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Efimov states near a Feshbach resonance and the limits of van der Waals universality
at finite background scattering length
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We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model
which accounts both for the finite range of interactions and the presence of background scattering. The latter may
be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that
background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away
from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states
on its own. Compared to the situation with negligible background scattering, the regime where van der Waals
universality applies is shifted to larger values of the resonance strength if the background scattering length is
positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small
values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within
a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly.
Repulsive three-body forces may, however, explain the observed variation between around −8 and −10 of the
ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.
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I. INTRODUCTION

It is a surprising consequence of quantum mechanics that
three particles may be bound together even in a situation
where no two-body bound states exist. This effect was first
discussed by Efimov in the context of nuclear physics [1]. As
a possible realization of his prediction that near-resonant two-
body interactions give rise to an infinite sequence of three-body
bound states, Efimov suggested that the low-lying excited state
of 12C—the so called Hoyle state [2] which is of fundamental
importance for nucleosynthesis—might be a weakly bound
state of three α particles. Their interaction, however, is quite
different from those in ultracold atoms, where genuine Efimov
states were first seen in a gas of 133Cs atoms near a Feshbach
resonance [3]. Subsequently, Efimov states have been observed
in radio-frequency spectroscopy and loss measurements in a
variety of Bose gases [4–8], in three-component Fermi gases
[9–13], and also in mass-imbalanced mixtures [14–22]. More
recently, it has been found that an analog of Efimov’s original
suggestion involving α particles is realized in neutral 4He
atoms, for which the lowest three-body bound state appears
at a binding energy which is about a hundred times larger than
the extremely weakly bound 4He dimer at εD � kB × 1.3 mK
[23].

A striking feature of the Efimov effect is the appearance of
universality near infinite two-body scattering length a, where
the sequence of three-body bound states has an accumulation
point. In particular, the scattering lengths a

(n)
− < 0, where the

nth Efimov state meets the atom threshold at energy E = 0,
form a geometric series with a ratio a

(n+1)
− /a

(n)
− → eπ/s0 of

consecutive values for large n. Here, s0 is a universal number

which only depends on the mass ratios and the particle statis-
tics. For identical mass bosons, it has the value s0 ≈ 1.00624
which gives rise to a large valuea

(n+1)
− /a

(n)
− � 22.6944 . . . . The

origin of this universality can be understood from an effective
field theory approach to the three-body problem [24–31].
The underlying assumption of zero-range interactions—with
the scattering length as the single length scale—implies that
universality only applies for the highly excited Efimov states
with n � 1. In practice, since atom losses on average increase
with the fourth power of the scattering length, these states
are not accessible and it is only the lowest or maybe second
Efimov state at a− = a

(0)
− or a

(1)
− which can be observed. In

fact, the appearance of a second Efimov trimer at a
(1)
− has

been confirmed only recently in 133Cs [32] and in a 6Li-133Cs
mixture [15,17,19,33]. Due to the finite range of interactions,
deviations from universality for the lowest trimer states can
be appreciable. As an example, the ratio a

(1)
− /a− = 21 ± 1.3

[32] observed for the Feshbach resonance in 133Cs near B0 �
787 G differs substantially from the universal value 22.69 . . .

reached as n � 1. On a more basic level, the absence of any
scale beyond the scattering length itself necessarily implies
that effective field theory can account neither for the specific
position a− < 0 where the first Efimov state appears nor for
its binding energy at infinite scattering length. To incorporate
this, the field theory must be supplemented with a momentum
cutoff �∗, usually called the three-body parameter. The three-
body parameter was initially thought to exhibit no systematic
dependence on low-energy observables, being sensitive to
microscopic details of the two-body potential at short distance
as well as to genuine three-body forces [34].
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It was a surprising observation, therefore, that in ultra-
cold atoms the measured values for a− for a number of
different alkali atoms and for many Feshbach resonances all
ranged in a regime between −8 lvdw and −10 lvdw, with an
average value 〈a−〉 ≈ −9.45 lvdw [5–9,11,35,36]. Here, lvdw =
(mC6/h̄

2)
1/4

/2 is the van der Waals length, which is a measure
of the strength of the attractive interaction∼−C6/r6 at large in-
teratomic distances [37]. Since a− determines the overall scale
of the complete Efimov spectrum, this observation suggests a
three-body parameter which is independent of the microscopic
details [35,36]. An explanation of this unexpected result, which
has since been termed the van der Waals universality in Efimov
physics of ultracold gases, was given independently by Wang
et al. [38] and by Schmidt et al. [39] (see also [40,41]).

The work by Wang et al. is based on single channel
potentials with a van der Waals tail −C6/r6 and different forms
of the short-range interaction, which may be adjusted to tune
the scattering length to values much larger than the potential
range. For such models the origin of van der Waals universality
turns out to be connected to the appearance of a barrier in the
hyperspherical three-body potential Veff (R) for values of the
hyperradius R which are much smaller than lvdw. The detailed
behavior of the interactions at small distances therefore does
not play a role. This result has been confirmed in a number of
papers, in part also using different methods [38,42–47].

In practice, the two-body potentials which allow us to solve
the three-body problem using hyperspherical coordinates
are, unfortunately, quite different from those present in
alkali atoms. In a recent study of van der Waals universality
[47] for instance, based on a Lennard-Jones potential
V (r) = −C6(1 − σ̄ 6/r6)/r6, the energy of the lowest three
Efimov states is calculated as a function of the dimensionless
inverse scattering length lvdw/a for the three zero-energy
resonances with the largest values λc = 0.92,0.57,0.45 of
the ratio λ = σ̄ / lvdw. The single-channel potentials are thus
considered in a regime where the number of two-body bound
states is of order 1. This is the situation appropriate, e.g.,
for 4He, where just one such bound state exists [48]. By
contrast, the large polarizability of alkali atoms leads to ratios
λ = σ̄ / lvdw which are much less than 1.

A quite different and complementary approach to the
problem has been developed by Schmidt et al. [30,39] who
considered a standard two-channel model for a Feshbach
resonance, including a finite range of the Feshbach coupling
as a crucial new feature. Within this model, the spectrum
of Efimov trimers can be calculated without any adjustable
cutoff. It follows a universal set of binding energy curves which
only depends on the resonance strength parameter sres = ā/r�

[49], defined as the ratio between the mean scattering length
ā = 0.956 lvdw and the intrinsic length r� associated with a
Feshbach resonance [50,51]. The position of the trimer states
in the (ā/a,E) plane is therefore completely fixed by only
two experimentally accessible parameters: the van der Waals
length lvdw and the intrinsic length r�. In the limit of closed-
channel dominated resonances with sres 
 1, the spectrum
gets pushed toward the unitarity point E = 1/a = 0 and the
characteristic length and energy scale is determined by r�. For
open-channel dominated resonances with sres � 1, in turn, the
trimer spectrum reaches its maximal extent in the (ā/a,E)
plane. Specifically, the first trimer state detaches from the

continuum at a− = −8.3 lvdw, which is about three times the
effective interaction range re → 3ā in this limit.

The model by Schmidt et al. thus provides a qualitative
understanding of the observed van der Waals universality,
which is generically observed for Efimov trimers near open-
channel dominated resonances [39]. Moreover, it also shows
how ratios like a

(n+1)
− /a

(n)
− approach their universal values only

in the limit n � 1 or when the resonance strength takes on
intermediate values sres � 1 where the effective range is close
to zero. The genuine Feshbach resonance physics associated
with the presence of two separate scattering channels has also
been analyzed by Wang and Julienne [44] within a two-spin
van der Waals model. In contrast to the earlier work [39],
however, only the open-channel dominated limit was studied.

A striking prediction of the model by Schmidt et al. [39]
is that the ratio |a−|/lvdw � 8.3 increases if the Feshbach
resonance is no longer in the open-channel dominated regime.
In particular, in the limit sres 
 1, it approaches the valuea− →
−10.3 r�, consistent with the exact solution of the three-body
problem for closed-channel dominated Feshbach resonances
by Petrov and Gogolin [50,51]. The scattering length at which
the first Efimov trimer appears is thus again determined by the
effective range parameter re � −2r�, which is now in magni-
tude much larger than lvdw relevant in the open-channel domi-
nated case. Experimentally, a trend to larger values of a−/lvdw

for decreasing values of sres has been observed for heteronu-
clear mixtures [19]. By contrast, the observed ratio |a−|/lvdw �
7.75 for the 7Li resonance at 737 G still seems to follow the
naive van der Waals universality despite a rather small value of
sres � 0.56. Furthermore, measurements of the ratio |a−|/lvdw

for a number of closed-channel dominated resonances in 39K
[52] also do not observe the predicted strong increase with
decreasing values of the resonance strength. Van der Waals
universality thus appears to be much more robust than what a
standard two-channel Feshbach resonance model suggests.

