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Four identical spinless bosons with purely attractive two-body short-range interactions and repulsive three-body
interactions under external spherically symmetric harmonic confinement are considered. The repulsive three-body
potential prevents the formation of deeply bound states with molecular character. The low-energy spectrum with

vanishing orbital angular momentum and positive parity for infinitely large two-body s-wave scattering length
is analyzed in detail. Using the three-body contact, states are classified as universal, quasiuniversal, or strongly
nonuniversal. Connections with the zero-range interaction model are discussed. The energy spectrum is mapped
out as a function of the two-body s-wave scattering length a,, a;, > 0. In the weakly to medium-strongly interacting
regime, one of the states approaches the energy obtained for a hard-core interaction model. This state is identified
as the energetically lowest-lying “BEC state.” Structural properties are also presented.
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I. INTRODUCTION

The unitary two-component Fermi gas is realized when the
s-wave scattering length a, between the spin-up and spin-down
atoms is infinitely large [1]. In the limit that the range of the
interspecies interactions goes to zero, the unitary Fermi gas has
been shown to be fully universal, i.e., the infinitely strongly
interacting gas is characterized by the same number of length
scales as the noninteracting gas [2—4]. The relevant length
scales in the universal regime are the de Broglie wavelength
and the average interparticle spacing that is related to the
density of the homogeneous system [5]. For the harmonically
confined system with angular frequency w, the latter scale is
typically replaced by the harmonic-oscillator length ay,, where
ano = +/h/(mw). Here, m denotes the atom mass.

Universality implies that the realistic two-body inter-
action potentials can be replaced by a two-body bound-
ary condition on the many-body wave function Wy in
the limit that the interparticle distance coordinate rj; of
particle j (a spin-up atom) and particle £ (a spin-down
atom) goes to zero while all other coordinates (7j +7)/2,

FloowosFj—13Fj41, o« o sTk—1,Tk41, - - . .7 are being held fixed:
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Here, N denotes the total number of particles and 7; the
position vector of the jth particle. No boundary conditions
in the three- or higher-body sectors are needed, i.e., the Pauli
exclusion principle “naturally” guarantees that the probability
to find three or more particles on top of each other vanishes.
The infinitely strongly interacting two-component Fermi gas
is found to be mechanically stable and three-body losses are
so low that the lifetime is large compared to the time scale
associated with the Fermi energy and the other time scales of
the system [6,7].
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The situation for identical bosons is fundamentally different
than that for two-component fermions. Unless the two-body
boundary condition [see Eq. (1)], which is enforced for every
pair, is supplemented by a three-body boundary condition
(this can be achieved through a three-body potential or via
a momentum cutoff, among others), the lowest energy of the
Bose gas at unitarity is unbounded from below, i.e., the Bose
gas undergoes a generalization of the Thomas collapse, which
was first studied for three particles by Thomas in 1935 in the
context of the triton [8]. The Thomas collapse is intimately
related to the existence of an infinite tower of Efimov states
for three identical bosons in free space [9-11] (no external
confining potential).

When approaching the low-temperature unitary regime
adiabatically, either by tuning the s-wave scattering length at
low temperature or by decreasing the temperature at large s-
wave scattering length [ 12—19], the system exhibits detrimental
losses due to three-body recombination by which energetic
atoms are being expelled from the trap. These three-body
recombination processes are governed by Efimov physics
[20-23]. Probing the gas at unitarity therefore requires jumping
rapidly and nonadiabatically to this regime. Following nona-
diabatic pathways, the unitary Bose gas—presumably in local
but not in global equilibrium—has been probed experimentally
using interferometric protocols [15,18]. The time-dependent
contact at unitarity has been extracted and evidence that three-
body Efimov states are being occupied during the nonadiabatic
ramp sequence has been presented [13,18,19].

The theoretical treatment of the unitary Bose gas is highly
nontrivial and a variety of approximate static and dynamic
techniques have been applied [24-37], producing results that
do not seem to yield a simple consistent physical picture.
One line of work considers two- or three-body systems under
external harmonic confinement [18,28,36]. Motivated by the
physical insights that have already been gained from these
two- and three-body studies, the present work considers the
next larger system, namely the harmonically trapped four-body
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system, for various positive two-body s-wave scattering
lengths ranging from zero to infinity. The numerically obtained
energy spectrum and the associated eigenstates are character-
ized.

The remainder of this paper is organized as follows.
Section II introduces the system Hamiltonian and pertinent
theoretical background. Sections III and IV present our results
for the harmonically trapped three- and four-boson systems,
respectively. Lastly, Sec. V presents a summary and an outlook.

II. SYSTEM HAMILTONIAN

We consider N identical bosons with mass m under spheri-
cally symmetric external confinement with angular frequency
. The system Hamiltonian Hy,

Hiot = Hem. + H, (2)
can be divided into the center-of-mass Hamiltonian H, , ,

—h?
Hc.m. = S as Vz’
2M Rc.m

and the relative Hamiltonian H,

1 52
+ —Mw’R

FM R, @)
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H = Z( pj+2mw p]>+Vim(p1,...,pN_1)- 4)

Here, M denotes the total mass, M = Nm, and Rcm the center-
of-mass vector, RCm =N +---+7y), with7 r; denoting
the position vector of the jth partlcle measured with respect
to the center of the trap. The relative Hamiltonian H is written
in terms of the Jacobi vectors p; and the associated Jacobi
masses ( ;. For the purpose of this work, the explicit definition
of the Jacobi coordinates is irrelevant. The important point is
that the interaction potential Vi, is independent of the center-
of-mass vector R, . Correspondingly, the eigenstates Wy of
H,, separate into a center-of-mass piece W, (Rcm.) and a
relative piece W (01, . ..,0N_1),

e Rew)¥(B1, ... on-1). (5

Since the Schrodinger equation for the center-of-mass vector
R is identical to that of a three-dimensional harmonic
oscillator, the solutions can be written down readily. Our goal
in this paper is to solve the relative Schrodinger equation

7151\/71): Ew(ﬁlw-'vﬁNfl)' (6)

Realistic atom-atom interaction potentials support many
two-body bound states. Consequently, the degenerate N-body
gas (even the two-component Fermi gas) corresponds to a
highly excited metastable state. To make the N-body problem
tractable, we work with low-energy interactions that eliminate,
from the outset, N-body states that correspond to deeply bound
molecular clusters. It should be noted that this simplification
also eliminates decay channels that are needed for three-body
recombination processes, which are known to play arole in the
quench experiments, to occur. In these experiments, the Bose
gas disappears before global equilibrium is reached, restricting
observations to systems that are in local equilibrium but not
in global equilibrium. This work considers three different
low-energy interactions.

