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We study the mass imbalanced Fermi-Fermi mixture within the framework of a two-dimensional lattice
fermion model. Based on the thermodynamic and species-dependent quasiparticle behavior, we map out the
finite-temperature phase diagram of this system and show that unlike the balanced Fermi superfluid, there are
now two different pseudogap regimes as PG-I and PG-II. While within the PG-I regime both the fermionic
species are pseudogapped, PG-II corresponds to the regime where pseudogap feature survives only in the
light species. We believe that the single-particle spectral features that we discuss in this paper are observable
through the species-resolved radio-frequency spectroscopy and momentum-resolved photoemission spectroscopy
measurements on systems such as 6Li-40K mixture. We further investigate the interplay between the population
and mass imbalances and report that at a fixed population imbalance, the BCS-BEC crossover in a Fermi-Fermi
mixture would require a critical interaction (Uc) for the realization of the uniform superfluid state. The effect of
imbalance in mass on the exotic Fulde-Ferrell-Larkin-Ovchinnikov superfluid phase has been probed in detail
in terms of the thermodynamic and quasiparticle behavior of this phase. It has been observed that in spite of
the s-wave symmetry of the pairing field, a nodal superfluid gap is realized in the Larkin-Ovchinnikov regime.
Our results on the various thermal scales and regimes are expected to serve as benchmarks for the experimental
observations on 6Li-40K mixture.
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I. INTRODUCTION

Ultracold atomic gases with the tunability of their interac-
tion strength have proved to be a suitable quantum simulator for
several many-body phenomena, a principal one being the re-
alization of exotic superfluid phases in Fermi gases [1–4]. The
experimental realization of the same continues to be illusive
so far but that has not prevented the theoretical investigation
of the various possibilities, viz., p-wave superfluid [5–13],
imbalanced superfluid [14–17], superfluid with hetero-Cooper
pairs [18–38], and Fermi superfluid with spin-orbit interaction
[39–42].

Among the various possibilities, imbalanced Fermi super-
fluids is one which has been widely explored. Imbalance
in Fermi superfluids can be realized through (i) population
imbalance or (ii) mass imbalance. While the former has been
investigated in detail both experimentally [43–47] and theoreti-
cally [48–54], studies carried out on unequal mass Fermi-Fermi
mixtures are relatively few [32,35,38,55–59]. Experimentally,
a mass imbalanced Fermi-Fermi mixture is achievable in a
6Li-40K mixture. While superfluidity in such a system is yet
to be attained in experiments, the Fermi degenerate regime
[19,22] as well as the Feshbach resonance between 6Li and 40K

atoms [18,21,22] and formation of 6Li-40K heteromolecules
[20] are already a reality. Furthermore, experimental realiza-
tion of mixtures of other fermion species (such as 161Dy, 163Dy,
167Er) are expected in future [60,61].

An experimentally addressable aspect of the mass imbal-
anced mixture is its finite-temperature behavior. It has been
reported that for a double-degenerate 6Li-40K mixture the
Fermi temperatures are TLi

F = 390 nK and TK
F = 135 nK, for

Li and K species, respectively [23]. In comparison, for a
balanced Fermi gas of 6Li, the Fermi temperature is known
to be TF = 1.0 μK [62] with the corresponding Tc scale
being Tc ∼ 0.15TF [63]. While it is evident that in case of
the mass imbalanced Fermi-Fermi mixture the thermal scales
are significantly suppressed, the qualitative and quantitative
behaviors of the same are hitherto unknown.

Keeping in pace with the experiments, efforts have been put
in to theoretically investigate the behavior of mass imbalanced
Fermi-Fermi mixtures within the framework of continuum
models. Density functional theory combined with local density
approximation [56], functional renormalization group studies,
etc., have been carried out on mass imbalanced Fermi mixture
at unitarity [55]. The study involved inclusion of fluctuations
beyond the mean field and predicted the possibility of inho-
mogeneous superfluid state. The problem has also been inves-
tigated using mean field theory (MFT), taking into account the
effects of Gaussian fluctuations [35,64]. The authors mapped
out the polarization-temperature phase diagram at different
mass as well as population imbalances at and away from
unitarity. It was shown that while for a mass balanced system,
instability towards a supersolid phase accompanied by a Lif-
shitz point is observed only at weak interactions, the imbalance
in mass promotes this behavior and makes it observable even at
unitarity. Among the other techniques, T -matrix and extended
T -matrix approaches [38,57,58] are utilized to determine the
thermal scales of the mass imbalanced mixture, both in terms
of its thermodynamic as well as quasiparticle behavior. It was
observed that unlike the balanced Fermi gas, the Fermi-Fermi
mixture with imbalance in mass consists of more than one
pseudogap scale [38,57].
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Interestingly, within the framework of a lattice fermion
model, most of the theoretical investigations on imbalanced
Fermi gases are carried out on systems with imbalance in pop-
ulation, through improvised numerical and analytic techniques
[48–52,65–67]. For the mass imbalanced mixture there are
only few attempts that have been made within the framework of
lattice fermion model. For example, the ground-state behavior
of one-dimensional mass imbalanced system has been stud-
ied through quantum Monte Carlo (QMC) calculations [59].
Recently, a nonperturbative lattice Monte Carlo calculation
was carried out to address the ground state of Fermi-Fermi
mixture in two dimensions (2D) [68]. The study revealed that
a mean field approach to the problem grossly overestimates
the ground-state energy of the system. The effect is likely to
be more severe at finite temperature where crucial amplitude
and phase fluctuations are neglected within a mean field
scheme.

