase separation is established. We numerically analyze the temperature dependence
of different densities for both miscible and immiscible mixtures. We show that the degree of the overlap between
the two condensates and the thermal clouds is lowered and the relative motion of the centers of mass of the
condensed and thermal components is strongly damped due to the presence of the pair anomalous fluctuations.
Our results are compared with previous theoretical and experimental findings. On the other hand, starting from our
TDHFB equations, we develop a random-phase theory for the elementary excitations in a homogeneous mixture.
We find that the normal and anomalous fluctuations may lead to enhance the excitations and the thermodynamics
of the system.
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I. INTRODUCTION

Recently, mixed ultracold quantum gases including Bose-
Bose, Fermi-Fermi, Bose-Fermi, and Bose-impurity mixtures
have attracted a great deal of interest due to their fascinating
properties. Precision measurements and novel phase transi-
tions are among a few prominent examples provided by such
mixtures.

Experimentally, binary states can be realized by using
different hyperfine levels 87Rb [1–5], different isotopes of
the same species 87Rb-85Rb [6], 168Yb-174Yb [7], different
atomic species 87Rb-41K [8], 87Rb-133Cs [9,10], 87Rb-84Sr,
and 87Rb-88Sr [11], 87Rb-39K [12], and 87Rb-23Na [13], and
with different statistics 6Li-7Li [14]. These achievements
allow one to study collective modes [3,14], phase separation
between the constituents [6,9,12,13,15,16], the observation of
heteronuclear Effimov resonances [17], and the production of
polar molecules [18].

Theoretical investigations of degenerate binary Bose mix-
tures have mainly addressed the determination of the ground
state and the density profiles of trapped systems [19–21], the
stability, and the phase separation [21–27]. The dynamics of the
center-of-mass oscillation (dipole modes) of two-component
Bose-Einstein condensates (BECs) was studied analytically
and numerically by Sinatra et al. [28], whereas the excitations
of quadrupole and scissors modes have been explored by
Kasamatsu et al. [29]. Furthermore, the properties of homo-
geneous double condensate systems were analyzed in [30–34]
using the Bogoliubov theory.

At finite temperature, uniform binary Bose gases have been
worked out using the Bogoliubov approach [35], Hartree-Fock
theory [36], and a large-N approximation [37]. The phase
separation, the dynamics, and the thermalization mechanisms
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of trapped binary mixtures at finite temperatures have been also
examined utilizing the local-density approximation [38], HFB-
Popov theory [39], and the Zaremba-Nikuni-Griffin (ZNG)
model [40–42]. Very recently, effects of quantum and thermal
fluctuations in a two-component Bose gas with Raman induced
spin-orbit coupling have been analyzed using the HFB-Popov
theory [43].

Although the above theories received great success in de-
scribing the behavior of two-component BECs, much remains
to be investigated regarding effects of quantum and thermal
fluctuations on the phase separation and collective excitations
of such mixtures. The present work deals with the static and
the dynamic properties of homogeneous and inhomogeneous
Bose-Bose mixtures at finite temperature using the TDHFB
theory [44–55]. Our scheme provides an excellent starting
point to study the dynamics of Bose systems and has been
successfully tested against experiments in a wide variety of
problems, namely, collective modes, vortices, solitons, and
Bose polarons.

In this paper we show that the TDHFB theory offers a
rigorous and self-consistent framework to analyze the full
dynamics of the two condensates, thermal clouds and pair
anomalous correlations, including coupling between the two
thermal clouds and anomalous components. In addition, the
TDHFB equations allow us to examine the role of anomalous
fluctuations in the phenomenon of phase separation in trapped
dual Bose condensates. The anomalous density has a crucial
contribution in the stability, excitations, superfluidity, and
solitons in a single component BEC [45,46,54–60]. Based
on experimentally relevant parameters, we demonstrate that a
large anomalous density may lead to a transition from miscible
to immiscible regime. We find also that the relative motion of
the centers of mass of the BECs and thermal clouds is strongly
damped when the anomalous density is present at both zero
and finite temperatures.
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In the spirit of the generalized random-phase approximation
(RPA), linearized TDHFB equations are derived in order to
investigate the collective excitations in a homogeneous mixture
at finite temperature. The developed theory can be referred to
as the TDHFB-RPA. Neglecting the intraspecies interactions
and keeping only terms of second order in coupling constants,
the TDHFB-RPA reduces to the finite temperature second-
order Beliaev theory [56]. The ultraviolet divergence of the
anomalous averages is properly regularized obtaining useful
analytical expression. Effects of quantum and thermal fluctua-
tion corrections in the excitations and the thermodynamics are
deeply analyzed.