\Ilt()l(7ls '-'7?N) =

HY(G,, ...

A. Interaction model I
Model I assumes two-body hard-core interactions,

N-1 N

Vi =2 D Vas(rjn), (7)

j=1 k>j
where

<

0= S for s a ®
This model interaction, which has been used extensively in the
literature (see, e.g., Refs. [38—40]), is expected to provide a
reliable description of the weakly repulsive Bose gas. Since the
range of the hard-core potential increases with increasing as,
this interaction yields model-dependent results when ay /ay, is
not small. The ground state of the time-independent N-particle
Schrodinger equation for this model interaction can be found
efficiently using the diffusion quantum Monte Carlo technique
[40,41]. For positive and sufficiently small a, (see Secs. III
and IV for more quantitative statements), this ground state
corresponds to the gaslike state that we are interested in. No
excited states are considered for model I.

B. Interaction model IT

Model II assumes an attractive two-body Gaussian interac-
tion Vi3 (rjx) with depth vy (v < 0) and range r,

2
Vau(rji) = v exp |:—<\;]§]; ) j| ©))
0

Throughout this work, the range is fixed at ro = 0.025ay, and
the depth vy is adjusted to dial in the desired s-wave scattering
length a; (a; > 0). We only consider depths for which the
Gaussian potential supports one two-body s-wave bound state
in free space (at unitarity, this bound state has zero energy).
To prevent the formation of deeply bound molecular three-
and four-body states, a repulsive three-body Gaussian potential
V3(rju) with height V; and range Ry is added,

2
V(i) = V. —( Lk ) . (10)
3o\ jkl 06XP|: ﬁRo

Here, rji; denotes the “triple subhyperradius,”

Tkl =,/r}k+r?l+r,f[. (11)

For the N = 3 system, there exists one such triple subhyper-
radius, which coincides with the N-body hyperradius R,

12)

For the N = 4 system, there exist four triple subhyperradii.
Throughout, we fix Ry at \/gro ~ 0.071ap,. The height Vj
is varied to investigate the dependence of the results on the
three-body potential. Putting things together, interaction model
II reads

N-2N-1 N

N—-1 N
Vi = Z kZ Vi + >3 Y Ve, (13)

j=1 k>j 1>k
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While the repulsive three-body Gaussian potential elimi-
nates deep-lying molecular states, the resulting Hamiltonian
supports states with gaslike and molecularlike character (see
Secs. III and IV for details). To obtain the entire low-energy
spectrum and to subsequently analyze what the characteristics
of the eigenstates are, we employ a basis set expansion
approach. The eigenstates W are expanded in terms of a set of
nonorthogonal explicitly correlated Gaussian basis functions,
which depend on the interparticle distance coordinates and a set
of nonlinear variational parameters [42,43]. The nonlinear vari-
ational parameters, which are optimized semistochastically,
give the flexibility to describe correlations at different length
scales, namely, at the scales of the range of the interaction
potential and the harmonic-oscillator length. The resulting
generalized eigenvalue problem is solved through diagonal-
ization [42,43]. The resulting eigenvalues are, according to
Ritz’ variational principle, variational upper bounds to the true
eigenenergies (this statement holds for the ground and the
excited states) [42]. Throughout this paper, only states W with
vanishing relative orbital angular momentum L and positive
parity IT are considered. These states constitute a small subset
of the entire set of eigenstates.

As the two-body depth vy becomes more negative, the
four-body system supports an increasing number of states with
negative energy. As a consequence, the lowest BEC state (see
below for a definition) is a fairly highly excited state of the
Hamiltonian with interaction model II. For vy not too negative,
we optimize one eigenstate at a time. We follow the same
general strategy as the one that was pursued to determine a
large number of eigenenergies and eigenstates of the two-
component four-particle Fermi gas [44]. The basis set that
describes, e.g., the tenth eigenstate accurately may describe
the nine energetically lower-lying states comparatively poorly.
However, as long as the basis captures the nine lower-lying
states, even if poorly, the energy of the tenth state provides an
upper variational bound for the tenth state. A typical basis set
consists of 600 (for low state numbers) to 2000 (for large state
numbers) fully symmetrized basis functions.

The portion of the four-body spectrum that we are interested
in consists of more and more highly excited states as the
s-wave scattering length decreases (i.e., as vo becomes more
negative). As a consequence, it becomes increasingly tedious
to generate a basis set for each eigenstate. In particular, even
if we do not optimize each state, to obtain a tight bound for
the energy of, say, state number 70, we still need to describe
69 lower-lying states. As an alternative, we employ a “target
state approach,” which optimizes the state whose energy is
greater than but closest to a preset target energy. The target
state approach is similar in spirit to what has been used to
identify resonance states (see, e.g., Ref. [45]). For example,
if we expect that the system supports a state with energy
E*, then we set the target energy to E* — AE, where AE
is positive and of the order of a tenth of E},. When we enlarge
the basis set, we add basis functions that lower the energy of
the state whose energy is above the target energy and closest
to it. As more basis functions are added, the energy of this
state drops below E* — AE and we optimize the state with
the next larger energy. When plotting the eigenenergies as a
function of the inverse of the number of basis functions, we
observe convergence of the energy corresponding to different

state numbers. If we repeat the calculation for different AE
and find the same final energy, then we can be fairly sure
that we have found an isolated eigenenergy, i.e., the energy of
an eigenstate away from avoided crossings. Since we do not,
in this case, describe all the lower-lying states, the resulting
energy, extrapolated to the infinite basis set limit, does not
provide a strict variational upper bound. The advantage of this
approach is that the majority of the basis functions added is
used to improve the description of the state of interest without
having to describe (even if relatively poorly) all the lower-lying
states.