An estimate of the inadequacy of mean field approach to
the problem at finite temperature can be made from the fact
that mean field theory overestimates the Tc scales by a factor
of more than 4 both in case of balanced [69–74] as well as
population imbalanced Fermi superfluids [51]. This is a crucial
observation owing to the fact that many of the predictions for
imbalanced Fermi superfluids are being made based on the
mean field theory.

While there is now a consensus about the thermal behavior
of balanced Fermi superfluid [75,76], the same cannot be said
about the Fermi-Fermi mixture. Within the purview of lattice
fermions, there is certainly a void in our present understanding
of such mixtures, especially at finite temperatures. On the other
hand, a lattice fermion model is a suitable choice keeping
in view the optical lattice experiments that are carried out
on ultracold Fermi gases. What is the Tc scale of a mixture
such as 6Li-40K? How does such a system behave across
the BCS-BEC crossover and, most importantly, how does the
pseudogap physics play out in the background of an imbalance
of fermionic masses in the system? While an experimental
investigation to answer such questions is awaited, one can
certainly make theoretical predictions.

Motivated by these questions, in this paper we present
a detailed finite-temperature analysis of mass imbalanced
Fermi mixture within the framework of lattice fermions.
We use a numerical technique which takes into account the
phase fluctuations of the ordering field and can access the
thermal transitions with quantitative correctness. Apart from
investigating the behavior of mass imbalanced system across
the BCS-BEC crossover, we also investigate the interplay of
mass and population imbalances. Before making quantitative
predictions about the 6Li-40K mixture, we have discussed
how the exotic Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) su-
perfluid phase reacts to the imbalance in mass in terms of
thermodynamic and quasiparticle behavior. We highlight our
principal observations below before proceeding to discuss
the numerical technique and the results obtained from the
same.

(i) Imbalance in mass leads to strong suppression of Tc

across the BCS-BEC crossover regime. Close to unitarity (U
∼ 4tL) for a mass balanced 6Li gas Tbal

c ∼ 0.15tL [51] (where
tL is the kinetic energy of the light fermion species, discussed
later) while for the 6Li-40K mixture Tc ∼ 0.03tL.

(ii) For T > Tc, two pseudogap regimes are realized as
PG-I and PG-II regimes, corresponding to regions where both
and only the lighter fermion species are pseudogapped, respec-
tively. Close to unitarity, the heavy species is pseudogapped
up to T ∼ 58.5 nK, while in the light species the pseudogap
survives up to T > 108 nK.

(iii) In presence of population imbalance, uniform super-
fluid state (with zero momentum pairing) is realized only
beyond a critical interaction Uc. This is in remarkable contrast
to the balanced case where any arbitrarily small attractive
interaction gives rise to a stable uniform superfluid.

(iv) Imbalance in population leaves its imprint on the
superfluid gap. In spite of an isotropic s-wave interaction,
finite-momentum scattering gives rise to “nodal” superfluid
gap.

The rest of the paper is organized as follows. In Sec. II we
discuss about the model and the numerical method that has
been used to study the imbalanced Fermi mixture. Section III
discusses our results for population balanced and imbalanced
systems with imbalance in mass. We further present quan-
titative estimates of the thermal scales corresponding to the
6Li-40K mixture. We touch upon certain computational issues
in the discussion Sec. IV and conclude with Sec. V.

II. MODEL, METHOD, AND INDICATORS

A. Model

We study the attractive Hubbard model on a square lattice
with the fermion species having unequal masses, additionally
they are being subjected to an imbalance in population

H = H0 − h
∑

i

σiz − |U |
∑

i

ni↑ni↓, (1)

where H0 = ∑
i,j,σ (tijσ − μδij )c†iσ cjσ , with tijσ = −tσ only

for nearest-neighbor hopping and is zero otherwise. σ corre-
sponds to the ↑ and ↓ spin species of fermions, henceforth
referred as L and H , respectively, where H stands for the
heavy-fermion species and L for the lighter one. tσ ∝ 1/mσ

takes into account the unequal masses of the fermion species; tL
serves as the energy scale in the problem in terms of which the
various quantities are measured. We define the mass imbalance
ratio as η = mL/mH , where mH and mL are the effective
masses of the two species. η = 1 thus correspond to the mass
balanced situation. We measure the population imbalance in
terms of an “effective field” h = (1/2)(μL − μH ), where μL

and μH correspond to the chemical potential of the light-
and heavy-fermion species, respectively. The polarization is
defined as m = 〈ni