In our present work, we address the question of the range
of validity and the limits of van der Waals universality for the
practically accessible first few Efimov states by extending our
previous model to account for the effects of a nonvanishing
background scattering length abg. The latter may be due to
either direct interactions in the open channel or arising from
overlapping Feshbach resonances. We start with a model
involving a sum of two-body interactions only. The three-
body spectrum can then be calculated from data which are
fully determined by two-body physics, with no adjustable
parameters. As a result, the spectrum of Efimov states is
completely fixed by the value of the van der Waals length lvdw,
the resonance strength sres, and the standard dimensionless
parameter rbg = abg/ā which measures the influence of a
background scattering length abg [49]. In a second step, we
provide a model calculation for Efimov states in the presence
of short-range three-body forces which allows to see to which
extent the Efimov spectrum is sensitive to genuine three-body
forces.

II. MICROSCOPIC MODEL

An observation and systematic study of the Efimov effect
with ultracold atoms typically requires Feshbach resonances,
where the scattering length may be tuned externally, e.g., by
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a magnetic field. Here one takes advantage of the coupling of
atoms in an open channel to a closed-channel molecule which
has different quantum numbers and can thus be shifted energet-
ically with respect to the open-channel scattering continuum.
In particular, when the molecular state becomes degenerate
with the atomic scattering threshold at a specific value B0

of the magnetic field, a resonant enhancement of a is found.
A standard description of the resonant enhancement of the
scattering length near a Feshbach resonance is provided by a
two-channel model

Ĥres =
∫

R

{
ψ̂†

(
− h̄2∇2

2m

)
ψ̂(R)+φ̂†

(
− h̄2∇2

4m
+ν̃φ(B)

)
φ̂(R)

}

+ gφ

2

∫
R,r
χφ(r)

[
ψ̂†

(
R+ r

2

)
ψ̂†

(
R− r

2

)
φ̂(R)+ H.c.

]
,

(1)

where
∫

R ≡ ∫
d3R. Here the first term represents the kinetic

energy of the atoms in the open channel (represented by
the operators ψ̂†,ψ̂), while the second term accounts for the
kinetic energy of the Feshbach molecule (φ̂†,φ̂) in the closed
channel. It has mass 2m and is energetically detuned from
the open-channel scattering threshold by the bare detuning
ν̃φ(B) = δμ(B − Bc), where δμ is the differential magnetic
moment of the molecule, and Bc denotes the magnetic field
at which the closed-channel molecule, when not coupled to
the open channel, crosses zero energy. The closed-channel
(Feshbach) molecule is created from two atoms in the open
channel. This process is represented by the third term in Eq. (1)
where two atoms, separated by a distance r, are converted
into the molecule φ̂ at the center-of-mass coordinate R. The
strength of the conversion is given by gφ while the form
factor χφ(r) accounts for the range of the atom-molecule cou-
pling. The model contains three adjustable parameters which
eventually must be connected with experimentally measurable
quantities. This has been done in [39] using the following line
of argument:

(1) The strength gφ of the coupling is fixed by the intrinsic
length parameter r� of the Feshbach resonance defined by the
relation ares(B) = −h̄2/[mr�ν(B)] between the resonant scat-
tering length and the renormalized detuning ν(B) = δμ(B −
B0), where B0 denotes the magnetic field where the Feshbach
resonance appears. The known value of r� fixes the coupling
for identical bosons via r� = 8πh̄4/(m2g2

φ) [39,51]. For SU(2)
fermions, this expression carries an additional factor of 1/2;
see, e.g., Refs. [53–56].

(2) The range σφ of the Feshbach transfer function χφ(r),
which is normalized such that

∫
r χφ(r) = 1, is obtained from

the known value δμ(B0 − Bc) = h̄2/(2mr�ā) of the resonance
shift in potentials with a van der Waals tail in the absence of
background scattering [57]. As shown in [39], for a transfer
function χ (r) ∼ e−|r|/σφ , this fixes the range to be σφ = ā.

(3) The bare detuning ν̃φ(B) which involves the parameter
Bc is inferred as a function of σφ , and thus of ā, from the actual
magnetic field position B0 of the resonance where 1/a = 0.

In order to study the effect of a nonvanishing background
scattering length on the spectrum of three-body bound states,
an obvious strategy would be to introduce a direct two-body

interaction

Ĥdir =
∫

r,r′
: ψ̂†(r)ψ̂(r) V (r − r′) ψ̂†(r′)ψ̂(r′) : (2)

which involves an interaction potential V (r) which has a van
der Waals tail of range lvdw. This normal-ordered expression
describes a standard density-density interaction with n̂(r) =
ψ̂†(r)ψ̂(r). By contrast, Ĥres in Eq. (1) represents an interaction
in the pairing channel that has a different singular transfer
momentum. The scattering vertices for the combined model
Ĥ = Ĥres + Ĥdir therefore develop a complicated momentum
dependence which is difficult to handle in analytical form (for
a detailed study of the corresponding two-body problem see
Ref. [58]).

These problems may be avoided by replacing the interaction
Eq. (2) by a simpler model which leads to the same scattering
length and a similar effective range. To this end one introduces
an auxiliary molecular field b̂ whose exchange accounts for the
background scattering. The corresponding interaction Hamil-
tonian is given by

Ĥbg =
∫

R
ν̃b b̂†b̂(R) + gb

2

∫
R,r

χb(r)

×
[
ψ̂†

(
R + r

2

)
ψ̂†

(
R − r

2

)
b̂(R) + H.c.

]
. (3)

We consider this model in the limit gb → ∞ where the field b̂

can be regarded as a physical molecular state which mediates
an effective atom-atom interaction characteristic for an open-
channel dominated Feshbach resonance [58]. This becomes
evident by using the Heisenberg equation of motion for the
operator b̂. In the limit gb → ∞, it can be solved explicitly
to give b̂(R) = −gb/(2ν̃b)

∫
r χb(r)ψ̂†(R + r/2)ψ̂†(R − r/2).

The auxiliary field b̂ can thus be eliminated and leads to
an open-channel interaction of strength ∼g2

b/ν̃b. As a result,
the Hamiltonian Ĥbg only depends on the ratio g2

b/ν̃b that
is determined by the experimentally accessible value abg of
the background scattering length; see Eq. (13) below. The
reduction of Ĥbg to a single adjustable parameter relies on
the fact that the range parameter of the form factor χb(r) ∼
e−r/σb/r is again chosen to be σb = ā. This choice guarantees
that the effective range of the induced atom-atom interaction
in the case of pure background scattering is consistent with
the generic result re = 2.92ā for direct two-body interaction
potentials with a van der Waals tail in the relevant limit where
|a| � ā and the number of two-body bound states is large
compared to one [39,59].

In the following we will thus consider the model

Ĥ = Ĥres + Ĥbg. (4)

Apart from providing a simple model to account for a non-
vanishing background scattering due to direct interactions in
an open channel, this Hamiltonian also describes a second
possible origin of a finite background scattering length, namely
strongly overlapping Feshbach resonances. Specifically, the
full model (4) provides an accurate microscopic description of
strongly overlapping Feshbach resonances in cases where the
background scattering length is due to an open-channel dom-
inated Feshbach resonance whereas the primary resonance,
described by Eq. (1), can be of arbitrary strength sres.
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FIG. 1. Diagrammatic solution of the two-body problem. The
scattering T matrix is obtained from the matrix valued molecule
Green’s function (thick solid line). Blue color corresponds to the
molecule in the φ channel, red color to the b channel. Thin black
lines denote atom propagators, and double lines the bare molecule
propagator. Small circles represent the atom-molecule conversion
couplings gφ and gb.