The rest of the paper is organized as follows. In Sec. II,
we outline the general features of the TDHFB equations
derived for binary Bose condensates. We discuss also the main
hindrances encountered in our model and present the resolution
of these problems. The finite temperature stability condition of
the mixture is accurately identified. Section III deals with har-
monically trapped Bose-Bose mixtures and is divided into two
subsections related to several subjects. Section III A is devoted
to solving our equations numerically in a three-dimensional
(3D) case and analyzing the profiles of the condensed, noncon-
densed, and anomalous densities in terms of temperatures for
miscible and immiscible mixtures. We will look in particular
at how the anomalous fluctuations enhance the degree of the
overlap between both the condensates and thermal clouds. It
is found that the phase separation between the condensates is
suppressed as the temperature is increased in good agreement
with the HFB-Popov approximation [39]. In Sec. III B we
analyze the dynamics of two trapped BECs in the presence of
the thermal cloud and the pair anomalous correlation at both
zero and finite temperatures. We relate our findings to those of
previous experimental and theoretical treatments. In Sec. IV we
solve our TDHFB equations to second order in the interaction
coupling constants for uniform mixture at finite temperature
using the generalized RPA. We show that the TDHFB-RPA
method constitutes a finite-temperature extension of the Be-
liaev approximation discussed in a single component Bose
condensed gas with contact interaction [56,61] and dipole-
dipole interactions [62]. Meaningful analytical expressions are
obtained for the excitations spectrum, the condensed depletion,
the anomalous density, the equation of state (EOS) and the
ground-state energy. Finally, we conclude in Sec.V.

II. TDHFB THEORY

We consider weakly interacting two-component BEC with
the atomic mass mj confined in external traps Vj (r). The many-
body Hamiltonian describing such mixtures reads

Ĥ =
2∑

j=1

∫
dr ψ̂

†
j (r)

[
h

sp

j + gj

2
ψ̂

†
j (r)ψ̂j (r)

]
ψ̂j (r)

+ g12

∫
dr ψ̂

†
2(r)ψ̂2(r)ψ̂†

1(r)ψ̂1(r), (1)

where ψ̂
†
j and ψ̂j are the boson destruction and creation

field operators, respectively, satisfying the usual canonical

commutation rules [ψ̂j (r),ψ̂†
j (r′)] = δ(r − r′). The single

particle Hamiltonian is defined by h
sp

j = −(h̄2/2mj )� +
Vj . The coefficients gj = (4πh̄2/mj )aj and g12 = g21 =
2πh̄2(m−1

1 + m−1
2 )a12 with aj and a12 being the intraspecies

and the interspecies scattering lengths, respectively.
At finite temperature, we usually perform our analysis

in the mean-field framework relying on the TDHFB equa-
tions. For Bose mixtures, the TDHFB equations are given
by [49,50]

ih̄
d�j

dt
= dE

d�j

, (2)

ih̄
dρj

dt
=

[
ρj ,

dE
dρ+

j

]
, (3)

where E = 〈Ĥ 〉 is the energy of the system. In Eq. (3), ρj (r,t)
is the single particle density matrix of a thermal component
defined as

ρj =
(

〈 ˆ̄ψ† ˆ̄ψ〉 −〈 ˆ̄ψ ˆ̄ψ〉
〈 ˆ̄ψ† ˆ̄ψ†〉 −〈 ˆ̄ψ ˆ̄ψ†〉

)
j

,

where ˆ̄ψj (r) = ψ̂j (r) − �j (r) is the noncondensed part of
the field operator with �j (r) = 〈ψ̂j (r)〉 being the condensate
wave function. Equations (2) and (3) are obtained using the
Balian-Vénéroni variational principle [63] that optimizes a
generating functional related to the observables of interest. The
single component BEC version of Eqs. (2) and (3) was derived
in [64].

An important feature of the TDHFB formalism is that it
allows unitary evolution of ρj . Then it follows that

ρj (ρj + 1) = (Ij − 1)/4, (4)

where I is often known as the Heisenberg invariant [44,64,65].
It represents the variance of the number of noncondensed
particles. For pure state and at zero temperature, I = 1.

The total energy can be easily computed yielding

E =
2∑

j=1

[ ∫
dr

(
�∗

jh
sp

j �j + ˆ̄ψ†
j h

sp

j
ˆ̄ψj

)

+ gj

2

∫
dr

(
n2

cj + 4ñj ncj + 2ñ2
j + |m̃j |2

+ m̃∗
j�

2
j + m̃j�

∗
j

2)]