L − ni
H 〉, with ni’s being the corresponding

number density of the fermion species.
For the system under consideration, we want to explore

the physics beyond the weak coupling, which requires one to
retain the fluctuations beyond the mean field theory. For this
we use a single-channel Hubbard-Stratonovich decomposition
of the interaction in terms of an auxiliary complex scalar field
�i(τ ) = |�i(τ )|eiθi (τ ). A complete treatment of the problem
requires retaining the full (i,τ ) dependence of the �, a target
that can be achieved only through imaginary-time QMC. The
present technique known as the static auxiliary field (SAF)
Monte Carlo [77,78] ignores the temporal fluctuations but

033617-2



THERMAL TRANSITIONS, PSEUDOGAP BEHAVIOR, AND … PHYSICAL REVIEW A 97, 033617 (2018)

retains the complete spatial fluctuations of �i . This approx-
imation makes the technique akin to the mean field theory at
T = 0, but retains the amplitude and phase fluctuations of �i

at finite temperatures, which controls the thermal scales. In
the language of Matsubara frequency, SAF retains fluctuations
corresponding to � = 0 mode only. A detailed account of our
technique can be found in Ref. [51].

The effective Hamiltonian is

Heff = H0 − h
∑

i

σiz +
∑

i

(�ic
†
i↑c

†
i↓ + H.c.) + Hcl, (2)

where Hcl = ∑
i

|�i |2
U

is the stiffness cost associated with the
now “classical” auxiliary field. The pairing field configurations
in turn are controlled by the Boltzmann weight

P {�i} ∝ Trc,c†e
−βHeff . (3)

This is related to the free energy of the fermions in the
configuration {�i}. For large and random {�i}, the trace has
to be computed numerically. For this we generate equilibrium
{�i} configurations by Monte Carlo technique, diagonalizing
the fermion Hamiltonian Heff for each attempted update.

B. Numerical method

Even though MFT is frequently used to study the imbalance
Fermi superfluids, it is essential to retain the crucial thermal
fluctuations as one moves beyond the weak coupling regime.
The issue has been widely discussed in the context of BCS-
BEC crossover in balanced Fermi systems [76,79–90]. For
analyzing the ground state and finite-temperature behavior of
the mass imbalanced system, we have employed variational
minimization and a Monte Carlo simulated annealing, respec-
tively.

1. Simulated annealing by Monte Carlo

The SAF scheme can access significantly larger system
sizes (∼40 × 40) as compared to what can be accessed through
QMC. In order to make the study numerically less expensive,
the Monte Carlo is being implemented through a cluster
approximation [51,91], wherein instead of diagonalizing the
entire lattice of dimension L × L for each attempted update,
we diagonalize a cluster of size Lc × Lc surrounding the
update site. For most of the results presented in this paper we
have used a lattice of size L = 24, with the cluster size being
Lc = 6, for typically 4000 Monte Carlo steps.

2. Variational minimization scheme

At zero temperature, the ground state of the system is deter-
mined by minimizing the energy over the static configurations
of the pairing field �i . The procedure is carried out over the
(U , h, η) space, for the pairing field amplitude being defined as
|�i | ∝ �0 cos(q.ri), which takes into account modulations in
the pairing field amplitude; here, �0 is assumed to be real and
positive. q is the modulation wave vector and for the balanced
(uniform) superfluid phase q = 0. We have also verified the
situation with modulations in the pairing field phases but have
found it to be energetically unfavorable over the parameter
regime under consideration. For the regime of interest hc1 <

h < hc2 (where hc1 and hc2 are critical population imbalances,

discussed later), the modulated superfluid state is of Larkin-
Ovchinnikov (LO) type.

C. Parameter regime and indicators

For the results presented in this paper, the interaction (U =
4tL) is set to be close to unitarity, unless specified otherwise.
The implementation of a real-space simulation technique
leads to restriction on the system sizes that can be accessed.
Smaller interactions (U � 2tL) requires larger system sizes
since the T = 0 coherence length ξ0 becomes large. Setting
U = 4tL we have explored the mass imbalance over the regime
η ∼ [0 : 1] and population imbalance h/tL ∼ [0 : 1.50]. The
calculations are carried out at a fixed net chemical potential
of ( 1

2 )(μL + μH ) = −0.2tL. Along the selected cross sections
across the parameter space we characterize the phases based on
the following thermodynamic and quasiparticle indicators: (i)
pairing field structure factor [S�(q)], (ii) polarization (m =
〈ni

L − ni
H 〉), (iii) pair correlation [�(q)], (iv) momentum-

resolved spectral functionAσ (k,ω) (whereσ = L,H ), (v) low-
energy spectral weight A(k,0) distribution at the Fermi level,
(vi) species-resolved occupation number [nσ (k)], and (vii)
species-resolved fermionic density of states (DOS) [Nσ (ω)].
We define these indicators below:

S�(q) = 1

N2

∑
i,j

〈�i�
∗
j 〉eiq.(ri−rj ),

�(q) =
∑
ij

�ij e
iq.(ri−rj ), where �ij = 〈c†iH c

†
iL〉〈cjLcjH 〉,

Aσ (k,ω) = −(1/π )ImGσ (k,ω),
Aσ (k,0) = −(1/π )ImG(k,ω → 0),

NL(ω) =
〈

(1/N )
∑
i,n

∣∣ui
n

∣∣2
δ(ω − En)

〉
,

NH (ω) =
〈

(1/N )
∑
i,n

∣∣vi
n

∣∣2
δ(ω + En)

〉
.