III. TWO-BODY SCATTERING

The solution of the two-body problem allows us to express
all microscopic model parameters of the Hamiltonian (4) in
terms of experimental observables. The two-body scattering T
matrix is obtained from the exchange diagram shown in the
first line in Fig. 1 leading to

T2(E; k,p) =
∑

i,j=b,φ

giχi(k)Gij (E)gjχj (p). (5)

The coupling between the background and Feshbach chan-
nel leads to a hybridization of the matrix valued molecular
propagator G(E) ≡ G(E,p = 0) [60],

(
Gbb(E) Gbφ(E)
Gφb(E) Gφφ(E)

)
=

(
G−1

bb (E) −�bφ(E)
−�φb(E) G−1

φφ (E)

)−1

. (6)

A straightforward evaluation of the diagrams shown in Fig. 1
yields the Dyson equation for the diagonal elements

G−1
ii (E) = [

G0
ii(E)

]−1 − �ii(E), (7)

where [
G0

ii(E)
]−1 = (E + i0+)δiφ − ν̃i . (8)

The self-energies are given by

�ij (E) = gigj

2

∫
d3q

(2π )3

χi(q)χj (q)

(E + i0+) − q2/m
(9a)

= −gigj

8π
m Qij (E). (9b)

For a Lorentzian form factor χi(k) = 1/[1 + (kσi)2] which
mimics the wave function of a closed-channel molecule, the
rescaled self-energy Qij (E) approaches Qij (0) = 1/(σi + σj )
at zero energy. From the T matrix, the s-wave scattering
amplitude f (k) is obtained by s-wave projection and on-shell

evaluation,

f (k) = − m

8π

∫
d cos θ∠(p,k)

2
T2(E = k2/m,k,p). (10)

Here m/(8π ) is the phase space factor for a pair of incoming
and outgoing identical bosons.

Comparing this result to the low-energy expansion

f (k) ≈ 1

−1/a + 1
2 rek2 − ik

(11)

allows us to compute the scattering length

a = ab + [1 − abQφb(0)]2

a−1
φ − abQ

2
φb(0)

, (12)

where aφ and ab are given by (i = φ,b)

a−1
i = −8π

m

ν̃i

g2
i

+ 1

2σi

. (13)

The full scattering length (12) depends on the magnetic field
B only through aφ which involves the bare detuning ν̃φ(B) =
δμ(B − Bc). In order to connect the model parameters with
experimentally accessible quantities, we employ the fact that
quite generally the magnetic field dependence of the scattering
length close to a Feshbach resonance at B = B0 can be
parametrized in the form [49]

a(B) = abg + ares(B) = abg − h̄2

2μredr�δμ(B − B0)
. (14)

Here δμ is the differential magnetic moment of the closed-
channel molecule and μred the reduced mass (μred = m/2 for
identical bosons). Moreover, the intrinsic length r� > 0 may be
determined from the dependence of the two-body bound state
energy εD (we choose signs such that the dimer binding energy
is positive) that exists for a > 0 or the associated binding
wave number κD = √

2μredεD/h̄ on the renormalized detuning
ν(B) = δμ(B − B0) via

r� = − h̄2

2μred

∂κD

∂ν(B)

∣∣∣∣
B=B0

. (15)

The background scattering length abg, in turn, is determined by
the value of the detuning ν(Bbg) where the full scattering length
a(B) crosses zero. Experimentally, its value can be inferred
from a plot of the inverse scattering length as a function of the
detuning, as shown in Fig. 2. It is important to emphasize that
this definition of the background scattering length does not rely
on any assumption about the magnetic field dependence of the
total scattering length far away from the resonance.

The requirement that our result (12) is consistent with the
generic behavior (14) of the scattering length near the Feshbach
resonance at B = B0, immediately leads to the identification
ab = abg. Choosing σb = ā for the range, the single remaining
parameter g2

b/ν̃b in Eq. (3) is thus determined by the value of
the background scattering length via Eq. (13). In addition, the
condition

a−1
φ = abgQ

2
φb(0) + [1 − abgQφb(0)]2a−1

res (B) (16)

allows one to express the bare detuning ν̃φ(B) = δμ(B − Bc)
which appears in the definition of aφ in terms of the experi-
mentally relevant renormalized value ν(B) = δμ(B − B0). It
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0

FIG. 2. Determination of the background scattering length. The
inverse scattering length (solid) as a function of the detuning ν(B)
from the position of the Feshbach resonance. The dotted vertical line
represents the detuning ν(Bbg) where the scattering length crosses
zero. The red dashed line shows the case of zero background scattering
length.

also determines the microscopic coupling

g2
φ = 8π

m2r�

1

[1 − abgQφb(0)]2
(17)

in terms of r� and a background scattering length dependent
renormalization.

An important consistency check for our choiceσφ = σb = ā

for the two range parameters is provided by calculating the
effective range of the full two-body scattering amplitude which
is given by (see also [61])

re = −2r�
(

1 − abg

a

)2
+ 3ā

(
1 − 4

3

ā

a

)
. (18)

In the limit of pure background scattering a → abg, the first
term vanishes and the resulting effective range is rather close
to the expression

rvdw
e = 2.9179ā

(
1 − 2ā

a
+ 2ā2

a2

)
(19)

obtained by Flambaum, Gribakin, and Harabati for low-energy
scattering in deep potentials with a van der Waals tail [59]. For
vanishing background scattering, in turn, the latter result is
recovered in the limit of an open-channel dominated resonance
where sres � 1. With decreasing values of the resonance
strength, the effective range crosses zero near sres = 2/3 and
eventually approaches the well known result re → −2r� in the
closed-channel dominated limit [49].

The two-body bound state spectrum is determined by the
poles of the T matrix in the complex energy plane. In Fig. 3
the two-body spectrum is shown for positive values of the
background scattering length abg as a function of the resonant
part of the scattering length ares(B) defined by Eq. (14), i.e.,
1/ares(B) = −mr�ν(B). In this case the background channel
supports a bound state with binding energy εbg when decoupled
from the Feshbach channel (dashed lines). The coupling to
the Feshbach channel leads to a level repulsion between the
background dimer and the bare Feshbach molecular state
(dotted). Note that at resonance, where the dimer state reaches
the continuum in the coupled model, it is accompanied by a
second deeply bound state in the spectrum.

0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.05

0.04

0.03

0.02

0.01

0.00

dimer states

background dimer
closed-channel molecule

decoupled model

coupled model

FIG. 3. Two-body spectrum as a function of the resonant part
of the scattering length ā/ares. Energies are given in units of Ē =
h̄2/mā2. The spectrum (solid lines) is shown for an open-channel
dominated resonance with sres = 10 with positive background scat-
tering length abg/ā = 10 (magenta) and 20 (cyan). Also shown are the
energy of the bare Feshbach molecule (dotted) and the background
dimer (dashed) in the absence of a coupling to the Feshbach channel.

IV. THREE-BODY SCATTERING

A. Coupled-channel STM equation

A standard approach to calculate the spectrum of Efimov
states starts from the three-atom scattering matrix T3, which
exhibits poles at energies where three-body bound states
appear. In the absence of a genuine three-body force, T3 is
solely determined by two-body scattering processes. In our
model, those are mediated by the exchange of the dimers
b and φ as shown in Fig. 4. Evaluating these diagrammatic
expressions gives

T3(E; k′,k,p,p′) =
∑

i,j,�,�′=b,φ

g�g�′χ�(k′)G�i

(
E − k2

2m

)
TAD,ij

× (E; k,p)Gj�′

(
E − p2

2m

)
χ�′(p′). (20)

Here E is the total energy of the three incoming atoms, and the
momenta are specified in Fig. 4. The vertex TAD,ij denotes the
atom-dimer scattering matrix with (i,j ) ∈ (b,φ). This vertex

FIG. 4. Diagrammatic solution of the three-body problem in
the absence of a three-body force. The three-body T matrix T3 is
determined by the atom-dimer scattering vertex TAD and the exchange
of the molecule fields φ and b (thick lines). Thin (double) lines corre-
spond to atom (bare molecules) propagators. The vertex TAD is given
by the matrix-valued STM equation represented diagrammatically in
the last line.
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is determined by the matrix generalization of the Skornyakov-
Ter-Martirosian (STM) equation as depicted in Fig. 4 which
yields

TAD,ij (E; k,p) = T 0
AD,ij (E; k,p) +

∑
�,�′

∫
q
T 0

AD,i�′ (E; k,q)

×G�′�

(
E − q2

2m
, − q

)
TAD,�j (E; q,p),

(21)

where
∫

q ≡ ∫
d3q/(2π )3, and the sum extends over the fields

(b,φ). The function T 0
AD,ij refers to the tree-level diagram of the

atom dimer scattering, evaluated in the center-of-mass frame.
It is given by

T 0
AD,ij (E; k,p) = gi gjχi

(
p + k

2

)
χj

(
k + p

2

)
(E + i0+) − (k2 + p2 + k · p)/m

. (22)

For the following discussion it is convenient to define rescaled
atom-dimer vertices

tAD,ij (E; k,p) = k p

m gi gj

TAD,ij (E; k,p) (23)

and analogously for t
(0)
AD,ij , where k = |k| and p = |p|

[25,26,29]. Since we consider only low-energy scattering, we
may perform an s-wave projection of the atom-dimer vertex

tAD,ij (E; k,p) = 1

2

∫ 1

−1
d cos θ∠k,p tAD,ij (E; k,p), (24)

and analogously for t
(0)
AD,ij . This leads to the coupled-channel

s-wave projected STM equation

tAD,ij (E; k,p) = t 0
AD,ij (E; k,p) +

∑
�,�′

∫
dq

2π2
t 0
AD,i�′(E; k,q)

×m g� g�′ G�′�

(
E − 3q2

4m

)
tAD,�j (E; q,p).