C. Interaction model III

Model III employs two-body zero-range interactions. As al-
ready alluded to in the Introduction, the two-body interactions
can be accounted for by enforcing the boundary condition in
Eq. (1) on the relative many-body eigenstate W. Much of the
remainder of this subsection focuses on unitarity.

Atunitarity, the noninteracting Hamiltonian with the bound-
ary condition given in Eq. (1) supports relative eigenstates
that can be written as a direct product of a function ®,, that
depends on the four-body hyperradius R and a function ¢, that
is independent of R [4,46,47],

Wy (Br, . pn-1) = RTOV920, (R)p,(Q).  (14)

Here, collectively denotes the 3N — 4 hyperangular coor-
dinates (the definition of the hyperangles is not important for
the discussion that follows). The eigenenergies corresponding
to these eigenstates are given by

ESt = (2q + 5y + 1) Eno, (15)

where ¢ = 0,1, ... denotes the hyperradial quantum number
and s, (which is real valued) would be obtained by solving
a differential equation in the hyperangular degrees of free-
dom. The harmonic-oscillator energy Ey, is defined through
Eho = how. The quantum number v enumerates the solutions
of the differential equation in the hyperangular coordinates.
Equation (15) is a consequence of the fact that each hyperradial
potential curve, which is characterized by s,,, supports a ladder
of states with energy spacing 2FE},; this spacing is the same
as for the noninteracting system (the s, values are, however,
in general different) [4]. The values of s, for the unitary
Bose gas are, for N > 3, challenging to determine and, to the
best of our knowledge, not known. For N = 3, the s, values
can be determined semianalytically with arbitrary accuracy
[10,48,49]. We refer to the states of the form given in Eq. (14)
with eigenenergies of the form given in Eq. (15) as universal
states. Universal in this sense implies that the eigenenergies and
eigenstates are indifferent to the three-body potential, and are
thus characterized by the two-body s-wave scattering length
alone.

Importantly, model III supports a second class of states at
unitarity that we refer to as nonuniversal (for N = 3, Ref. [50]
refers to this class of states as Efimovian). To introduce
these nonuniversal states, we consider the N = 3 system. The
hyperangular equation for N = 3, which is solved subject
to the two-body boundary condition, yields one imaginary
eigenvalue, namely sy = 11.00624 . . . . Neglecting for the mo-
ment the external confinement, this eigenvalue gives rise to
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a purely attractive effective hyperradial potential curve that
is proportional to —(|so|> 4+ 1/4)R~2 and supports an infinite
number of three-body bound states, with the ratio between
neighboring energy levels being equal to exp(w/|so|)~> ~
1/515. To fix the absolute position of the energy levels, a small-
R boundary condition on the hyperradial function ®( needs to
be specified [9-11]. Such an additional boundary condition
is not needed for the universal states, since the probability to
find three bosons at the same location is vanishingly small “on
its own” due to the repulsive small-R behavior of the effective
hyperradial potential curves for real s, (if an additional small-R
boundary condition was added, the universal states would be
insensitive to it). If the trap is added, the spacing between
the energy of consecutive nonuniversal states is modified
drastically. The resulting energy spacings depend on g and
differ, in general, from the 2 E},, spacing that is a key signature
of the universal states [50,51].

The nonuniversal states of the trapped N = 4 unitary system
have not yet been studied in much depth [52,53]. When
solving the hyperangular equation for N = 4, the three-body
boundary condition for each triple should be accounted for in
addition to the two-body boundary condition for each pair.
While this hyperangular equation has not yet been solved
for zero-range interactions, it has been solved for finite-range
interactions [54]. The fixed-R hyperangular eigenvalues were
shown to depend on the four-body hyperradius R, implying
nonseparability of the hyperradial and hyperangular degrees
of freedom. Setting w to zero, there exist as many effective
hyperradial potential curves as there exist three-body Efimov
states and the large-R values (R can be very large) of these
potential curves are just the energies of the three-body Efimov
states [54]. This is distinctly different from the three-boson
system, which supports one effective hyperradial potential
curve at unitarity in which an infinity of nonuniversal three-
body states live (the other potential curves support universal
states).

The confining potential “cuts off” the asymptotic region
for all but the few lowest effective free-space hyperradial four-
body potential curves (depending on the system parameters,
it might be all but one). The term “cuts off” is used here to
indicate that the asymptotic behavior of the effective potential
curves is suppressed by the quadratically increasing confining
potential, which forces the wave function to fall off at much
smaller R than it would in the absence of the trap, where there
exist two four-body states that are tied to each Efimov trimer
[54,55]. To determine the eigenenergies of the nonuniversal
states, the coupling (which may be small) between different
potential curves needs to be accounted for even at unitarity;
this is, again, distinctly different from the three-boson system
where the coupling at unitarity vanishes for the universal and
the nonuniversal states. It is expected that the resulting energy
ladders for the nonuniversal states of the trapped four-boson
system are characterized by energy spacings that, in general,
differ from 2 E},,.

The four-body results at unitarity presented in Sec. IV
are not obtained by first solving the hyperangular differential
equation and by then subsequently solving a set of coupled
differential equations in the hyperradius. Instead, the four-
body results are obtained by treating all relative degrees of
freedom on equal footing. The resulting energy spectrum and
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FIG. 1. Energy spectrum for three harmonically trapped identical
bosons as a function of ay,/a,. Circles show the relative energy of the
seven energetically lowest-lying states with L™ = 0* symmetry for
model II with V; = 97 700E,,,. The solid line shows the relative en-
ergy of the lowest state for two-body hard-core interactions (model I).

eigenfunctions are, however, analyzed within the hyperspher-
ical coordinate framework introduced above. A main outcome
of the analysis for N = 4 will be that some states do not fit
neatly into the categories of universal or nonuniversal. We will
denote these states as quasiuniversal. To illustrate aspects of
our approach, the next section presents three-body results for
interaction models I, II, and III.