Here, Gσ (k,ω)=limδ→0Gσ (k,iωn)|iωn→ω+iδ where
Gσ (k,iωn) is the imaginary frequency transform of
〈ckσ (τ )c†kσ (0)〉. ui

n and vi
n are the Bogoliubov–de Gennes

(BdG) eigenvectors corresponding to the eigenvalues En

for the configurations under consideration. N = L2 are the
number of lattice sites.

III. RESULTS

In this section, we discuss the results obtained through our
numerical simulations. We categorize our observations in two
groups, viz., (i) mass imbalanced Fermi-Fermi mixture with
balanced population and (ii) mass imbalanced Fermi-Fermi
mixture with population imbalance. Within each category,
we discuss the ground state and finite-temperature behavior
separately.

A. Population balanced Fermi-Fermi mixture

Population balanced Fermi gas corresponds to the situation
when the fermionic species are being subjected to equal
chemical potential. In the context of ultracold atomic gases,
such a system is realized by loading equal population of two
fermion species in the optical lattice.
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FIG. 1. Variation of free energy density with pairing field ampli-
tude at different mass imbalance ratio and zero population imbalance.

1. Ground state

We begin the discussion of our results in this section with
the effect of mass imbalance on the ground state of the system.
With h being set to zero, we use the mass imbalance ratio η

as the tuning parameter to investigate the various properties.
We map out the ground-state phase diagram based on the
variational mean field calculation (discussed in the previous
section) and in Fig. 1 show the dependence of free energy on
the pairing field amplitude �0 and mass imbalance ratio η for
the selected interaction strength U = 4tL. The ground-state
energy shows a single minima and corresponds to a uniform
superfluid state with the pairing field amplitude (�0) being
almost independent of the choice of the mass imbalance ratio.
Both the pairing field amplitude as well as the superfluid gap at
the Fermi level increase monotonically with U . We show these
behaviors in the η-U plane in Figs. 2(a) and 2(b), respectively.

The effect of mass imbalance on the quasiparticle dispersion
spectra is probed next and we show the corresponding spectral
function A(k,ω) at different mass imbalance ratio in Fig. 3. The
k-summed quantity of the spectral function corresponds to the
electronic density of states (DOS) and we show the species-
resolved variant of the same [Nσ (ω)] as the last two panels
of Fig. 3. For the computation of both the spectral function
and the DOS we have used the Green’s function formalism
which gives access to large system sizes and thus makes the van
Hove singularities prominent. Details of the Green’s function
formalism are discussed in Sec. IV.
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(b)

η

FIG. 2. [(tL) → units of tL] Ground-state (a) pairing field am-
plitude and (b) superfluid gap in the η-U plane for the population
balanced system. Strong interaction and small mass imbalance (η →
1) leads to a larger pairing field amplitude and gap at the Fermi level.

We observe that at large imbalance in mass there are
essentially four branches in the dispersion spectra. Both above
and below the Fermi level, the branches intersect each other
at k = π /2, which gives rise to additional singularities in the
form of subgap and supergap states in the DOS. However,
there is no spectral weight at the Fermi level which ensures
that the underlying ordered state is gapped across the range
of η. In a later section, we would find that this behavior is
remarkably altered once a population imbalance is introduced
in the system. With decreasing mass imbalance, the branches
merge together, leading to the well-known two-branched BCS
spectra as η → 1 [92].

In agreement with the behavior of the spectral function, we
observe that for the system at or close to the mass balanced
situation, the species-resolved DOS exhibits prominent hard
gap at the Fermi level separated by the characteristic BCS-type
coherence peaks. Increasing imbalance gives rise to subgap and
supergap states.

2. Finite temperature

Thermal evolution of this system is probed in terms of two
thermodynamic quantities, viz., (i) the pairing field structure
factor [S(q)] and (ii) the pair correlation [�(q)]. While both
these quantities essentially give similar information, �(q)
is a more fundamental quantity since it directly probes the
fermionic correlations rather than the correlation between the
auxiliary fields. Spatial maps of pairing field structure factor
as well as pair correlation (not shown here) exhibit a uniform
superfluid (BCS-type) low-temperature state with a finite peak
at q = 0. Based on these two quantities, we map out the mass
imbalance-temperature (η-T ) phase diagram at U = 4tL and
show it in Fig. 4(a). Note that in a two-dimensional system
such as the present one, thermal transitions are possible only
through a Berezinskii-Kosterlitz-Thouless (BKT) transition.
The Tc scales discussed here correspond to the BKT transition
temperature.

There are two thermal scales in this phase diagram, viz., Tc

and T ∗, which demarcate the phases as superfluid, pseudogap,
and normal. While Tc corresponds to the temperature beyond
which the phase coherence in the pairing field is lost, T ∗
marks the loss of short-range pair correlations leading to the
disappearance of superfluidity.