(25)

The trimer binding energies ET are found from the poles
of the retarded atom-dimer T matrix in the complex energy
plane. Near those poles, tAD can be expressed in terms of a
pole expansion

tAD,ij (E; k,p) −−−−→
E→ET

bij (k,p)

E − ET + i0+ , (26)

where bij (k,p) is the residue function. The term t 0
AD,ij (E; k,p)

in Eq. (25) is suppressed by the pole in tAD,ij (E; k,p). Hence,
when inserting Eq. (26) into Eq. (25), the problem is reduced
to the solution of the Fredholm integral equation

bij (k,p) =
∑

�=d,φ

∫ ∞

0
dq Ki�(E; k,q) b�j (q,p) (27)

with kernel

Ki�(ET; k,q) =
∑

�′=b,φ

t 0
AD,i�′ (ET; k,q)

2π2
m g� g�′G�′�

×
(

ET − 3q2

4m

)
, (28)
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FIG. 5. Efimov three-body bound state spectrum for an open-
channel dominated Feshbach resonance as accurately described by
our background scattering model where the two-body scattering is
solely mediated by the field b. Colored lines are the binding energies
of the three lowest Efimov trimers, ET. The black line is the energy
of the two-body dimer state.

which can be solved via discretization [62]. Regarding dis-
cretized momenta as indices, Eq. (27) can be cast in matrix
form

C(E) · B ≡
(
1 − Kbb −Kbφ

−Kφb 1 − Kφφ

)(
bbb bbφ

bφb bφφ

)
= 0, (29)

which admits a nontrivial bound state solution at the zeros of
the determinant, det[C(E = ET)] = 0.

B. Bound states far from the Feshbach resonance

We first consider the simplified problem of pure background
scattering which is relevant for the description of the fully
coupled system far from the Feshbach resonance. Of particular
interest in this context is the regime where abg is so large that
the background channel can support Efimov trimers on its own.
Moreover, for abg > 0, it also supports a two-body bound state.

For pure background scattering, the determination of the
three-body bound state spectrum reduces to the solution of
det[1 − Kbb(E)] = 0. The resulting spectrum is shown in
Fig. 5 as a function of the dimensionless inverse scattering
length ā/a. Due to the finite range of the two-body inter-
action σφ = ā, the Thomas collapse is avoided [63] and a
deepest trimer state exists which meets the atom threshold
at a scattering length a−/ā = −8.64. At unitarity it has a
binding wave number κ∗ā = 0.249. As expected, these results
are identical to those obtained in our earlier calculation of the
Efimov spectrum within a two-channel Feshbach resonance
model in the limit sres � 1 and in the absence of some further
background scattering [39]. Remarkably, they also agree well
with those obtained for direct van der Waals interactions with
a shallow potential well within the hyperspherical approach
by Wang et al. [38] where the deepest trimer state at unitarity
appears at a wave number κ∗ā ≈ 0.216, while a−/ā ≈ −10.2
is the scattering length where the first trimer detaches from the
two-atom continuum.

An independent check of the reliability of our model for
describing open-channel scattering in potentials with a van
der Waals tail is obtained by studying the deviations from
universality for the three lowest Efimov states due to the
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TABLE I. Approach of universal scaling relations for a open-
channel dominated resonance where sres → ∞ as obtained from our
background scattering model.

n = 0 n = 1 n = 2

a
(n)
− / ā −8.644 −145.97 −3181.9

κ (n)
∗ ā 0.2489 0.0108 0.000475

a
(n+1)
− /a

(n)
− 16.886 21.798 22.630

κ (n)
∗ /κ (n+1)

∗ 23.068 22.698 22.694

κ (n)
∗ a

(n)
− −2.151 −1.575 −1.512

finite range of the interaction [64]. This is shown in Table I,
where each trimer bound state is labeled by an index n,
with n = 0 for the lowest one. Characteristic features of the
spectrum are the scattering lengths a

(n)
− where the nth trimer

meets the two-atom threshold and the binding wave number at
unitarity κ

(n)
∗ . Obviously, the universal limit where ratios like

a
(n+1)
− /a

(n)
− and κ

(n)
∗ /κ

(n+1)
∗ are given by the discrete scaling

factor eπ/s0 ≈ 22.6944 is approached rather quickly as n � 2.
These results may be compared with systematic studies of

the deviations from universal scaling by Deltuva [65] and by
Gattobigio et al. [66]. In particular, Deltuva has solved three-
and four-body integral equations with form factors chosen to
accurately reproduce the behavior of Lennard-Jones potentials.
Remarkably, our values for the ratios a

(1)
− /a−, a

(2)
− /a

(1)
− , and

a
(3)
− /a

(2)
− are within 4.9%, 0.7%, and 0.04% of Deltuva’s values

of 17.752, 21.935, and 22.639. A simple alternative to account
for finite-range effects was developed by Gattobigio et al. [66],
introducing an additive correction to the three-body parameter.
From a hyperspherical formalism they find for a Gaussian
potential κ∗/κ

(1)
∗ ≈ 23.0 which is within 0.2% of our predic-

tion. A similar level of agreement is obtained with the results
obtained within effective field theory by Ji et al. [67–69].

V. EFIMOV SPECTRUM AT NEGATIVE BACKGROUND
SCATTERING LENGTH

We now turn to the fully coupled model, starting with
the case of negative background scattering length. In Fig. 6
we show the Efimov spectrum for fixed resonance strength
sres = 1 and three different values of abg < 0. In order to better
understand the underlying physics, the spectrum is displayed as
a function of the inverse resonant part 1/ares = −mr�ν(B) of
the full scattering length which is proportional to the magnetic
detuning from resonance ν(B). As shown in Fig. 6, the relevant
regime is ā/|ares| < 1 while for values ā/|ares| of order 1 or
larger, the physics is completely determined by the background
scattering.

The different values of abg chosen in Fig. 6 are represen-
tative for three different physical situations: For background
scattering lengths whose magnitude is smaller or of order
ā, the resonant and full scattering lengths are practically
indistinguishable in the relevant regime. The Efimov spectrum
is then identical with the one obtained in our earlier work [39],
giving rise to a set of universal curves E/Ē as a function of
ā/a which only depend on the resonance strength parameter
sres. This is the case shown as dotted green lines in Fig. 6(b)
which correspond to the choice where abg = 0. Considerably

1.2 0.9 0.6 0.3 0.0 0.3 0.6 0.9
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0.0(b)

(a)

0

-10
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- 20
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0
10
20

FIG. 6. (a) Scattering length a(B)/ā as a function of the inverse,
resonant contribution ā/ares for abg/ā = −8. (b) Efimov spectrum
for the two deepest Efimov states for sres = 1. Green, blue, and red
curves correspond to abg/ā = 0, − 8, and −10, respectively. Black
lines give the respective atom-dimer thresholds. The red dot-dashed
line shows the trimer state in the background channel for the case of
abg/ā = −10.

larger values |abg| > ā of the background scattering length,
however, lead to a qualitatively different form of the Efimov
spectrum. As will be discussed in more detail in Sec. VII below,
this is relevant, e.g., for Feshbach resonances in 85Rb, where
abg significantly exceeds ā [36,70]. In this regime two different
cases have to be distinguished, depending on whether or not the
background interaction is able to develop a three-body bound
state on its own. In our model, this happens if the dimensionless
background scattering length abg/ā is either below or above
−8.64. Correspondingly, the two lowest Efimov states are
shown in Fig. 6 for abg/ā = −8 and abg/ā = −10 as blue and
red lines, respectively.