Moving from unitarity to finite s-wave scattering lengths,
the eigenstates of the harmonically trapped N-boson system
cannot a priori be divided into universal and nonuniversal
states even in principle. Separability between the hyperangular
and hyperradial degrees of freedom does generally not exist
and the energy spectrum is expected to exhibit series of avoided
crossings. The next section illustrates that one can, away from
the avoided crossings, nevertheless meaningfully categorize
states as universal and nonuniversal.

III. N =3 SYSTEM

To set the stage for our N = 4 results, this section sum-
marizes selected results for the N =3 system. Circles in
Fig. 1 show the relative three-body spectrum for the interaction
model II as a function of the inverse of the s-wave scattering
length for a fixed three-body interaction; specifically, Vj is
set to 97700E},. At unitarity, the (v,g) quantum numbers
(see Table I) are assigned as follows. Using the two smallest
real s, (s1 = 4.46529... and s, = 6.81836...) for the zero-
range model in Eq. (15), the following relative zero-range
energies at unitarity are found: E }‘fg‘ = 5.46529E,,, E‘l‘nllt =
7.46529E},, and Eg'gt = 7.81836E}, [50]. These zero-range
energies for the universal states agree well with a subset of our
numerical energies for model II: E = 5.5187E},, 7.5258 Ey,,
and 7.8452F},. The differences, which are of the order of
1%, are attributed to the fact that the range of our two-
body Gaussian potential is ryp = 0.025a,, and not zero. The
hyperradial densities P (R), obtained for model II, confirm this
assignment. For example, the hyperradial density for a state
with quantum number g has ¢ — 1 zeros along the hyperradial
coordinate.
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TABLE I. Three-boson properties at unitarity for model II with
Vo = 97700E},. Column 1 lists the state number. Column 2 reports
the relative energy. Columns 3 and 4 report the v and g quantum
numbers. Columns 5 and 6 report the two- and three-body contacts
C, and Cj, respectively. Column 7 lists the square of the overlap
for the states at unitarity with an eigenstate of model II with vy = 0
and Vy = 97 700 E},. The occupation probabilities for the states listed
add up to 0.964. Column 8 indicates whether the state is universal
or nonuniversal. The energies are estimated to be converged to
0.0010E}, or better.

Stateno. E/En, v q Cap, Cgago Probability Comment
1 0.5000 0 0 356 0478 0.412 Nonuniversal
2 29217 0 1 224 0.334 0.426 Nonuniversal
3 5.0895 0 2 18.8 0.323 2x10™*  Nonuniversal
4 55187 1 0 21.6 9x107° 0.096 Universal
5 7.2005 0 3 17.3 0.326 1x10™*  Nonuniversal
6 75258 1 1 205 3x107 0.027 Universal
7 78452 2 0 7.15 2x1077 0.003 Universal
8 92874 0 4 154 0.336 5%x107  Nonuniversal

The remaining energies at unitarity (see Table I) are identi-
fied as belonging to nonuniversal states, i.e., to states that are
supported by the effective hyperradial potential curve labeled
by v = 0 (imaginary sp). The corresponding energy spacings
(2.4217Ey, 2.1678Eyo, 2.1110Ep,, and 2.0869E},) deviate
notably from 2E},; the deviations decrease with increasing
q. In the absence of the harmonic trap, the lowest relative
three-body energy is E¢; = —1.19x 10’4h2/(mrg). Using this
to estimate the size L, of the free-space trimer at unitarity via
the expression Lg = (k5)~!, where the binding momentum

ks is defined through ks = v/ m| Ef| /h? and ki, denotes the
binding momentum at unitarity, we find Lg = 91.5r¢ or,
using ro = 0.025an, Lts = 2.29ay,, i.€., the lowest free-space
Efimov trimer is roughly of the same size as the harmonic-
oscillator length of the external confinement. If we use the
lowest relative three-body energy for the finite-range model II
of the trapped three-boson system (namely E = 0.5000E},)
as input for the zero-range model III [this can be viewed as
setting the small-R boundary condition; see Eqs. (11)—(13)
of Ref. [50]], the resulting nonuniversal relative energies for
model 11T (2.9019E},, 5.0587 Eyo, 7.1597 Epo, and 9.2351 Ey,)
agree reasonably well with those obtained for model II (see
Table I). The deviations of around 1% are attributed to the
finite ry and Ry values of the two- and three-body potentials.
The above analysis shows that model II provides three-body
energies at unitarity that are close to those for model III.

In addition to the energies, we calculate the two- and three-
body contacts C, and C5 [56],

Co — 8tm OF (16)
T n? B(as_l)
and
mkgs OF
C; =— . 17
: 202 Bk 17

In practice, the derivative on the right-hand side of Eq. (16) is
calculated by changing vy while keeping V; constant and using
finite differencing. Changing v, translates into a change of the

free-space two-body scattering length a;. The derivative on the
right-hand side of Eq. (17), in turn, is calculated by changing
Vo while keeping vy constant. Changing V; translates into a
change of the lowest relative free-space three-body energy E'
and thus of the corresponding binding momentum «¢;. Columns
5 and 6 of Table I show the two- and three-body contacts
for the harmonically trapped three-boson system at unitarity.
The universal states are characterized by an extremely small
C3 (C3 should be zero for model III) since the likelihood of
finding three bosons in close vicinity to each other is zero
for this class of states. The normalization of the three-body
contact C3 in Eq. (17) is chosen such that C; = (Kf’;)2 for a
free-space Efimov trimer at unitarity described by model III.
For model II with Vy = 97,700 E},,, the three-body contact for
the lowest free-space Efimov trimer is, converted to trap units
(using ro = 0.025ap,), equal to 0.437(an,)~2. Table I shows
that the addition of the external confinement leads to a slight
increase of C; for the (v,q) = (0,0) state [C3 = 0.478(ano) 21.
This makes sense intuitively since the trap forces the free-space
Efimov trimer into a “smaller space.” The two-body contact
C, is roughly comparable for the universal and nonuniversal
states.