+ g12

∫
dr (nc1 + ñ1)(nc2 + ñ2), (5)

where ncj = |�j |2 is the condensed density, ñj = 〈 ˆ̄ψ†
j

ˆ̄ψj 〉 is

the noncondensed density, and m̃j = 〈 ˆ̄ψj
ˆ̄ψj 〉 is the anomalous

density.
Upon introducing the expression (5) into Eqs. (2) and

(3), one obtains the explicit TDHFB equations for the
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two-component BECs

ih̄�̇j = [
h

sp

j + gj (ncj + 2ñj ) + g12n3−j

]
�j

+gj m̃j�
∗
j , (6a)

ih̄ ˙̃nj = gj

(
m̃∗

j�
2
j − m̃j�

∗
j

2)
, (6b)

ih̄ ˙̃mj = 4
[
h

sp

j + 2gjnj + gj

4
(2ñj + 1) + g12n3−j

]
m̃j

+gj (2ñj + 1)�2
j , (6c)

where nj = ncj + ñj is the total density. Setting g12 = 0,
one recovers the usual TDHFB equations [44–48,51,54,55]
describing a degenerate Bose gas at finite temperature. In a
highly imbalanced mixture where g1 = 0 or g2 = 0, Eqs. (6)
coincide with our TDHFB equations recently employed in
Bose-polaron systems [49,50,52,53]. For ñj = m̃j = 0, they
reduce to the coupled Gross-Pitaevskii (GP) equations for
binary condensates at zero temperature. In the case of a Fermi-
Fermi mixture, Eq. (6a) has no analog, while Eqs. (6b) and (6c)
stand for the Hartree-Fock and the gap equations, respectively.
In the semiclassical limit, the TDHFB is equivalent to the
collisionless Boltzmann equation for the particle distribution
function [59].

Indeed, the TDHFB theory, as the standard HFB approxi-
mation, runs into trouble. The first problem is the destruction
of the gaplessness of the TDHFB theory due to the inclusion of
the anomalous density signaling that the theory satisfies neither
the Hugenholtz-Pines theorem [66] nor the Nepomnyashchy
identity [67]. Secondly, the anomalous pair average which
in general leads to a double counting of the interaction
effects is ultraviolet divergent [68]. Physically this comes
from the contact interaction potential, which treats collisions
of different momenta with the same probability. To reinstate
the gaplessness of the spectrum, one should renormalize the
intraspecies coupling constants gj following the procedure
outlined in Refs [44,48,50,57] for a single BEC. This gives

ḡj = gj

(
1 + m̃j /�2

j

)
. (7)

Despite the dilute nature of the system, the spatially dependent
effective interaction ḡj may modify the static and the dynamics
of the mixture. Furthermore, ḡj have substantial implications
for the stability condition. It is worth noticing that this tech-
nique renders the TDHFB equations (6) gapless but leaves the
anomalous density divergent as we shall see in Sec. IV.

Given Eq. (7), the renormalized TDHFB equations read

ih̄�̇j = [
h

sp

j + ḡj ncj + 2gj ñj + g12n3−j

]
�j, (8a)

ih̄ ˙̃mj = 4
[
h

sp

j + 2gjnj + Gj (2ñj + 1) + g12n3−j

]
m̃j ,

(8b)

where Gj is related to ḡj via Gj = gj ḡj /4(ḡj − gj ). Equa-
tions (8) are appealing since they permit us to study the
behavior of the thermal cloud and the pair anomalous density
of Bose-Bose atomic mixtures at any temperature. It is easy
to check that they satisfy the energy- and number-conserving
laws.

Equilibrium states can be readily determined via the trans-
formations �j (r,t) = �j (r) exp(−iμj t/h̄) and m̃j (r,t) =

m̃j (r) exp(−iμj t/h̄), where μj are chemical potentials re-
lated with each component. Here μj must be calculated
self-consistently employing the normalization condition Nj =∫

njdr, where Nj = Ncj + Ñj is the single condensate total
number of particles with Ncj = ∫

ncjdr and Ñj = ∫
ñj dr

being, respectively, the condensed and noncondensed number
of particles in each component.

A useful relation between the normal and anomalous den-
sities can be given via Eq. (4)

Ij = (2ñj + 1)2 − 4|m̃j |2. (9)

This equation clearly shows that, when I → 1 or equiva-
lently T → 0, the absolute value of the anomalous density
is larger than the noncondensed density. In the quasiparticle
space, one has ñj = ∑

k [v2
kj + (u2

kj + v2
kj )Nkj ] and m̃j =

−∑
k [ukjvkj (2Nkj + 1)], where Nkj = [exp(εkj /T ) − 1]−1

are occupation numbers for the excitations and ukj ,vkj =
(
√

εkj /Ek ± √
Ekj/εkj )/2 are the Bogoliubov functions with

Ekj being the energy of the free particle and εk the ex-
citation energy. Combining the expressions of m̃j and ñj

and using the fact that 2N (x) + 1 = coth(x/2), we obtain
Ikj = coth2(εkj /2T ). For a noninteracting Bose gas where the
anomalous density vanishes, Ikj = coth2(Ekj/2T ) [54]. For
an ideal trapped case, the Heisenberg invariant keeps the same
form as Eq. (9) with only setting εkj → εj (p,r) = p2

j /2m +
Vj (r), which can be calculated within the semiclassical ap-
proximation. Equation (9) allows us to determine in a very
convenient manner the critical temperatures of the mixture.