Apparently, the finite background scattering length leads
to a distorted spectrum and the Efimov states are shifted to
lower energies. Even right at resonance, where the scattering
is dominated by the Feshbach channel, the trimer energy is
substantially modified. In particular, in a situation where the
background channel supports a trimer bound state on its own,
the lowest Efimov state of the fully coupled problem does not
reach the scattering continuum as one moves far away from the
Feshbach resonance. Instead, as shown for the specific choice
abg/ā = −10, the lowest trimer adiabatically evolves into the
background-dominated Efimov state whose energy is shown as
the dot-dashed horizontal line in Fig. 6(b). The position where
the trimers meet the atom-dimer thresholds, ā/a

(n)
∗ , are also

affected. The reason is twofold: first, the trimer spectrum itself
is modified by the presence of a finite background scattering,
and second, also the specific shape of the atom-dimer threshold
depends on abg.

In Fig. 7(a) we study the dependence of the ratio a−/ā

as a function of the resonance strength sres for a range
of values of the background scattering lengths abg < 0. As
expected and emphasized in previous work [39], the result
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FIG. 7. Dependence of (a) the ratio ā/a− and (b) Efimov binding
wave number at unitarity āκ∗ on sres, for various values of a negative
background scattering length. The black solid lines reproduce the
results of Ref. [39].

a−/ā ≈ −8.64 obtained for abg = 0 which gives rise to van
der Waals universality is unaffected by even quite substantial
values of the background scattering length in the open-channel
dominated limit sres � 1. By contrast, for intermediate or
closed-channel dominated Feshbach resonances, a finite neg-
ative background scattering length has the effect to shift a−
toward the open-channel dominated result a−/ā ≈ −8.64.
Only for r� � |abg| the background scattering becomes again
irrelevant and the universal result a− → −10.3 r� for closed-
channel dominated resonances is reached.

In Fig. 7(b), the effect of background scattering on the
dimensionless binding wave number κ∗ā of the lowest Efimov
state at infinite scattering length is shown as a function of the
resonance strength sres. Apparently, background scattering now
has a less dramatic impact compared to the change in a−. In
particular, unlike for the value ā/a−, κ∗ā does not approach the
open-channel dominated results even when abg → −8.64 ā.

The finding that κ∗ is much less affected by background
scattering than a− is further confirmed in Fig. 8 where we
study the ratio κ∗a− as a function of sres. Here the dashed
line represents the universal result κ∗a− ≈ −1.508 valid for
highly excited Efimov states in the universal regime n � 1.
The qualitatively different impact of abg on κ∗ is apparent
through the strong deformation of the observed ratio a−κ∗.
In particular, the pronounced minima are a consequence of
the different dependence of ā/a− and κ∗ā on the resonance
strength sres which, e.g., for abg/ā = −8, becomes maximal at
sres � 0.01.

A qualitative understanding of the effects found above can
be obtained by considering the result (18) for the effective
range. In this expression, background scattering leads to a
renormalization of the Feshbach strength parameter r� of the
form [61]

r�
eff = r�

(
1 − abg

a

)2
= r�

(ares

a

)2
. (30)
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FIG. 8. Dependence of κ∗a− on the resonance strength sres, for
various values of a negative background scattering length. The
black solid line reproduces the result of Ref. [39] for abg = 0. The
horizontal dashed line shows the prediction from universal theory
κ∗a− = 1.50763 . . . [25,51,71].

Provided that both a and the background scattering length
are negative, the effective value r�

eff of the characteristic
length associated with the Feshbach resonance is thus reduced
compared to its value in the case of pure resonant scattering.
Recalling that the resonance strength is sres = ā/r�, this shifts
the physics toward the more open-channel dominated regime.
This explains the observation in Fig. 7(a) that for abg = −8 ā

the result a− = −8.64 ā characteristic for an open-channel
dominated resonance remains valid down to very small values
of the resonance strength sres. In fact, when a → abg the param-
eter r�

eff even approaches zero. If in this case the background
scattering length is itself close to the “critical” value −8.64 ā,
one recovers the open-channel dominated result a− = −8.64 ā

independent of the resonance parameter r�.
The observation that the wave number κ∗ is much less

affected by background scattering can be explained by the fact
that κ∗ is measured at a → ∞ and thus the renormalization
(30) of r� is absent. Changes in κ∗ therefore originate from
beyond effective range effects which are probed only due to
the large binding energies involved.

VI. EFIMOV SPECTRUM AT POSITIVE BACKGROUND
SCATTERING LENGTH

Based on a simple statistical argument, van der Waals
interactions in a single open channel give rise to a positive
background scattering length in three out of four cases [72]. In
fact, the first observation of Efimov physics had been made
close to a Feshbach resonance in 133Cs [3,35,73] which is
characterized by a rather large positive value abg = 18.6 ā of
the background scattering length. In such a case, the spectrum
of the few lowest three-body bound states exhibits a number
of features which differ from the conventional picture with
self-similar energy versus inverse scattering length curves
applicable near the accumulation point at E = 1/a = 0. These
features are caused by the presence of a mutual influence
of both two- and three-body bound states in the background
channel, a complication which is not present for negative values
of abg, because in this case the background channel does not
support two-body bound states on its own.

Quite generally, a weakly bound two-body state exists
whenever the full scattering length a(B) is positive. Near
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FIG. 9. (a) Scattering length a(B)/ā as function of the inverse,
resonant contribution ā/ares for abg/ā = 18.6. (b) The resulting
Efimov spectrum for the three deepest Efimov states (solid colored
lines) for sres = 596 as realized for the Feshbach resonance at −12.38
G in 133Cs [74]. Dashed black lines give the atom-dimer thresholds.
The dot-dashed lines show the trimer states in the background channel.

the resonance, its binding energy has the universal value
εD = h̄2/ma2. Moving away from the resonance on the side
where a(B) is still positive, the two-body bound state becomes
background dominated. In the limit abg � ā, its energy ap-
proaches εD → h̄2/ma2

bg which is independent of the detuning
ν(B) ∼ (B − B0). A similar situation is present in the three-
body sector, provided the background channel can support its
own trimer bound states.

In order to exhibit the generic behavior of the Efimov
spectrum found in such a case, we have chosen a strongly
open-channel dominated Feshbach resonance with sres = 596
and a rather large value abg = 18.6ā of the background
scattering length as realized for the Feshbach resonance at
−12.38 G in 133Cs [74]. For this value of abg, the background
channel supports two three-body bound states whose energy
is unaffected by a change of the magnetic field near the
resonance. They are shown as dot-dashed horizontal lines in
Fig. 9(b), where the spectrum of both two- and three-body
bound states in the full model is plotted as a function of the
rescaled detuning −1/ares = mr�ν(B). The corresponding full
scattering length a(B) is shown in Fig. 9(a). When plotting the
spectra as a function of −1/ares, the regimes with a > 0 appear
on both sides of the resonance. For a(B) > 0, a weakly bound
dimer exists in the spectrum (dashed black line) with universal
binding energy εD = h̄2/ma2 close to resonance at ν(B) = 0.
As one moves away from the resonance to the left, a(B) → abg,
the dimer state becomes “background dominated.” Its energy
εD is then given by the dimer binding energy εbg � h̄2/ma2

bg in
the background channel. The dimer energy at negative detuning
is adiabatically connected to the right hand side of Fig. 9(b),
where for large ν(B) > 0 again a(B) → abg. As one moves
from there inward to the magnetic field where the full scattering
length a(B), shown in Fig. 9(a), crosses zero, the dimer energy
crosses over to very large values and will ultimately follow

the energy of the closed-channel molecular state described by
ν̃φ = δμ(B − Bc); see Fig. 3.

To understand the dependence of the three-body binding
energies as a function of the detuning away from resonance, we
first observe that the lowest Efimov state has to be adiabatically
connected to the lowest Efimov state in the background channel
as one moves from unitarity toward the far left side of Fig. 9(b).
This statement holds for every Efimov quantum number n

for which a trimer state exists in the background channel. In
Fig. 9(b) these are two states. The corresponding states in the
coupled problem remain necessarily below the atom-dimer
threshold as one moves away from unitarity to the left in
Fig. 9(b). As a consequence of the adiabatic connection of the
left and right hand side of the spectrum, those trimer states will
merge with the atom-dimer threshold (dashed line) at positive
values of ν(B). In contrast, trimer states with a quantum
number n that is larger than the number of trimers supported
by the background channel will always meet the atom-dimer
threshold at negative detuning ν(B); see for instance the green
line in Fig. 9(b).