Thermal fluctuations are progressively detrimental with in-
creasing mass imbalance in the system, leading to suppression
in Tc as shown in Fig. 4(a). The observation suggests that
even though at the ground state there is a large pairing field
amplitude, the state is fragile towards thermal fluctuations and
rapidly loses phase coherence. The thermal scalesTc and T ∗ are
determined from the pairing field structure factor peaks [S�(q)]
shown in Fig. 4(b). Away from the weak coupling regime,
the short-range pair correlations survive up to temperatures
T ∗ 
 Tc. In the limit of η → 1, we find T ∗ ≈ 2Tc. The
pseudogap regime is determined based on the temperature
dependence of the structure factor and pair correlation peak
at q = 0 and T ∗ corresponds to the temperature at which there
is no distinguishable peak in the S(q) and �(q) at q = 0.
Figure 4(a) is one of the important results of this work. It shows
how the consideration of phase fluctuations in the numerical
framework is important to capture the true thermal scales of
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FIG. 3. [(tL) → units of tL] Ground-state dispersion spectra at different mass imbalance ratio η. The last two panels show the η dependence
of the density of states (DOS) for the (a) light- and (b) heavy-fermion species. Note the subgap and supergap features in the DOS at large mass
imbalance ratio.

the mass imbalanced superfluid system. A finite-temperature
mean field theory (MFT) can track only T ∗ and thus leads
to significant overestimation of Tc. However, even though
the thermodynamic measures S(q) and �(q) are sufficient to
quantify the existence of phase coherence in the system, they
lack the information about the quasiparticle behavior of the
fermionic species. Analyzing the fermionic properties such as
single-particle DOS, spectral function, etc. (discussed later),
shows us how the information about the quasiparticle behavior
significantly alters the phase diagram in Fig. 4(a).

In Fig. 4(c) we show the BCS-BEC crossover at a se-
lected mass imbalance ratio of η = 0.15, corresponding to
the experimentally realized Fermi-Fermi mixture of 6Li-40K

[18,19,21,22]. Further, we compare our result with the one

obtained for a mass balanced system, so as to demonstrate the
suppression of Tc by imbalance in mass.

Across the BCS-BEC crossover, the behavior of the Tc

scale is governed by different mechanisms at different coupling
regimes. In the weak coupling regime, the thermal scale is de-
termined by the vanishing of the pairing amplitude (〈〈c†iLc

†
iH 〉〉)

as kBT ∼ te−t/U . At strong interactions where the system
comprises of molecular pairs, the thermal scale is dictated by
the phase correlation of the local order parameter and behaves
as kBT ∼ f (n)t2/U , where f (n) is a function of number
density.

In Fig. 4(d) we show the composite thermodynamic phase
diagram in the η-U -T space. A large imbalance in mass
suppresses the Tc scale irrespective of the choice of U . For,
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FIG. 4. [(tL) → units of tL] (a) Effect of mass imbalance (η) on the thermal scales (Tc and T ∗) at U = 4tL, for a population balanced
system. Tc corresponds to the temperature at which the system loses its phase coherence. Beyond T ∗ there is no noticeable peak in the pairing
field structure factor. (b) Thermal evolution of pairing field structure factor peaks at different mass imbalance ratio. (c) BCS-BEC crossover at
η = 0.15 (red solid line), for a population balanced Fermi-Fermi mixture. Note the suppression in Tc due to mass imbalance, in comparison
to the balanced case (black dotted line). (d) BCS-BEC crossover in the η-U plane. The balanced situation corresponds to a large pairing field
amplitude and thus a higher Tc.
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FIG. 5. [(tL) → units of tL] Thermal evolution of DOS at the Fermi level for the light- [(a)–(c)] and the heavy-fermion [(d)–(f)] species
for different mass imbalance ratio of η = 0.2 [(a) and (d)], η = 0.5 [ (b) and (e)], and η = 0.9 [(c) and (f)]. At large imbalance in mass the
DOS corresponding to the heavy species has coherence peaks with magnitudes significantly larger than its light counterpart. As the system
approaches the mass balanced situation the coherence peaks of the heavy species reduce and for η → 1 become equal to that of the light species.

e.g., at U = 4tL, Tc ∼ 0.16tL at η = 0.9, and progressively
reduces to Tc ∼ 0.13tL at η = 0.5 and to Tc ∼ 0.04tL
at η = 0.1, respectively. The BCS-BEC crossover remains
roughly unaffected (except for this suppression) by the change
in the mass imbalance ratio, with Uc ∼ 5tL corresponding to
unitarity with maximum Tc [76]. We would come back to the
concept of unitarity in a lattice fermion model in the discussion
section of this paper.