III. TRAPPED BOSE-BOSE MIXTURE

A. Density profiles

As a starting point, it is useful to establish the stability
condition. Working in the Thomas-Fermi (TF) approximation
which consists in neglecting the kinetic terms in Eqs. (8a) and
valid for large number of particles. The resulting equations for
the condensed density distributions nc1 and nc2 are given by

nc1 = �

ḡ1(� − 1)

[
μ1 − V1 − 2g1ñ1 − g12ñ2

− g12

ḡ2
(μ2 − V2 − 2g2ñ2 − g12ñ1)

]
, (10)

nc2 = �

ḡ2(� − 1)

[
μ2 − V2 − 2g2ñ2 − g12ñ1

− g12

ḡ1
(μ1 − V1 − 2g1ñ1 − g12ñ2)

]
, (11)

where � = ḡ1ḡ2/g
2
12 is often known as the miscibility parame-

ter. In our case the mixture can be miscible if � > 1 or immisci-
ble when � < 1. The transition between the two regimes was
previously observed in Bose-Bose mixtures in different spin
states [15,16], Bose-Bose mixtures of two Rb isotopes [6], and
in heteronuclear Bose-Fermi mixtures [69,70]. If g12 = 0 and
one component vanishes (say n1 = 0) in a certain space region,
Eqs.(10) and (11) simplify to the one-component TF equation,
namely nc2 = (μ2 − V2 − 2g2ñ2)/ḡ2. For ñj = m̃j = 0, they
reduce to the usual TF equations at zero temperature. Inspec-
tion of Eqs. (10) and (11) suggests that the stability of the
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(a) (b) (c)

(d) (e) (f)

FIG. 1. Top row: density profiles of an immiscible mixture of 87Rb (blue) and 133Cs (black) atoms at different temperatures for � = 0.9.
Solid lines: condensed density. Dashed lines: thermal cloud density. Dotted lines: anomalous density. The thermal cloud and the anomalous
densities have been amplified by 10 times for clarity. Bottom row: same as top panels but for a miscible mixture for � = 2.5.

mixture merely requires the conditions

ḡ1 > 0, ḡ2 > 0, and � > 1. (12)

In the limit m̃j /ncj � 1, the conditions (12) reduce to the stan-
dard stability conditions at zero temperature, namely g1g2 >

g2
12. For m̃j /ncj > 1, the system becomes strongly correlated.

This means that at finite temperature, the stability criterion
of the mixture requires the inequality −1 < m̃j/ncj < 1. If
� < 1 and g12 < 0, the gas is unstable, whereas, for g12 > 0,
the two components do not overlap with each other (separated
solutions). One of the most important feature arising from our
formula (12) is that, when m̃j is large, the mixture undergoes
a transition from miscible to immiscible phase.

In order to illustrate our approach, we consider the
133Cs-87Rb mixture confined in a spherical trap Vj (r) =
mjω

2
j r

2/2 with trap frequency ωCs = ωRb = 2π × 270 Hz.
Notice that our theory can adequately treat all the existing mix-
tures. The intraspecies scattering lengths are aCs = 280a0 and
aRb = 104a0, with a0 being the Bohr radius, the interspecies
scattering lengths can be adjusted by means of a Feshbach
resonance, and particle numbers NCs = NRb = 5 × 104. The
critical temperature for an ideal gas is about T 0

c = 450 nK.
Figure 1 clearly shows that, at low temperature, the Rb has a

higher peak density and narrower width, while the Cs atoms are
pushed towards the outer part forming a shell structure around
the Rb BEC [see Fig. 1(a)]. Such a symmetrical demixed phase
can be understood from the fact that the Rb sustains an extra
confinement from the Cs shell surrounding it, i.e., originating
from the coupling term g12n3−j in Eq. (8). For phase separa-
tion, the TF approximation becomes less satisfactory. In this
case, the Rb is located at the phase boundary, such that the

density distribution varies fast in space and the kinetic terms
cannot be omitted [20].

AtT = 0.5Tc, the two components start to overlap with each
other and the overlap region is broadened with temperature [see
Fig. 1(b)]. At T � 0.75Tc, where the binary condensates sur-
vive with significant thermal clouds, the mixture becomes com-
pletely immiscible as is depicted in Fig. 1(c). This suppression
of the phase separation, which has been predicted also by the
HFB-Popov theory [39], can be attributed to the strong effects
of thermal fluctuations. We observe from the same figure that
the anomalous density is larger than the noncondensed density
at low temperature, it reaches its maximum at intermediate
temperatures, and vanishes near the transition similar to the
case of a single component. Indeed, this behavior remains valid
irrespective of the mixture, whether miscible or immiscible. At
higher temperature, both ñ and m̃ have a Gaussian shape since
the system becomes ultradilute [46].