Let us now consider an increase of the background scatter-
ing length abg. This has a twofold effect on the background
energy spectrum: First, the background dimer becomes more
weakly bound, and second, the background trimer states move
to lower energies. As can be seen from Fig. 5, the energy
of the background trimer states depends only weakly on
the background scattering length. A substantial change only
appears when abg is increased by approximately the Efimov
factor eπ/s0 ≈ 22.6, which lifts a new background trimer state
into the spectrum. Together with the weak dependence of the
background trimer energies on abg this has the consequence
that the background trimer energies set a lower bound on the
energy of trimers in the fully coupled problem with the same
quantum number n. Again, by continuity it follows that on the
side of negative detuning from resonance, they are always more
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FIG. 10. Dependence of (a) the ratio ā/a− and (b) Efimov binding
wave number at unitarity āκ∗ on the resonance strength sres, for various
values of a positive background scattering length. The black solid lines
reproduce the results of Schmidt et al. [39].
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TABLE II. Predictions related to the van der Waals universality of the ratio a−/ā for specific Feshbach resonances. The first columns give
the hyperfine states (F , mF ), the position of the Feshbach resonance B0, its strength sres, and background scattering length abg/ā. Note that sres

is subject to systematic corrections since it has not necessarily been determined by the measurement of the detuning dependence of the dimer
binding energy as given by Eq. (15). Predictions are compared to experimental observations where available.

δB− = B− − B0 (G) −a−/ā a
(n+1)
− /a

(n)
− B

(n)
− − B0 (G)

F,mF B0 (G) sres abg/ā (exp.) (model) (exp.) (model) (abg = 0) (n = 0) (n = 1) (n = 1) (n = 2)

7Li [76] 1,1 737.69 0.56 −0.644 15.01 5.48 8.11 21.08 23.5 24.94 22.81 0.213 9.34 × 10−3

39K [52] 1,1 402.4 2.8 −0.47 2.28 2.25 11.19 11.39 11.8 20.74 22.39 0.104 4.64 × 10−3

[52] 1, − 1 560.72 2.5 −0.47 2.66 2.35 10.38 11.69 12.2 21.00 22.42 0.107 4.79 × 10−3

85Rb [36] 2, − 2 155.04 28 −5.65 −15.9 −20.03 9.68 8.68 9.1 17.90 22.00 −0.409 −0.0180

[70] 2, − 2 532.3 4.39 −6.05 −5.01 8.82 10.8 21.32 22.44 −0.0764 −0.00330

[70] 2,2 852.3 2.41 −5.01 1.42 9.24 12.3 23.38 22.60 0.0285 0.00123
133Cs [74] 3,3 −12.38 596 18.6 19.94 20.01 9.11 8.82 8.7 16.64 21.78 3.319 0.171

[74] 3,3 548.8 157.7 25.1 4.5,5.91 5.38 10.75,10.00 9.70 8.7 15.42 21.65 1.070 0.0572

[32] 3,3 786.8 1692 21.8 66.1 67.20 10.06 8.72 8.6 16.77 21.79 12.20 0.639

weakly bound than the background trimer while at positive
detuning they must exceed the background trimer energy.

Whether this effect shifts energies of the trimers at unitarity
upward or downward depends on their unperturbed energies
for abg = 0. For instance, as the resonance becomes closed-
channel dominated, the wave number of the unperturbed trimer
at unitarity decreases, see Fig. 10(b), and ultimately will scale
as κ∗ ∼ 1/r� [39,50]. At the same time the trimer energies in
the background channel are not affected by the change in r�.
Thus, r� effectively tunes the position of the trimer state in
between the dashed horizontal lines in Fig. 9(b). The binding
wave number κ∗ can hence either grow or decrease with respect
to its unperturbed value; cf. Fig. 10(b). For very large values of
abg, one finds in fact that the coupled-channel result oscillates
several times around its value for abg = 0 (black solid line) as
sres is varied.

Finally, we consider the values of a
(n)
− on the right side of

the resonance in Fig. 9(b) which are also substantially affected
by the presence of background scattering. As is shown in
Fig. 10(a), the change in the scattering length a− depends
strongly on the resonance strength parameter sres. In contrast
to the case of negative background scattering lengths, the
ratio a−/ā now evolves toward larger values as abg increases.
This observation can again be understood in terms of the
renormalized effective parameter r�

eff = r�(1 − abg/a)2 which
appears in Eq. (18). Obviously, r�

eff is shifted to larger values
for a < 0 and abg > 0. A positive background scattering length
therefore shifts the condition for the threshold scattering length
a− to that of a more closed-channel dominated resonance.
For closed-channel dominated resonances the unperturbed
abg = 0 value of a− → −10.3 r� is very large [cf. black line in
Fig. 10(a)]. The effect of background scattering on the value of
a− therefore becomes increasingly weaker, as is evident from
Fig. 10(a). Since with increasing values of the total scattering
length the effect of abg > 0 is weakened, also the value of
a

(1)
− for the first excited Efimov state is much less affected at

given abg.

VII. COMPARISON TO EXPERIMENTS

In the following, we will apply our model in quantitative
terms to a selected number of Feshbach resonances where Efi-

mov states have been observed. From the outset, it is important
to realize that the scattering length a is typically not a direct ob-
servable. Instead, a magnetic field is tuned across a given posi-
tion B = B0 of the Feshbach resonance and the associated scat-
tering length a(B) is inferred using a parametrization which ei-
ther follows from a specific model calculation or a phenomeno-
logical parametrization as in Eq. (14). Obviously, this conver-
sion is not unique, and it is important to keep this ambiguity in
the translation of the magnetic field to a given scattering length
in mind when the comparison to experiments is made.

The specific resonances considered are listed in Table II,
where we restrict ourselves to s-wave Feshbach resonances
which are well isolated. Specifically, we apply the criterion
proposed by D’Errico et al. [75] who define an isolated
Feshbach resonance as one where the distance in magnetic field
between two resonances at fields B0,1 and B0,2 is much larger
than the distance �B of either resonance to its respective zero
crossing, i.e., β ≡ |B0,1 − B0,2|/max{|�B1|,|�B2|} � 1. For
all the resonances studied in Table II this criterion is well
satisfied, with β > 5.9.

In Table II, we provide quantitative results for the magnetic
field B− where the lowest Efimov state meets the atomic
threshold with respect to the position of B0. Within our model,
this quantity is given by δB = B− − B0 = −h̄2[mr�δμ(a− −
abg)]−1. Here, we assume the differential magnetic moment at
the Feshbach resonance δμ(B0) to be unchanged compared to
its value at the three-atom threshold δμ(B−). If this is not the
case, a corrected value can be obtained by multiplication of
δB− by the factor δμ(B0)/δμ(B−).

Remarkably, our results for δB− ≡ B− − B0 are in good
agreement with experimental data on three resonances in
133Cs which all feature a large positive background scattering
length abg. We note that a narrow d-wave resonance cuts
through the broad s-wave resonance at 548.8 G which splits the
profile of a(B) into two branches just where the Efimov state
would appear in an unperturbed situation. In consequence, the
scattering length a− is realized experimentally for two close
by values of the magnetic field. Since in our model we do
not account for the d-wave resonance, our prediction lies in
between the two observed magnetic field values.

A detailed study of Efimov loss features at Feshbach reso-
nances in 39K was performed by Roy et al. [52]. In particular,
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they studied a number of resonances of intermediate strength
sres � 1. As shown in Table II, we find good agreement between
theory and experiment for the two resonances which fulfill
β � 1 and which also reach into the regime of intermediate
strength. Quantitative predictions for the other resonances
examined in Ref. [52] where β � 1 probably require a de-
tailed coupled-channel calculation which accounts for multiple
closed-channel dominated Feshbach resonances.

Concerning the case of 85Rb, the Efimov effect near an iso-
lated resonance at 155.04 G has been measured by Wild et al.
[36]. The resonance is open-channel dominated and features a
large negative large of abg [77]. In the work of Wild et al., only
the value of a− is given but not the specific magnetic field where
the Efimov loss feature has been observed. Inferring δB− from
the scattering length parametrization a(B) = abg(1 − �B

B−B0
)

with abg taken from Ref. [36], we find reasonable agreement
between theory and experiment, while a direct comparison with
the given value of a−/ā = −9.68 is even better. In addition,
in Table II we provide predictions for two other resonances in
85Rb which so far have not been explored experimentally.