Next, we look at how the energy levels evolve as we go
from infinite to finite to vanishingly small positive s-wave
scattering lengths (see Refs. [51,57] for early studies). The
energy of all the states shown in Fig. 1 decreases with
increasing apo/ay, as the two-body potential becomes deeper.
The state with relative energy 5.5187E}, at unitarity, i.e., the
lowest universal state, goes through a sequence of fairly narrow
avoided crossings and approaches, on the scale of Fig. 1, the
relative energy for the hard-core interaction model around
ano/as = 2 (solid line in Fig. 1). If we prepare the three-boson
system in the noninteracting state (which is universal) and then
adiabatically increase the s-wave scattering length, the system
will—neglecting the avoided crossings (they could be jumped
across)—end up in the lowest universal state at unitarity. In this
sense, we identify this state as representing the “BEC state,”
all the way to unitarity.

Alternatively, we may consider preparing the three-boson
system in the lowest noninteracting state and then instan-
taneously jumping the scattering length to infinity. In this
scenario, the occupation probability of each of the states at
unitarity is given by the square of the overlap between the initial
state and the respective state at unitarity (see also Ref. [28]).
Table I shows the occupation probabilities for an initial state
that does not “feel” a two-body potential (vy is set to zero)
but does “feel” the three-body Gaussian potential. The relative
energy of this state is very close to that of the noninteracting
state (3.0004 E}, compared to 3 Ep,). The considered quench
leads predominantly to the occupation of nonuniversal states.
Roughly speaking, the states at unitarity that have an energy
that is comparable to the energy of the initial state have the
largest occupation probabilities. This observation is consistent
with the discussion presented in Ref. [28]. While the occu-
pation probabilities of the nonuniversal states depend on the
three-body parameter, those of the universal states are to a
very good approximation independent of the height Vj of the
repulsive three-body Gaussian potential.

To investigate the dependence of the three-body energies
on the height Vj of the repulsive three-body Gaussian potential
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FIG. 2. Dependence of the energy spectrum for three identical
harmonically trapped bosons on the height V, of the three-body
Gaussian potential. The circles, diamonds, and squares show the
relative energy as a function of ay,/a, for V) = 97700E}, (same as
in Fig. 1), Vo = 40000E},, and Vy, = 10000E},, respectively. Only
states with L™ = 0 symmetry are considered.

explicitly over the entire scattering length regime, we calculate
the three-body spectrum for two other V| values, namely
Vo = 10000E}, and 40000E},. The resulting energies are
shown by squares and diamonds in Fig. 2 together with the
energies for Vy = 97 700 Ey,, (circles). Away from the avoided
crossings, the states follow one of two behaviors: the energies
are to a good approximation independent of Vj, or the energies
display an appreciable dependence on Vj. This provides a
means to classify the states, away from the avoided crossings,
as universal and nonuniversal not only at unitarity but also for
finite scattering lengths.

IV. N =4 SYSTEM

This section summarizes our results for the harmonically
trapped four-boson system. Circles in Fig. 3 show the L™ = 0F
energy spectrum for model II with the height of the repulsive
Gaussian potential set to Vy = 97700E}, (this is the same
Vo as that used in Fig. 1) as a function of an,/a,. At first
glance, the energy spectrum, with its many avoided crossings
(a blowup is shown in Fig. 4), looks quite “messy.” The
four-boson Hamiltonian supports many energy levels that
are positive for infinite scattering length and go, sometimes
after passing through multiple avoided crossings, to negative
energies as apo/a, increases, i.e., as the two-body potential
becomes deeper. Based on the N = 3 analysis presented in
the previous section, we expect that these rapidly falling four-
body levels correspond to nonuniversal states. The four-boson
Hamiltonian also supports a few energy levels that change
less with increasing ap,/a; and remain positive for the largest
ano/as (smallest s-wave scattering lengths) considered. The
lowest of these energy levels plays, as will be shown below,
a role similar to the lowest universal state of the three-boson
system.

We start our discussion by analyzing the unitary regime.
The energies of the lowest 26 states at unitarity are listed in
column 2 of Table II. To assign the (approximate) hyperangular
and hyperradial quantum numbers v and g (see columns 3
and 4 of Table II), we followed—inspired by the discussion

a,/a

FIG. 3. Energy spectrum for four harmonically trapped identical
bosons as a function of ap,/a;. Only states with L™ = 0+ symmetry
are considered. The filled circles (neighboring points are connected
by solid lines) show the relative energies for model II with V, =
97 700 E},. The number of states considered is larger for ay,/a; 2
1.4 than for an,/a; < 1.4. The squares show the relative energies
for model II with Vy = 97 700E}, obtained using the “target state
approach” [these energies are not necessarily upper bounds; moreover,
the error bar (not shown) for ap,/a; = 2.5 is comparatively large]. For
comparison, the solid line shows the relative ground-state energy for
two-body hard-core interactions (model I).

presented in Sec. III—a multistep process. Note that the
quantum number v represents an index that counts the different
presumed hyperspherical potential curves. In a more complete
analysis one might hope to identify a set of quantum numbers
for the multiple hyperangular degrees of freedom.

First, we vary V, while keeping the two-body potential
fixed. Energy levels that do not move when Vj is changed over
a reasonable range are identified as universal; for these states,
the three-body contact C3 for model II with Vi, = 97 700E},,
is equal to 0.004(ap,)~2 or smaller (see column 5 of Table II).
Energy levels that do move when Vj is changed are identified
as nonuniversal; for these states, the three-body contact C; for
model IT with Vy = 97 700 E},, lies between 0.045(ap,) ™% and
1.35(ano) 2. Interestingly, the majority of the low-lying states
is nonuniversal.

In the absence of the external confinement, the (v,q) =
(0,0) state is tied to the lowest free-space Efimov trimer.
For Vy = 97 700E},, the energy ratio between the N = 4 and

E/E,

FIG. 4. Blowup of a portion of the energy spectrum shown in
Fig. 3. It can be seen that the avoided crossings are quite narrow.
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TABLE II. Four-boson properties at unitarity for model II with Vi, = 97 700E},. Column 1 lists the state number. Column 2 reports the
relative energy E. Columns 3 and 4 report the v and g quantum numbers. Columns 5 and 6 list the two- and three-body contacts C, and Cs,
respectively. Column 7 lists the square of the overlap for the states at unitarity with an eigenstate of model II with vy = 0 and V;;, = 97 700 Ey,.
The occupation probabilities for the states listed add up to 0.952. Column 8 indicates whether the state is universal, quasiuniversal, or strongly

nonuniversal.