The quasiparticle behavior is discussed next and in Fig. 5 we
show the effect of mass imbalance on species-resolved DOS.
The effect of mass imbalance on the DOS can be observed
through multiple features. A quick look at the magnitude of
the coherence peaks of the DOS in Fig. 5 shows that the
heavy-fermion species has its coherence peaks significantly
larger in magnitude as compared to its lighter counterpart. In
Fig. 5 we have shown the species-resolved DOS corresponding
to three different mass imbalance ratios as η = 0.2 [Figs. 5(a)
and 5(d)], η = 0.5 [Figs. 5(b) and 5(e)], and η = 0.9 [Figs. 5(c)
and 5(f)]. While the difference in magnitude of the coherence
peaks between the two species is maximum at large mass
imbalance, it progressively reduces as the system transits to
the balanced situation and at η = 0.9 they are almost equal, as
expected from the mass balanced situation. Second, we observe
that the two species are now being subjected to different
scaled temperatures and the heavy species experiences a higher
temperature as compared to the lighter ones. This is because
the kinetic energy contribution of the two species is now
different in presence of imbalance in mass. Thus, there are
now two different pseudogap scales in the system and one needs
species-resolved probes such as rf spectroscopy to access them.

Finally, at larger imbalance in mass the pseudogap behavior
is almost independent of thermal evolution and persists even
at high temperatures. It is only close to the mass balanced
situation that thermal fluctuations begin to pile up significant
weight at the Fermi level. The observation is crucial and
suggests that in case of Fermi-Fermi mixtures, thermodynamic
quantities such as pairing field structure factor [Fig. 4(a)]
significantly underestimate the pseudogap regime. Information
about the quasiparticle behavior is essential in this case in order
to obtain the complete picture of the thermal behavior of the
system. In the later sections, we would observe that inclusion of
population imbalance is instrumental in making such mixtures
reactive towards temperature and even with large imbalance in
mass the pseudogap undergoes significant thermal evolution.
This can be summed up as that while an imbalance in mass
promotes the pseudogap behavior, an imbalance in population
leads to suppression of the pseudogap scales.

A second quasiparticle behavior of interest is the
momentum-resolved spectral function A(k,ω) and we present
the species-resolved version of the same for k = {0,0} to {π,π}
scan across the Brillouin zone in Fig. 6. While at the low
temperature both the species possess prominent spectral gap at
the Fermi level, progressive increase in temperature smears out
the gap. The thermal disordering temperature corresponding
to the two species is now different, leading to two pseudogap
scales. Since tH < tL, the heavy species experiences a higher
“scaled” temperature and consequently undergoes faster ther-
mal disordering. It must, however, be noted that even at high
temperature there is a very small but noticeable gap at the
Fermi level in agreement with the behavior of the DOS. A
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FIG. 6. Thermal evolution of species-resolved [light (left) and heavy (right)] spectral function A(k,ω) at selected η. All temperatures are
measured in terms of tL, where tL = tH /η. Since the heavy species experiences a higher “scaled” temperature (see text), it undergoes faster
thermal disordering.

species-dependent momentum-resolved photoemission spec-
troscopy measurement is a suitable experimental technique
to observe the species-dependent thermal disordering of the
spectral functions. While the signature of short-range pair
correlation at T > Tc in both the species merely demonstrates
the loss of pair coherence, the survival of such short-range pair
correlation only in the light species would be a true signature
of imbalance in mass in the system.

B. Population imbalanced Fermi-Fermi mixture

We now introduce the next level of complexity to the system
by adding on an imbalance in population along with the ex-
isting mass imbalance. Before proceeding further, we quickly
summarize how the imbalance in population is introduced in
our model. An imbalance in population can be created through
a mismatch in the size of Fermi surface corresponding to the
two fermionic species. This in turn can be achieved in two
ways, viz., (i) by creating difference in the chemical potential
or (ii) by creating difference in the number density of the two
fermionic species.

As already mentioned, the imbalance in chemical potential
is quantified in terms of an “effective field” h, while a finite
polarization m is a measure of imbalance in the number
densities. The quantification in terms of finite polarization is
more suitable in the context of cold atomic experiments where
the population of individual fermionic species to be loaded in
the optical lattice can be controlled. For the solid-state systems,
the imbalance in population is achieved by applying a Zeeman
magnetic field which leads to a chemical potential mismatch.
In our work we take this second route and subject the system to
an effective Zeeman field (h �= 0), i.e., we control the chemical
potential to which the individual species are being subjected,
rather than controlling the number density of each species.

The presence of population imbalance is expected to suppress
the thermal scales at any mass imbalance. In a mass balanced
system at a sufficiently large imbalance in the population, a
uniform superfluid state can not be realized. It was found that
rather than transiting to a polarized Fermi liquid phase the
system undergoes transition to a modulated superfluid state
with finite momentum (q �= 0) pairing, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) state [51,52,93,94]. At
weak imbalance in population the system undergoes thermal
evolution to a breached pair (BP) state comprising of coexisting
superfluidity and finite polarization, a phase which does not
have a ground-state counterpart [51]. In the next few sections
we discuss the effects of the interplay between population and
mass imbalances in the system under consideration.