Efimov states in 7Li have been studied by Dyke et al. [76]
and Gross et al. [6,8]. For the isolated Feshbach resonance
at B0 = 737.7 G the background scattering length abg/ā =
−0.644 is rather small and one might expect a negligible effect.
It comes as a surprise, therefore, that the experimental result
a−/ā = −8.11 still follows the open-channel dominated result
despite the rather small value sres = 0.56 of the resonance
strength. Since abg is so small, our theory predicts only a
minor effect of background scattering on a−. The underlying
reason for this discrepancy remains unclear. A possible route
to resolve this puzzle may be found in the observation that
the effective range calculated within our model at the position
of a− differs significantly from the value stated in [76] which
underlies their parametrization of the Feshbach resonance.

As discussed above, the different parametrizations of the
scattering length profiles a(B) as a function of the magnetic
field can be a source of discrepancies when experimental
results are compared to specific theoretical models. This is
highlighted by a comparison of our predictions for a− to the
observed values as shown in the fourth column of Table II;
see in particular the case of 133Cs. For instance, while our
findings for B− − B0 are in excellent agreement with the
results found by Berninger et al. [35] and Huang et al. [32], the
prediction for a− differs substantially from the observed value.
A possible reason for this discrepancy may be found in the fact
that in [32,74] coupled-channel models (M2012) were used to
identify the magnetic field dependence of the scattering length
which may not follow the simple analytical form of a(B) in
Eq. (14). Also the discrepancy in the magnetic field δB− for
85Rb is likely rooted in a similar parametrization dependence.
In the last two columns in Table II, we show predictions for
a

(n)
− and the corresponding values in terms of magnetic field for

excited Efimov states. It is evident that a verification of these
predictions requires a high magnetic field sensitivity.

Finally, we turn to a more detailed discussion of the Efimov
spectrum near Feshbach resonances in 133Cs which exhibit
large positive values of the background scattering length.
Specifically, observables which are affected quite strongly by
a large value of abg are the scattering lengths a

(n)
∗ where the

trimers meet the atom-dimer threshold. In Fig. 9(b) we have

already studied the spectrum for parameters as realized for the
Feshbach resonance at −12.38 G [3,74]. For this resonance the
lowest two trimers meet the atom-dimer threshold at positive
values of ν(B). This behavior was theoretically described first
by Massignan et al. [78] and by Lasinio et al. [61,79]. While
our results are consistent with these model-specific earlier
ones—in particular regarding the presence of two Efimov states
merging into the atom-dimer threshold at positive values of
ν(B)—we find no evidence for an additional trimer state that
never crosses the atom threshold as predicted in [78]. Specifi-
cally, a quantitative comparison of our predictions for the merg-
ing of the lowest trimer state into the atom-dimer threshold
can be made with the experimental results based on atom-
dimer relaxation [4]. The measured values a

(1)
∗ = 3.83 ā and

a
(1)
∗ /a− = −0.43 are significantly smaller than those obtained

within universal theory, where a
(1)
∗ /a− = −1.07. Our model,

in turn, gives a
(1)
∗ = 2.71 ā and a ratio a

(1)
∗ /a− = −0.31, in

quite reasonable agreement with the experimental results [4].

VIII. INFLUENCE OF A THREE-BODY FORCE

In this section, we address the question of whether genuine
three-body forces may change the spectrum of three-body
bound states substantially compared to the results obtained
under the assumption of a sum of two-body interactions. Three-
body forces arise naturally when evaluating the induced dipole-
dipole interactions between neutral atoms within third-order
perturbation theory. This leads to a microscopic, long-range
three-body interaction potential of the form

WAT = γ
1 + 3 cos θ12 cos θ23 cos θ31

r3
12r

3
23r

3
31

, (31)

where θij and rij are the angles and side lengths of the triangle
spanned by the three atoms. The interaction (31) is known
as the Axilrod-Teller potential [80] and it is valid at atomic
separations rij much larger than a short distance scale r0

where the effects of exchange and details of the short-range
interaction come into play [81–83]. The coefficient γ depends
on the specific atoms chosen and it has been calculated to high
precision for various mixtures of atom species by Babb and
coworkers [83]. Long-range Axilrod-Teller forces have only a
small effect on the three-body spectrum provided their typical
energy scale EAT,vdW ≡ WAT(rij � lvdW) is much smaller than
the two-body van der Waals energy EvdW. As shown in [81,83]
this is indeed the case, with typical values EAT,vdW/EvdW �
0.005, e.g., for the case of lithium.

By contrast, the short-distance behavior of the three-body
force, where exchange effects become relevant, is largely
unknown. In particular, the short-distance behavior is not
expected to exhibit universal features like those present in the
finite-range corrections of the two-body scattering amplitude,
which are fixed by the van der Waals length. Moreover, there
is no a priori reason why they should be negligible compared
to those resulting from the sum of two-body contributions.
In the following, therefore, we study the consequences for
the lowest Efimov trimers resulting from a three-body force
which is short range in nature. In order to simplify matters, we
neglect background scattering; i.e., the system is described in
the two-body sector by Eq. (1). For the description of a short-
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FIG. 11. Tree-level diagram which gives the effective, three-body
force ∼(ψ∗ψ)3 upon integrating out the field φ.

range three-body force, we introduce a phenomenological
atom-dimer contact interaction

H3B = λAD

∫
d3rφ∗(r)φ(r)ψ∗(r)ψ(r), (32)

where the dimensionless coupling strength λAD� is defined at a
UV cutoff scale�, that is related to the range of the microscopic
three-body force. Integrating out the dimer field φ yields a
momentum-dependent three-atom interaction ∼(ψ∗ψ)3 which
is determined by the evaluation of the tree-level diagram shown
in Fig. 11.

The introduction of the atom-dimer force λAD yields an
additional contribution to the tree-level exchange diagram
shown in the lower panel of Fig. 4. This leads to a modification
of the STM equation which reads [in this section we neglect
background scattering, set 2m = 1, and define tAD(E; k,p) =
tAD,φφ(E; k,p)]

tAD(E; k,p) = t 0
AD(E; k,p) + 2kpλAD

+
∫ �

0

dq

4π2

[
t 0
AD(E; k,q) + 2kpλAD

]

× g2
φGφφ

(
E − 3q2

2

)
tAD(E; q,p). (33)

In the absence of λAD the integral of the right hand side is
UV convergent for any value of sres due to the functional
form of t 0

AD(E; k,q). When λAD �= 0, explicit UV regular-
ization with cutoff � is, however, again required for open-
channel dominated resonances. In contrast, for closed-channel
dominated resonances the function Gφφ(E − 3q2

2 ) provides
sufficient regularization due to the presence of the large value
of r�. The bound state equation (27) is modified as well and
becomes [we define b(k,p) ≡ bφφ(k,p)]

b(k,p) =
∫ �

0
dq

t 0
AD(ET; k,q) + 2kpλAD

4π2

× g2
φGφφ

(
ET − 3q2

4m

)
b(q,p), (34)

which is solved by discretization.
In Fig. 12 we show the predicted ratio ā/a− as function

of sres for the specific value �ā = 3 of the UV cutoff (the
dependence on �ā is shown in Fig. 13). While the solid line
displays the result for vanishing three-body forces already
shown in Figs. 7(a) and 10(a) as solid black lines, the shaded
region corresponds to finite values of λAD� in the interval
(0.1 . . . − 0.01), covering the range from strongly repulsive to
weakly attractive three-body interactions. Within this range,
three-body forces give rise to a change in the ratio a−/ā which

0 2 4 6

�0.15

�0.10

�0.05

0.00

repulsive 3B-force

attractive 3B-force

no 3B-force

FIG. 12. The ratio ā/a− as function of sres. The shaded region
describes the effects of a short-range three-body force with values
λAD� = 0.1 (repulsion) up to λAD� = −0.01 (attraction) defined at
an UV cutoff scale �ā = 3.

varies between −7 and −9.75 in the open-channel dominated
limit sres � 1.

For closed-channel dominated resonances our model pre-
dicts that three-body forces have no effect at all on ā/a−,
independently of the sign of λAD. This can be understood from
the presence of Gφφ in Eq. (33) which acts as a regulator of
the integral and hence suppresses the influence of λAD. As
expected, repulsive interactions shift ā/a− toward larger values
while attractive ones lead to a decrease of ā/a−. At fixed cutoff
scale �ā, the ratio a−/ā converges to a finite value for an
arbitrarily large, repulsive three-body force λAD� � 1, with
a shift of a−/ā not exceeding 15% for reasonable values of
�ā > 3. This result reflects the fact that for repulsive λAD > 0
the three-body term in Eq. (32) becomes irrelevant in the limit
� → ∞ as can be seen in Fig. 13 where the cutoff dependence
of ā/a− is shown.