Figure 1(d) shows that, at T = 0.25Tc, both species overlap
at the trap center. Remarkably, with an increase in temperature
(T = 0.5Tc), the mixture becomes partially immiscible [see
Fig. 1(e)]. As we have foreseen above, this phase transition is
most likely due to the inclusion of the anomalous correlation
which has a significant effect at this range of temperature.
At T � 0.75Tc, the mixture restores its miscibility due to the
weakness of m̃ [see Fig. 1(f)].

In Fig. 2 we compare our results for the condensed density
with the HFB-Popov calculations. As is clearly seen, the
presence of the anomalous density leads to reduction of the
condensed density and the degree of the overlap between
the two condensates. This is owing to the mutual interaction
between condensed atoms on the one hand and the condensed
atoms and noncondensed atoms on the other.
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FIG. 2. Condensed density for � = 0.9 (left) and � = 2.5 (right)
at T = 0.5Tc. Solid lines: our predictions. Dotted lines: the results of
the HFB-Popov theory. Parameters are the same as in Fig. 1.

B. Dynamics of spatial separation

Let us consider the evolution of dual condensates in the
presence of their own thermal clouds and anomalous com-
ponents confined in a spherically symmetric trap which at
t = 0 its centers for the first and second component are,
respectively, displaced along the z axis by distances ±z0/2.
The separation is assumed to be small compared to the TF
radii. The time dependence of the mean separation between
the two condensates is given by

dc(t) =
∫

dr z[nc1(r,t) − nc2(r,t)], (13)

while the mean separation between the two thermal clouds
reads

dth(t) =
∫

dr z[ñ1(r,t) − ñ2(r,t)]. (14)

The numerical integration of our Eqs. (13) and (14) shows
that, at finite temperature, the relative motion of the centers of
mass of the BECs and thermal clouds in a miscible mixture
is strongly damped in particular at long time scales (see
Fig. 3). Such a damping, which has also been predicted by
the ZNG theory [41,42], is caused by condensate-condensate,
condensate-thermal, and thermal-thermal interactions. The
intra- and intercomponent anomalous pair correlations may
play also a crucial role for the appearance of the afore-
mentioned damping of oscillations especially at T ≈ 0.5Tc.
At fixed temperature, the damping of the oscillations of the
mean separation between the condensates and the thermal
clouds becomes more and more strong for a large displace-
ment, z0, regime. One can expect that the same behavior
persists in the immiscible mixture but with larger oscillation
amplitudes.

To better understand the impact of the pair anomalous den-
sity on the damping mechanism, we compare our predictions
for the relative motion of the centers of mass of the two BECs
with the experimental measurements of [2] and the theoretical
results of [28] based on the GP equation. As is clearly visible
from Fig. 4, the curves of our TDHFB model improve the
theoretical result of Ref. [28] especially at large time scale.
This correction makes our theory in good agreement with the
JILA experiment [2]. The difference between the two models
may be justified in terms of the significant contribution of the

FIG. 3. Mean separation between the condensates (solid line) and
thermal clouds (dotted lines) versus time in isotropic traps for z0/l0 =
0.3 and � = 2.5 at T = 0.5Tc.

anomalous density, which causes a huge loss of atoms during
the oscillation even at zero temperature.

IV. HOMOGENEOUS BOSE-BOSE MIXTURE

In this section we analyze the elementary excitations in a
homogeneous mixed Bose gas, where Vj (r) = 0 using the gen-
eralized RPA [45,59,71]. This latter consists of imposing small
fluctuations of the condensates, the noncondensates, and the
anomalous components, respectively, as �j = √

ncj + δ�j ,
ñj = ñj + δñj , and m̃j = m̃j + δm̃j , where δ�j � √

ncj ,

FIG. 4. Mean separation between the condensates versus time in
isotropic traps for 87Rb atoms, with the scattering lengths a1 : a12 :
a2 :: 1.03 : 1 : 0.97, with the average of the three being 55 Å [2].
Solid line: our predictions. Dashed line: theoretical results of [28].
Plus: JILA experiment [2]. These data were taken after 22 ms after
switching off the trapping potential.
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δñj � ñj , and δm̃j � m̃j . Thus we obtain the TDHFB-RPA
equations

ih̄δ�̇j = [
h

sp

j + 2ḡj ncj + 2gj ñj + g12n3−j

]
δ�j

+ ḡj ncj δ�
∗
j + 2gj

√
ncj δñj + g12

√
nc3−j δñ3−j

+ g12
√

ncjnc3−j (δ�3−j + δ�∗
3−j ) (15)

and

ih̄δ ˙̃mj = 4
[
h

sp

j + 2gjnj + Gj (2ñj + 1) + g12n3−j

]
δm̃j

+ 8gj m̃j [
√

ncj (δ�j + δ�∗
j ) + δñj + (Gj/gj )δñj ]

+ g12m̃j [
√

nc3−j (δ�3−j + δ�∗
3−j ) + δñ3−j ].