1. Ground state

As in the population balanced case, we begin the discussion
with the ground-state behavior of the system with imbalance
in population and mass. The ground-state phase diagram in
terms of the effective field h and mass imbalance ratio η is
shown in Fig. 7(a). The thermodynamic phases are classified
as unpolarized superfluid (USF) (with � �= 0 and m = 0),
modulated superfluid (LO) (with � �= 0 and m �= 0), and
partially polarized Fermi liquid (PPFL) (with � = 0 and
m �= 0). There are two critical fields in this phase diagram,
viz., hc1 which correspond to a first-order transition from the
USF to the LO state and hc2 at which the LO state undergoes
a second-order transition to the PPFL phase.

From the perspective of the cold atom experiments, we show
the ground-state phase diagram in Fig. 7(b) in the polarization-
mass imbalance (m-η) plane. Note that when depicted in terms
of polarization, the entire USF regime corresponding to m = 0
collapses to the x axis. The first-order transition from USF to
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FIG. 7. [(tL) → units of tL] Ground-state phase diagram for the mass imbalanced system as a function of varying population imbalance at
U = 4tL, in the (a) η-h and (b) η-m plane. Up to a critical effective field (hc1) say, the system is an unpolarized superfluid (USF). A small η

gives rise to a small hc1 and beyond η ∼ 0.5, hc1 becomes independent of the choice of η. For the range of field hc1 < h < hc2 a modulated
superfluid (LO) phase is realized for any choice of η. hc2 is only weakly dependent on the choice of η beyond η ∼ 0.5. For h > hc2 the ground
state of the system is a partially polarized Fermi liquid (PPFL). In the η-m plane the entire USF regime collapses on to the m = 0 axis. The
ground state is phase separated (unstable) in this regime and undergoes first-order transition to the LO state beyond a critical polarization mc1,
say. A second-order transition from the LO to the PPFL state takes place at mc2. (c) Shows how the polarization (m) varies with the effective
field (h) at different mass imbalance ratio η. At the critical effective field hc1, there is a discontinuous transition between the zero and finite
polarization states. The transition is only weakly first order at small mass imbalance (as η → 1), while a sharp first-order transition is realized
in presence of large imbalance in mass.

LO is marked by discontinuity in the polarization, which is
shown as the unstable (phase-separated) region in the Fig. 7(b).
We observe that the discontinuity in the polarization gets
progressively enhanced with increasing imbalance in mass.
Irrespective of the system size under consideration, a larger
mass imbalance favors a first-order transition between USF
and LO phases. A quantitative measure of this discontinuity
in polarization can be seen in Fig. 7(c), where we relate the
effective field h to the corresponding polarization m.

Although not shown in the figure, the LO regime is
segregated into several finer regimes corresponding to the
different modulation wave vectors arising at different strength
of population imbalance. The optimized wave vector is dictated
by the lattice size, interaction strength, as well as the mass
imbalance ratio. In the variational scheme that has been used
to map out the ground-state phase diagram we have carried
out the optimization of energy for different trial solutions
corresponding to (i) uniaxial modulation, (ii) diagonal modula-
tion, and (iii) two-dimensional modulations. For the parameter
regime under consideration, the uniaxially modulated LO state
has been found to be the suitable configuration. In principle,
modulations with multiple wave vector make up a possible
candidate for the LO state, however, for the sake of numerical
simplicity we have not allowed for such solutions in our
variational scheme.

The quasiparticle spectra in the LO phase (not shown here)
is pseudogapped even at the ground state. The pseudogap
behavior in this case is, however, a band structure effect arising
out of the underlying modulated state. The corresponding
dispersion spectra of this phase deviates significantly from the
BCS-type behavior and is characterized by multiple dispersion
branches [51]. The multibranched dispersion spectra arise be-
cause the electrons now undergo finite-momentum scattering
unlike the homogeneous BCS state. The additional van Hove
singularities arise from the k regions where the condition
∂Eα/∂k = 0 is satisfied by the dispersion spectra, where α

correspond to the dispersion branches of the LO spectra [51].

While the choice of the mass imbalance ratio η determines
the optimized pairing momenta Q of the LO superfluid for a
particular choice of population imbalance, the coarse features
of the spectra (i.e., multiple branches and multiple van Hove
singularities) remain unaltered by the choice of η.

2. Finite temperature

The thermal evolution of the system is discussed in terms
of m-T phase diagrams shown in Fig. 8 for different choices
of mass imbalance ratio η. The thermodynamic phases are
determined based on the thermal evolution of pairing field
structure factor S(q) and polarization m(T ). The broad ther-
modynamic phases remain the same irrespective of the choice
of η, and with increasing imbalance in population the system
transits through a breached pair (BP), unstable, LO, and PPFL
phases in each case. Also, irrespective of the choice of η there
is a tricritical point Tc1 and a Lifshitz point Tc2 in the phase
diagram. While Tc1 corresponds to the point where the order of
transition changes from second to first within the BP phase, Tc2

marks the transition from the BP to the LO phase. Unlike the
continuum case [35], the two transitions are well separated in a
lattice model and the separation increases with increasing mass
imbalance. Presence of mass imbalance significantly alters the
regime of stability of the different thermodynamic phases. A
larger imbalance in mass leads to stronger suppression in Tc

and thus a progressively smaller BP regime. The pseudogap
regime, on the other hand, increases monotonically with the
imbalance in mass, for example, at h = 0 the ratio T ∗/Tc ∼
3.33 at η = 0.2 and reduces to ∼2.14 and ∼1.25 at η = 0.4
and 0.6, respectively.