By contrast, attractive three-body forces have a rather dra-
matic effect on the observed three-body physics. In particular,
we find that for sufficiently strong attraction three-body forces
can give rise to a non-Efimov three-body bound state that is
energetically well separated from the Efimov trimers. The fact
that such an additional three-body bound state has never been
observed might be seen as an indication that three-body forces,
if purely attractive, have to be weak.

0 5 10 15 20
- 0.12

- 0.10

- 0.08

- 0.06

- 0.04

- 0.02

0.00
repulsive three-body force

0.1
1
10
1000

0

FIG. 13. UV cutoff dependence of ā/a− for repulsive three-body
forces given by the dimensionless coupling λAD/ā.
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To conclude, our qualitative model (32) for short-range
three-body forces provides a possible explanation for the so far
unexplained observation that the ratio a−/ā takes values which
depend on the specific alkali atom or Feshbach resonance
but always remains confined within the range between −8
and −10. This explanation relies on the assumption that the
underlying short-range three-body forces, which are clearly
not universal between different alkali atoms, are repulsive in
nature. Note that a trivial source of the variation of the ratio
a−/ā, namely the specific shape of the transfer function χ (r)
which reflects the detailed form of the closed-channel bound
state wave function appears not to be sufficient to account
for the observed range found for the ratio a−/ā. Indeed,
choosing, e.g., a Gaussian cutoff χ (q) = exp (−q2σ 2

φ/2), one
finds a− = −7.4 lvdw for open-channel dominated resonances
instead of a− = −8.3 lvdw for the exponential cutoff used here
and in the previous work [39]. We have found no reasonable
choice of χ that is able to yield values |a−|/ā as large as 10
[30].

IX. CONCLUSION

The unexpected observation of van der Waals universality
in the Efimov effect of ultracold atoms has triggered a large
number of theoretical investigations trying to understand the
physics behind this quite surprising effect. In simple terms,
the origin of van der Waals universality is connected with
the fact that the finite range, which appears in the low-energy
scattering of ultracold atoms, is fixed by the van der Waals or
mean scattering length. At the two-body level, this was realized
some time ago by Flambaum, Gribakin, and Harabati [59]. The
fact that the van der Waals length sets the scale not only for the
two-body scattering amplitude at low energies but also for the
three-body amplitude, whose poles near zero energy determine
the scattering lengths a

(n)
− , can be seen explicitly within the

hyperspherical approach; see, e.g., Refs. [38,42–44,84].
A complementary approach to understand the origin of van

der Waals universality, which covers Feshbach resonances of
arbitrary strength sres, was developed by Schmidt et al. [39].
Here, ā � lvdw appears as the natural unit of Efimov physics as
a consequence of the finite range σφ of the Feshbach coupling,
which is connected with the mean scattering length by σφ = ā.
In addition, the approach shows that van der Waals universality
is restricted to open-channel dominated resonances, while in
the opposite regime sres 
 1, it is r� rather than the van der
Waals which sets the relevant length scale.

In our present work, we have studied how these results
are changed by finite background scattering and short-range
genuine three-body forces. As already pointed out in [39], it
turns out that van der Waals universality is unaffected by back-
ground scattering if the Feshbach resonance is open-channel
dominated. In practice, for finite values of the Feshbach
resonance strength sres, ratios like a−/ā change according to
the value of background scattering length, with a restricted or
an extended regime of validity of van der Waals universality
depending on whether abg is either positive or negative.

Concerning repulsive, short-range three-body forces we
find the intuitively expected trend that −a−/ā is shifted toward
larger values which is, however, bounded from above by a
value close to 10 for an arbitrary large short-range repulsion.

Despite a possibly wide atom-specific variation of short-range
repulsive three-body forces, the ratio −a−/ā thus remains
within a narrow range, consistent with the different values
found experimentally.

As is shown in Table II, quantitative comparison of our
model with experiment gives rise to reasonable agreement for
a number of Feshbach resonances. In addition, our predictions
for the merging of the lowest trimer state into the atom-dimer
threshold for the Feshbach resonance in 133Cs at B0 = −12.38
G is encouraging; see the discussion at the end of Sec. VI.
Yet, a number of unexplained features remain. For instance,
the observed ratio a−/ā � −8.1 for the 7Li resonance at
B0 � 738 G is still in the regime expected for an open-channel
dominated Feshbach resonance, despite the apparently rather
small value sres = 0.56, for which our model predicts a−/ā �
−21. As discussed above, this may be related to the problem
of inferring a proper value of the r� parameter and thus the
resonance strength. A second major discrepancy appears in the
case of the 133Cs resonance at B0 � 787 G, where the observed
ratio a

(1)
− /a− = 21 ± 1.3 [32] differs substantially from our

prediction a
(1)
− /a− = 16.77. In fact, as expected for a large

value sres � 1692, our result is not far from the value a
(1)
− /a− =

17.75 obtained by Deltuva for a single-channel Lennard-Jones
potential [65]. By contrast, the two-spin generalization of
this model by Wang and Julienne [44] gives a

(1)
− /a− = 20.7

for the resonance at B0 = −12.38 G, which has a similar
value of the background scattering length and is also in the
open-channel dominated limit with sres � 596. The origin
of this considerable discrepancy between our model and the
experimentally observed value remains an open question.

Finally, we emphasize a basic point about the distinction
between van der Waals universality and the one found in
ratios like a

(n+1)
− /a

(n)
− → eπ/s0 for large n. The latter kind of

universality is exact and it results from a limit cycle flow
in the three-body scattering amplitude at low energies. Van
der Waals universality, in turn, is not an exact statement.
It just tells us that—for open-channel dominated Feshbach
resonances—the van der Waals length sets the characteristic
scale both for the scattering lengths a

(n)
− where Efimov trimers

first appear and for the corresponding inverse wave numbers
1/κ

(n)
∗ of their binding energies at infinite scattering length.

The precise value of ratios like −a−/ā or κ∗ā is, however,
not universal. It is only within a single-channel model for
zero-energy resonances in deep potentials with a van der Waals
tail where the ratio a−/lvdw = −9.45 becomes a universal
number [42]. In the realistic case of Efimov states accessible
via Feshbach resonances, however, the numerical value of
dimensionless ratios like a−/lvdw depends on the specific
choice of the transfer function χ (r). In practice, fortunately,
the ratios are not very sensitive to this choice, leading to a
narrow range of possible values, e.g., for a−/lvdw, and thus an
apparent universality which, moreover, is only weakly broken
by genuine three-body forces.

Another point which should be mentioned in this context is
related to the question of whether van der Waals universality,
which so far has been tested only in observables like a− or
a

(1)
− (i.e., low-energy properties of the three-body scattering

amplitude), extends to larger wave numbers, in particular to
the binding wave number κ∗ of the deepest Efimov trimer. An
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experimental test requires a measurement of binding energies
near infinite scattering length, which is rather difficult due to
the short lifetimes involved. Recent progress in this direction
has been achieved in an experiment at JILA by ramping a
unitary Bose gas of 85Rb to the weakly interacting regime and
measuring the number of Efimov trimers from the density-
independent contribution to the lifetime [85]. A different way
of inferring the spectrum of three-body bound states in a
moderately degenerate gas at unitarity has been discussed by
Barth and Hofmann [86]. Based on experimental results on
the behavior of the momentum distribution n(q) at large wave
vectors q by Makotyn et al. [87], they have shown that there are
oscillations on top of the dominant dependence q4 n(q) → C2

determined by the two-body contact C2 which are sensitive to
the position of the lowest Efimov bound state at wave vector
κ∗. A test of the prediction that κ∗ā � 0.25 for this state is
again determined by a quasiuniversal value in terms of ā would
provide a much stronger test of van der Waals universality than

has been possible so far. In particular, this would also shed
light on the question of whether the lowest state can indeed be
interpreted in terms of an Efimov picture. This is not the case
in helium 4, where the wave function of the lowest three-body
bound state differs substantially from what is predicted in
Efimov’s scenario; see [23,46]. For ultracold atoms, in turn,
the Efimov description might hold even for the lowest state
because—in contrast to helium 4—there is a wide separation
between the short-range scale σ̄ and the van der Waals length.
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