State no. E/En, v q Cray, C; aﬁo Probability Comment

1 —0.0622 0 0 55.0 1.35 0.224 Strongly nonuniversal
2 2.7139 0 1 39.6 0.895 0.455 Strongly nonuniversal
3 4.5646 1 0 54.2 0.318 0.008 Strongly nonuniversal
4 5.0460 0 2 359 0.785 0.016 Strongly nonuniversal
5 5.8297 2 0 33.7 0.384 0.160 Strongly nonuniversal
6 6.6516 1 1 51.1 0.295 0.003 Strongly nonuniversal
7 7.2457 0 3 34.6 0.744 1x1074 Strongly nonuniversal
8 7.6741 3 0 333 0.200 0.002 Strongly nonuniversal
9 7.9257 2 1 31.1 0.367 0.015 Strongly nonuniversal
10 8.3345 4 0 34.8 2x1074 0.017 Universal

11 8.7082 1 2 48.6 0.278 4x10~* Strongly nonuniversal
12 8.7773 5 0 313 0.095 0.020 Quasiuniversal

13 9.3789 0 4 35.0 0.694 5x10~* Strongly nonuniversal
14 9.5758 6 0 30.0 0.206 0.003 Strongly nonuniversal
15 9.7113 3 1 31.7 0.214 7x107¢ Strongly nonuniversal
16 9.9968 2 2 29.3 0.370 0.004 Strongly nonuniversal
17 10.3381 4 1 339 3x107* 0.007 Universal

18 10.4857 7 0 19.0 0.061 3x10~* Quasiuniversal

19 10.5462 8 0 16.0 0.045 0.001 Quasiuniversal

20 10.7616 1 3 45.6 0.258 7x1073 Strongly nonuniversal
21 10.7895 5 1 30.3 0.099 0.009 Quasiuniversal

22 10.8732 9 0 22.9 0.106 0.001 Quasiuniversal

23 11.2272 10 0 16.2 0.004 0.001 Universal

24 11.4668 0 5 35.8 0.562 9x10~* Strongly nonuniversal
25 11.6047 6 1 27.9 0.321 0.001 Strongly nonuniversal
26 11.7560 3 2 30.1 0.235 1x107* Strongly nonuniversal

N = 3 free-space energies is 4.59, which is quite close to the
zero-range value of 4.6108 [58]. The three-body contact of
the trapped four-boson states in the v = 0 family is compar-
atively large [larger than 0.562(an,) 2 for the states listed in
Table II]. The three-body contact for the (v,q) = (0,0) state
is 1.35(ap,) ™2, which is close to the three-body contact for
the lowest free-space tetramer [the three-body contact of the
lowest free-space tetramer for Vy = 97700E}, is equal to
1.37(ano) 2.

The three-body contacts of the other nonuniversal states fall,
roughly, into two categories: either C3 is around 0.3(ayo) 2
(this is similar to the three-body contacts of the nonuniversal
N = 3 states [excluding the (v,g) = (0,0) state]); or Cj is less
than about 0.1(an,) 2. We refer to states with C; less than
about 0.1(ap,)~2 as “quasiuniversal” (these states display a
comparatively weak dependence on k) and to states with
C; greater than about 0.1(an,)~2 as “strongly nonuniversal”
(these states display a comparatively strong dependence on
Kfs); see column 8 of Table II. While this classification scheme
is somewhat arbitrary, we employ it since it provides a means
to categorize the sensitivity of the trapped N = 4 states on the
three-body parameter or, equivalently, the three-body poten-
tial. Within each v family, the three- and two-body contacts
decrease or remain (roughly) the same with increasing g; the
small increase in selected cases might be due to numerical

inaccuracies or might indicate small irregularities on top of
the overall pattern.

As a second step in the classification of states, we consider
the spacings of the energies. The energy spacings between
consecutive universal states that live in the same effective
hyperradial potential curve should be equal to 2E},. Table 11
shows that the spacing between the energies labeled by (v,q) =
(4,0) and (4,1) is very close to 2Eyp,. The small deviation of
0.004 Ep, may be due to numerical inaccuracies or due to the
use of the two-body Gaussian potential with finite r( instead
of the two-body zero-range Fermi-Huang pseudopotential.

In addition, we analyze the hyperradial density P(R), which
is normalized such that fooo P(R)dR = 1. The value of the
hyperradial density P(R) tells one the likelihood to find the
four-boson system at the hyperradius R. Figure 5(e) shows the
hyperradial densities for the states labeled by (v,q) = (4,0)
and (4,1). The hyperradial density for the g = 1 states goes
to zero at about R = 5.8ay,, indicating that the corresponding
eigenstate can be written, at least to a very good approximation,
as a product state [see Eq. (14)] even though we are using
finite-range interactions. The finite ranges ro and Ry of our
two- and three-body potentials could, in principle, introduce
a small violation of the separability. For the analysis in this
paper, this effect is, however, negligible. This nearly complete
factorization further supports the idea of these v = 4 states
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FIG. 5. Structural properties of the harmonically trapped four-
boson system at unitarity for interaction model II with V; =
97 700E},. The hyperradial density P(R) (left column) and subhy-
perradial density Pg(rjr) (right column) are shown for different
v families (the first, second, third, and fourth row are for v =0,
v=1,v=4, and v =5, respectively). The density of the lowest
state (¢ = 0) in a given family is shown by a dotted line, that of the
second-lowest state (¢ = 1) in a given family by a solid line, and that
of the third-lowest state (¢ = 2) in a given family by a dashed line.

being universal, and clarifies the assignment of the quantum
numbers ¢ = 0 and 1.