(16)

Here we recall that δñj and δm̃j are related with each other
through (9). Remarkably, Eqs. (15) and (16) contain a class of
terms beyond second order. They can be regarded as a natural
extension of the HFB-RPA [71] theory developed for the
single component BEC. If one neglects the anomalous density,
the TDHFB-RPA equations reduce to the HFB-Popov-RPA
equations.

Since we restrict ourselves to second order in the coupling
constants, one must retain in Eqs. (15) and (16) only the terms
which describe the coupling to the condensate and neglect
all terms associated with fluctuations δñ and δm̃ [59]. In
fact, this assumption is relevant to ensure the gaplessness
of the spectrum. Writing the field fluctuations associated
to the condensate in the form δ�j (r,t) = ujke

ik·r−iεk t/h̄ +
vjke

ik·r+iεk t/h̄, we obtain the second-order coupled TDHFB–de
Gennes equations for the quasiparticle amplitudes ukj and vkj :⎛

⎜⎜⎜⎝
L1 M1 A A
M1 L1 A A
A A L2 M2

A A M2 L2

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1k

v1k

u2k

v2k

⎞
⎟⎟⎟⎠ = εk

⎛
⎜⎜⎜⎝

u1k

−v1k

u2k

−v2k

⎞
⎟⎟⎟⎠, (17)

where
∫

dr[u2
j (r) − v2

j (r)] = 1, Lj = Ek + 2ḡj ncj + 2gj ñj

+ g12n3−j − μj , Mj = ḡj ncj , A = g12
√

nc1nc2, εk is the
Bogoliubov excitation energy, and Ek = h̄2k2/2m is the ki-
netic energy, which is the same for both species since we
consider equal masses (m1 = m2 = m). For g12 = 0, Eqs. (17)
coincide with the finite temperature second-order equations
obtained by Shi and Griffin using diagrammatic methods [56]
and with the finite temperature time-dependent mean-field
scheme proposed by Giorgini [59]. At zero temperature they
correspond to the well-known second-order Beliaev’s results
[61] discussed in a single component Bose condensed gas
over six decades ago, while at high temperature our second-
order coupled TDHFB–de Gennes equations reproduce those
derived by Fedichev and Shlyapnikov [72] employing Green’s
function perturbation scheme.

The chemical potentials turn out to be given as

μj = ḡj ncj + 2gj ñj + g12n3−j . (18)

Inserting Eq. (18) into (17), one obtains the following Bogoli-
ubov spectrum composed of two branches:

εk+ =
√

E2
k + 2Ekμ+, εk− =

√
E2

k + 2Ekμ−, (19)

where

μ+,− = ḡ1nc1

2
f+,−(�,α), (20)

where f+,−(�,α) = 1 + α ±
√

(1 − α)2 + 4�−1α and α =
ḡ2nc2/ḡ1nc1.

In the limit k → 0, we have εjk = h̄cj k where cj =√
ḡj ncj /mj is the sound velocity of a single condensate. The

total dispersion is phononlike in this limit

εk(+,−) = h̄c+,−k, (21)

where the sound velocities c+,− are

c2
+,− = 1

2

[
c2

1 + c2
2 ±

√(
c2

1 − c2
2

)2 + 4�−1c2
1c

2
2

]
. (22)

For g2
12 > ḡ1 ḡ2, the spectrum (19) becomes unstable and thus

the two condensates spatially separate. We can see that the
sound velocity c+,− → 0 as T → Tc since ncj = m̃j = 0 near
the transition, which means that the phonons in the TDHFB
theory are the soft modes of the Bose-condensed mixture.

A. Quantum and thermal fluctuations

A straightforward calculation using Eq. (9) permits us to
rewrite the normal and anomalous densities in terms of

√
Ik

[44,48],

ñj = 1

2

∫
dk

(2π )3

[
Ek + μ+,−

εk(+,−)

√
Ikj − 1

]
(23)

and

m̃j = −1

2

∫
dk

(2π )3

μ+,−
εk(+,−)

√
Ikj . (24)

At T = 0, the total depletion ñ = ñ1 + ñ2 can be calculated
via the integral (23)

ñ = 1

6
√

2π2

(
1

ξ 3+
+ 1

ξ 3−

)
, (25)

where ξ+,− = h̄/
√

mμ+,−.
As remarked in integral (24), dimensional analysis suggests

that we face the ultraviolet divergences in the expression of m̃

as anticipated above. This problem can be cured by means of
the dimensional regularization [44,73–76] which follows from
perturbation theory of scattering. It gives asymptotically exact
results at weak interactions (for more details, see Appendix A
of [44]). This yields for the total anomalous density m̃ = m̃1 +
m̃2

m̃ = 1

2
√

2π2

(
1

ξ 3+
+ 1

ξ 3−

)
. (26)

Importantly, the above expressions of the noncondensed and
anomalous densities are proportional to g2

j and g2
12. For g12 =

0, Eqs. (25) and (26) recover those obtained by the second-
order Beliaev theory [61] and the perturbative time-dependent
mean-field scheme [59].