For the nonuniversal states, the assignment of the (v,q)
quantum numbers is not quite as straightforward. A key
difference between the N = 3 and N = 4 systems is that the
nonuniversal states of the N = 4 system do not necessarily
separate into a hyperradial piece and a hyperangular piece (see
Sec. II). One consequence is that the (v,q) quantum numbers
assigned to the nonuniversal N = 4 states are approximate and
not exact quantum numbers. A closely related consequence
is that the hyperradial densities of the nonuniversal N = 4
states do not necessarily vanish for states with ¢ > 0. The
position of the hyperradial nodes can depend nontrivially on the
hyperangles, implying that P(R) shows “washed out” zeros.
Figures 5(c) and 5(g) show examples of this for the v =1
and 5 families, respectively. For these families, the hyperradial
densities for ¢ > 0 show minima that have finite and not
vanishing amplitude. Figures 5(a) (v = 0 family), 5(c) (v = 1
family), 5(e) (v = 4 family), and 5(g) (v = 5 family) also show
that the hyperradial densities of states that live, approximately,
in the same effective hyperradial potential curve (labeled
by v) exhibit similar behavior at small R. This observation
lends further support for our assignment of the quantum
numbers.

The energy-level spacings E, .1 — E, ; between neigh-
boring nonuniversal states is expected to change (roughly)
monotonically from being larger than 2Ep, for ¢ =0 to
approximately 2 Ey, for large g. Inspection of Table II shows
that our assignment of the quantum numbers is consistent with
this expectation.

To shed further light on the structural properties of the
trapped four-boson system at unitarity, we take a closer look
at Fig. 5. Selected aspects of the hyperradial densities P(R)
(left column) were already discussed above. Comparing the
hyperradial densities for v =0, 1, 4, and 5 [Figs. 5(a), 5(c),
5(e),and 5(g)], itcan be seen that the P(R) forv = 0 (theg = 0
state approaches the lowest four-boson state that is linked to
the free-space Efimov trimer when the trap is removed) has
a nonvanishing amplitude at much smaller R than the states
with higher v. Moreover, the v = 4 states (these are universal
states) have essentially vanishing amplitude at R < 2ayp,. The
(v,q) = (5,0) state, which is quasiuniversal and identified
below as the BEC state, displays a small “bump” at small R,
which we interpret as a signature of the weak dependence on
the three-body potential. Figures 5(b), 5(d), 5(f), and 5(h) show
the subhyperradial density Pg,(r i), which corresponds to the
probability of finding three of the four bosons at a particular
subhyperradius 7 ;. The strongly nonuniversal v = 0 and v =
1 states [Figs. 5(b) and 5(d)] display an appreciable amplitude
in the rji S ano region. By comparison, the amplitude of the
quasiuniversal v = 5 states [Fig. 5(h)] is, in the same region,
notably smaller and that of the universal v = 4 states [Fig. 5(f)]
is essentially zero.

As an aside, we note that the two-body contact C, at
unitarity for model II with Vy = 97 700E},, (see column 5 of
Table II) varies by less than a factor of 4. This is in contrast to
the three-body contact, which varies over roughly four orders
of magnitude. Generally speaking, the two-body contact for
the trapped N = 4 system is larger than that for the trapped
N =3 system. This makes sense intuitively since the four-
body system contains twice as many pairs as the three-body
system (six pairs compared to three pairs). While the two-body
contact C; is obtained by looking at the variation of the energy
with (a,)7!, it also tells one the likelihood of finding two
bosons in close proximity from each other. The fact that the
two-body contact is of comparable magnitude for the universal
and nonuniversal states is, at least in part, a consequence of the
fact that the two-body boundary condition is enforced for both
classes of states and that Table II is limited to the low-energy
portion of the L™ = 0% spectrum. We expect the two-body
contact to be notably smaller for a subset of the high-lying
states and for states with finite orbital angular momentum.

As discussed above, the four-boson spectrum depends on
the two-body s-wave scattering length (or, alternatively, the
lowest relative energy of the trapped two-boson system) and,
in our model I, the height of the three-body repulsive Gaussian.
The latter can, as done when calculating the three-body contact,
be converted to the free-space «{; (three-body Efimov param-
eter) or, alternatively, the lowest energy of the trapped three-
boson system at unitarity (this assumes the use of a low-energy
Hamiltonian such that the lowest trimer can be described by
Efimov’s theory if the trap is removed). While we believe that
our four-boson spectrum has the same key characteristics—
such as the energy-level crossings and spacings as well as
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the classification into universal and nonuniversal states—as
the ones one would obtain for the zero-range model III, we
did not attempt to extrapolate our results to the rp — 0 and
Rp — 0 limits. References [52,53] pursued this, finding the
values of —0.1(2)Epo, 2.7(3) Epo, and 4.6(5) Ey,,, for the lowest
three relative four-boson energies, for the lowest relative two-
and three-boson energies both fixed at Eyp,/2. Our three lowest
four-boson energies (see Table II; due to our finite value of ry,
our two-boson energy is 0.5103 E},, and not E},/2) lie within
the estimated numerical error bars of Ref. [53].

Having a solid understanding of the energy spectrum at
unitarity, we consider the finite scattering length regime. We
start our discussion in the weakly interacting regime, where
the hard-core Bose gas model should provide a reasonable
description of the “lowest BEC state.” Here, the term lowest
BEC state refers to the state that is occupied if the system is
initially prepared in a state with a;, = 0 and relative energy
9E1w/2 and if the s-wave scattering length is then increased
adiabatically. The N = 4 energy of the hard-core model is
shown by a solid line in Fig. 3 for apo/a, > 1.7. While the
smallest an,/a; (largest as/an,) considered may already be
somewhat outside of the validity regime of the hard-core
model, the energies for the larger ay,/a, can be used as a
reliable guide for where the BEC state should lie. It can be
seen that one of the four-boson states for model II approaches
the hard-core model energy with increasing ap,/ay. This state
undergoes several avoided crossings. If we diabatize these
avoided crossings (we do this by eye), then this state connects
with the lowest quasiuniversal state at unitarity. We identify
this state as the lowest BEC state. Interestingly, and somewhat
surprisingly, the lowest BEC state does not, according to our
interpretation, connect to a universal state at unitarity but
rather to a quasiuniversal state. The implication is that, in
a many-body BEC at unitarity, three-body (or higher-body)
parameters may be required to describe the gas.

The lowest state for vg = 0 and Vy = 97700E}, has an
energy of 4.5017Ey,, which is very close to the energy of
9En,/2 of the noninteracting system. Taking this state as our
initial state and assuming an instantaneous sweep to unitarity,
we obtain the occupation probabilities listed in column 7 of
Table II. It can be seen that the (v,q) = (0,0) and (0,1) states at
unitarity have the largest occupation probabilities. The (v,q) =
(0,0) state was identified above as merging into the four-body
state tied to the lowest three-body Efimov trimer when the
trapping potential goes to zero. Using this, the (v,q) = (0,1)
state, which has the largest occupation probability, is best
characterized as an “excited four-body state” (breathing mode
type excitation) as opposed to a “trimer plus atom state.” This
observation begs the question whether the N-body short-time
dynamics is governed predominantly by three-body Efimov
physics (as implicitly implied if the N-body dynamics is
modeled by a three-body Hamiltonian) or whether four-body
and possibly also higher-body physics plays a non-negligible
role, at least for certain parameter combinations.

Figure 6 shows the scaled pair distribution functions
r}kaair(ij), normalized such that 47 [ Ppair(rjk)rjzkdr k=1
of the lowest BEC state for selected a; for (a) N = 3 and
(b) N = 4. The scattering length values are chosen such that
the states identified as the lowest BEC states are isolated
(away from avoided crossings). Figure 6 shows that the pair

FIG. 6. Scaled pair distribution function ",21{ Pyyir(rjx) for the
lowest BEC state for various a, for (a) N =3 and (b) N = 4. The
calculations are for the interaction model I with V; = 97 700 E},,. The
curves from bottom to top at 7 /ap, = 1.5 correspond to ap,/a, = 0,
1/2, ~1.3500, and ~1.7012.

distribution functions for the N =3 and N = 4 systems are
very similar, with the amplitude at small r;; differing a bit.
For the smallest a; considered, the pair distribution functions
go to a very good approximation to zero at r;; = a,. If we
assume a Jastrow-type variational wave function that consists
of a product over two-body functions, the observed behavior
is consistent with the intuitive picture that the lowest BEC
state is described by two-body correlation functions that have
a node, i.e., that can be interpreted as excited pairs (see also
Refs. [31,59]). As ay increases, the state identified as the lowest
BEC state is characterized by a pair distribution function that
displays a minimum at rj; values smaller than a,. This can
be thought of as a kind of saturation. Clearly, if a minimum
exists it has to be at finite r;; and not at r;; — o0 as a;
goes to infinity. Interestingly, the minimum of rjz.kP(r k) does
not go to zero but takes on finite values. This suggests that
higher-body correlations may play a role in the large a, limit.
We expect that the small 7;; behavior of the pair distribution
functions for the homogeneous system is qualitatively similar
to those diplayed in Fig. 6 for the harmonically trapped
systems.

V. SUMMARY AND OUTLOOK

This paper presented a comprehensive study of the har-
monically trapped four-boson system interacting through two-
body short-range interactions with positive s-wave scatter-
ing length a, including infinitely large a,. The two-body
interactions were parametrized through a purely attractive
two-body Gaussian, which allows—in free space—for the
formation of many deeply bound molecular states. To eliminate
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deep-lying molecular states and to work in a regime where the
free-space four-body energies at unitarity are tied uniquely
(i.e., through universal numbers) to the free-space Efimov
trimers at unitarity, a purely repulsive three-body Gaussian
potential was added. The interaction parameters were adjusted
such that the size L¢ of the lowest free-space Efimov trimer
at unitarity is just a bit larger than the characteristic length
apo of the external spherically symmetric harmonic trapping
potential. Correspondingly, the size of the lowest free-space
tretramer at unitarity is quite close to ap,. Since the “internal”
characteristic length scales (sizes of the free-space trimer and
tetramer) are comparable to the “external” characteristic length
scale (harmonic-oscillator length ay,), the chosen parameter
combinations are expected to yield a rich energy spectrum.
Indeed, the low-energy four-boson energy spectrum for the
employed model interaction displays a maze of energy levels
and crossings.

Among the many energy levels, we identified—diabatizing,
by eye, some of the avoided crossings—one energy level as
the lowest gaslike BEC state. While a strict definition of
this state was not provided, our working definition was as
follows: assuming one prepares the four-boson system in the
noninteracting eigenstate and one then increases the s-wave
scattering length adiabatically, jumping across narrow avoided
crossings quickly, one should follow an energy level whose
energy increases monotonically and whose properties depend
at most weakly on the three-body interaction employed. While
we quantified the three-body contact at unitarity, we did not
recalculate the entire four-boson spectrum for a second or
third parametrization of the three-body potential, using the
same k¢, i.e., fixing the “internal” scale to the same value.
Moreover, this work did not recalculate the four-boson energy
spectrum for other «¢; values. Studying the dependencies on the
parametrization of the interactions and systematically varying
ki are left for future work. Nevertheless, with the energy
spectrum at hand, we were able to extract some information of

the lowest gaslike BEC state. In particular, the pair distribution
function in the strongly interacting regime acquires a minimum
at r & ap, but does not go to zero. This finding may provide
guidance for constructing improved variational descriptions of
the strongly interacting Bose gas.

The paper also presented a comprehensive analysis of the
energies of the trapped four-boson system at unitarity. The
energy levels were assigned approximate quantum numbers
and classified as universal (vanishing three-body contact C3)
and nonuniversal (finite three-body contact C3). Moreover, de-
pending on the value of C3, the nonuniversal states were further
categorized as “quasiuniversal” and “strongly nonuniversal.”
The assignment and classification scheme of the four-boson
system were corroborated by analyzing structural properties,
namely the hyperradial density P(R) and the subhyperradial
density Pg,(R). Our work suggests that the contacts C, and
C3 can be thought of as analogs of quantum numbers in that
they provide a classification scheme of the states.

The present work suggests several future research direc-
tions. It would be interesting to compare the present energy
spectrum with that for other interaction models as well as
other k. It would also be interesting to use the four-boson
spectrum presented here as a starting point for simulating
time ramps, possibly including both three- and four-body loss
coefficients. The presented results can be used as benchmarks
with which to test approximate variational schemes, collective
coordinate approaches, or trial wave functions employed in
quantum Monte Carlo studies.
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