From now onward, we assume that m̃/nc � 1; this condi-
tion is valid at low temperature and necessary for the diluteness
of the system [58,62]. Therefore, the condensate depletion (25)
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FIG. 5. Condensed depletion from Eq. (27) as a function of � for
different values α.

reduces to

ñ = 1

2
√

2
ñ0

1[f 3/2
+ (�,α) + f

3/2
− (�,α)], (27)

where ñ0
1 = (8/3)nc1

√
nc1a

3
1/π is the single condensate de-

pletion (type 1). The depletion (27) is formally similar to that
obtained by Tommasini et al. [34] using the Bogoliubov theory,
with only ncj appearing as a corrected parameter instead of
the total density nj . At T = 0 and for fixed density ñ0

1, the
noncondensed fraction is proportional to � and α signaling
that the number of excited atoms increases with � and α as is
displayed in Fig. 5.

The anomalous density of the mixture (26) simplifies

m̃ = 1

2
√

2
m̃0

1[f 3/2
+ (�,α) + f

3/2
− (�,α)], (28)

where m̃0
1 = 8nc1

√
nc1a

3
1/π is the anomalous density of a

single component. To the best of our knowledge, Eq. (28) has
never been derived in the literature. It shows that m̃ is larger
than ñ similar to the case of a single component. This indicates
that the anomalous density is significant even at zero temper-
ature in Bose-Bose mixtures. We see also that m̃ is increasing
with (nc1a

3)1/2, �, and α. If the interspecies and intraspecies
interactions were strong enough, the pair anomalous density
becomes important results in a large fraction of the total atoms
would occupy the excited states.

At temperatures T � g1nc1, the main contribution to in-
tegrals (23) and (24) comes from the long-wavelength region
where the spectrum takes the form (21). Then the use of the
integral

∫ ∞
0 x2j−1[coth(αx) − 1]dx = π2j |B2j |/2jα2j [58],

where B2j are the Bernoulli number, allows us to obtain
the following expressions for the thermal contribution of the
noncondensed and anomalous densities:

ñth = |m̃th| = 2
√

2

3
nc1

√
nc1a3

π

(
πT

nc1g1

)2

× [f −1/2
+ (�,α) + f

−1/2
− (�,α)]. (29)

Equation (29) shows clearly that ñ and m̃ are of the same
order of magnitude at low temperature and only their signs
are opposite. A comparison between Eqs. (27), (28), and (29)
shows that, at T � gnc, thermal fluctuations are smaller than
the quantum fluctuations.

Let us now discuss some relevant cases predicted by
Eqs. (27) and (28), for a balanced mixture where n1 =
n2 = n and g1 = g2 = g12. Hence the noncondensed and the
anomalous densities reduce respectively to ñ = (4/

√
2) ñ0

and m̃ = (4/
√

2) m̃0, whereas at low temperature, the thermal
depletion and the anomalous density turn out to be given as
ñth = m̃th = (2/3)nc1

√
nc1a

3
1/π (πT/nc1g1)2. Near the phase

separation where g2
12 → ḡ1ḡ2, the condensate depletion and

the anomalous density become, respectively, ñ = (1 + α)3/2ñ0
1

and m̃ = (1 + α)3/2m̃0
1. At low temperature, the lower branch

has the free-particle dispersion law: εk− = Ek [35], while the
upper branch is phononlike εk+ = h̄c1(1 + α)1/2k. Therefore,
the thermal depletion has a distinct temperature dependence as

ñth = 2

3
nc1

√
nc1a

3
1

π
(1 + α)−1/2

(
πT

nc1g1

)2

+
(

mT

2πh̄2

)3/2

ζ (3/2), (30)

where ζ (3/2) is the Riemann Zeta function. The second term in
(30) is the density of noncondensed atoms in a noninteracting
gas. This reveals that the component associated with lower
branch becomes ultradilute. Notice that a similar temperature
dependence distinction was obtained earlier by Colson and
Fetter [35] for 4He-6He mixture. Such a distinction in the
temperature dependence cannot occur in m̃th where the term
∝T 3/2 is absent since the anomalous density itself does not
exist in an ideal gas [44,56].

B. Thermodynamics

Corrections to the EOS of the mixture due to quantum and
thermal fluctuations can be derived from Eq. (18). Combining
Eqs. (27), (28), and (29) gives

δμ = μ0
1

2
√

2

{
[f 3/2

+ (�,α) + f
3/2
− (�,α)]

+ 1

2
[f −1/2

+ (�,α) + f
−1/2
− (�,α)]

(
πT

nc1g1

)2}
, (31)

where μ0
1 = (32/3)g1nc1

√
nc1a

3
1/π is the zero temperature

chemical potential of a single condensate. At zero temperature
and for g12 = 0, Eq. (31) reduces to the seminal Lee-Huang-
Yang (LHY) corrected EOS [77] for one component BEC.

At finite temperature, the grand-canonical ground-state
energy can be calculated using the thermodynamic relation
E = E0 + δE = −T 2( ∂

∂T
F
T

)|V,μ, where the free energy
is given by F = E + T

∑
k ln[1 − exp(−εk(+,−)/T )] and

E0 = (gj/2)
∑

j (n2
cj + 4ncj ñj + 2ñ2

j + |m̃j |2 + 2ncj m̃j ) +
g12n1n2. When m̃j /ncj � 1 and ñj /ncj � 1, one has
E0 = (gj/2)

∑
j n2

cj + g12nc1nc2. The shift to the ground-state
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energy due to quantum and thermal fluctuations is defined as

δE = 1

2

∑
j

[∑
k

[εk(+,−) − (Ek + μ+,−)]

+
∑

k

εk(+,−)(
√

Ikj − 1)

]
. (32)

The first term on the right-hand side (RHS) of (32) which
represents the energy corrections due to quantum fluctuations
is ultraviolet divergent. To circumvent such a divergency, we
will use the standard dimensional regularization. The second
term accounts for the thermal fluctuation contributions to the
energy. The main contribution to it comes from the phonon
region. After some algebra, we obtain

δE = 1

4
√

2
E0

1

{
[f 5/2

+ (�,α) + f
5/2
− (�,α)]

+ 1

2
√

2
[f −3/2

+ (�,α) + f
−3/2
− (�,α)]

(
πT

nc1g1

)4}
,

(33)

where E0
1/V = (64/15)g1n

2
c1

√
nc1a

3
1/π is the zero-

temperature single condensate ground-state energy which
can be obtained also by integrating the chemical potential with
respect to the density. The same result could be obtained within
the renormalization of coupling constants which consists of
adding g2

j

∫
dk/Ek and g2

12

∫
dk/Ek [30,78] to the RHS of

Eq. (32).
In the case g12 = 0, we read off from (33) that δE reduces

to the ground-state energy of a single Bose gas. At T = 0
and for nc = n, δE becomes identical to the Larsan’s formula
[30]. Equation (33) is a finite-temperature extension of that
recently obtained by Cappellaro et al. [79] for a balanced
mixture using the functional integration formalism within a
regularization of divergent Gaussian fluctuations. Indeed, the
resulting ground-state energy is appealing since it furnishes an
extra repulsive term proportional to n

5/2
c + n

−3/2
c T 4 balancing

the attractive mean-field term, allowing quantum and thermal
fluctuations to stabilize mixture droplets at finite temperature.
Quantum stabilization and the related droplet nucleation was
proposed in Bose-Bose mixtures with [4,5,78,80] and without
Rabi coupling [79] as well as applied on dipolar condensates
[81–84]. The finite-temperature generalization of these LHY

corrections to the case of a dipolar Bose gas has been also
analyzed in our recent work [85].

V. CONCLUSION AND OUTLOOK

In this paper we have systematically studied effects of
quantum and thermal fluctuations on the dynamics and the
collective excitations of a two-component Bose gas utilizing
the TDHFB theory. We revealed that our approach is able to
capture the qualitative evolution of two-component BECs at
finite temperature. The impact of the anomalous fluctuations
on the miscibility criterion for the mixture was discussed.

Within an appropriate numerical method, we elucidated the
behavior of the condensed, the noncondensed, and the anoma-
lous densities in terms of temperature for both miscible and
immiscible mixtures under spherical harmonic confinement.
We demonstrated in particular that the mixture undergoes a
transition from miscible to immiscible regime owing to the
predominant contribution of anomalous fluctuations notably at
T � 0.5Tc. We found that such fluctuations are also the agent
responsible for the strong damping of the relative motion of
the centers of mass of the condensed and thermal components.
At zero temperature, the TDHFB results correct the existing
theoretical models, making the theory in good agreement with
JILA experiment [2].

We linearized our TDHFB equations using the RPA for a
weakly interacting uniform Bose-Bose mixture. This method is
a finite-temperature extension of the famous second-order Be-
liaev approximation [61]. The TDHFB-RPA theory provides
us with analytical machinery powerful enough to calculate
quantum and thermal fluctuation corrections to the excitations,
the sound velocity, the EOS, and the ground-state energy.
We compared the theory with previous theoretical treatments
and excellent agreement has been found in the limit m̃/nc �
1. One should stress that the results of our TDHFB-RPA
technique can be generalized to the case of a harmonically
trapped mixture using the local density approximation.

The findings of this work are appealing for investigating the
properties of mixture droplets at finite temperature. An impor-
tant topic for future work is to look at how thermal fluctuations
manifest themselves in dipolar Bose-Bose mixtures.
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