As discussed in case of the population balanced superfluid,
the species-resolved DOS continues to have different thermal
disordering scales in the BP regime as well, owing to the dif-
ferent kinetic energy scales of the two species. The underlying
superfluid state in this regime is gapped and undergoes thermal
evolution to pseudogapped phase with increasing temperature.
In Fig. 9 we show the thermal phase diagram of the BP phase
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FIG. 8. [(tL) → units of tL] Polarization-temperature (m-T ) phase diagram at selected mass imbalance ratio of η = (a) 0.2, (b) 0.4, and
(c) 0.6. The dashed line correspond to T ∗ in each panel. There are three broad thermodynamic phases in each case as the (i) breached pair
(BP), (ii) modulated superfluid (LO), and (c) partially polarized Fermi liquid (PPFL). In the regime of weak polarization, the system undergoes
second-order thermal transition (shown by black solid line) from BP to the pseudogap phase. At intermediate polarization, the low-temperature
phase-separated (unstable) state undergoes a first-order thermal transition (shown by the red solid line). The large polarization regime is LO
phase which undergoes a second-order thermal transition. The first-order transition regime is demarcated by a tricritical Tc1 and a Lifshitz point
Tc2. A large mass imbalance in the system leads to significant suppression in the Tc and thus the phase coherent superfluid state but gives rise
to a wider pseudogap regime.

in the η-T plane for a particular choice of the population
imbalance h = 0.6tL. Apart from the Tc there are additional
thermal scales in this phase diagram based on the quasiparticle
behavior. We discuss them below.

For a population imbalanced system, the species-resolved
DOS at the shifted Fermi level (ω = ±h) shows a non-
monotonic behavior [51]. Increasing temperature leads to
progressive filling up of the gap up to a temperature Tmax.
For T > Tmax, a nonmonotonic thermal evolution sets in and
there is now depletion of spectral weight at the Fermi surface
with increasing temperature. In presence of strong interaction,
the pseudogap continues to survive up to high temperatures
but the scale Tmax rapidly collapses with increasing population
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FIG. 9. [(tL) → units of tL] Mass imbalance-temperature (η-T )
phase diagram at fixed population imbalance of h = 0.6tL. Along
with the superfluid regime, the figure shows the pseudogap regimes
based on the species-resolved DOS. T L

max and T H
max correspond to the

scales beyond which the pseudogap behavior becomes nonmonotonic
(see text). PG-I corresponds to the regime where both the light and
heavy species are pseudogapped, while in the PG-II regime only the
light species is pseudogapped.

imbalance [51]. Since Tmax survives up to temperatures signif-
icantly higher than the Tc, it is more likely to be accessible to
the experimental probes.

In presence of mass imbalance, the scale Tmax is now depen-
dent on the fermion species as T H

max and T L
max, corresponding

to the heavy- and light-fermion species, respectively. T L
max

and T H
max set the scale for the regime of species-dependent

pseudogap behavior. We show these thermal scales in the η-T
phase diagram in Fig. 9. There are two pseudogap regions as
PG-I and PG-II. While within the PG-I regime both the fermion
species are pseudogapped, it is only the light species which is
pseudogapped in the PG-II regime. As η → 1, both the scales
T H

max and T L
max collapse into a single one, as expected from a

mass balanced system.
In the LO phase, mass imbalance gives rise to intriguing

features both in the thermal and quasiparticle behaviors. For a
particular choice of population imbalance, the mass imbalance
ratio η dictates the pairing momenta Q. The signature of the
same can be observed both in the pairing field structure factor
[S(q)] as well as in pair correlation �(q), both of which show
peak at q �= 0. We show the thermal evolution of the same in
Fig. 10 at η = 0.6 and a representative population imbalance
of h = 1.0tL, corresponding to the LO phase. At this choice of
parameters, the underlying LO phase is uniaxially modulated
as can be seen from the twofold symmetry of S(q) and �(q)
at the lowest temperature. With Tc ∼ 0.01tL we find that the
state undergoes thermal disordering and acquires a fourfold
symmetry T ≈ Tc. Short-range LO pair correlations, however,
continue to survive up to still higher temperatures and vanish
only at T > 2Tc.

We next show how the finite-momentum pairing in the
LO regime modifies the quasiparticle behavior. As men-
tioned above, the DOS at the shifted Fermi level is pseu-
dogapped even at the ground state and contains additional
van Hove singularities. Thermal disordering smears out these
singularities. The exact number and location (energy) of
the van Hove singularities are altered by the choice of η.
We demonstrate this behavior in Fig. 11 where we show
the thermal evolution of the species-resolved DOS at two
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FIG. 10. Thermal evolution of pairing field structure factor [S(q)] and pair correlation [�(q)] at a representative point (h = 1.0tL) in the
LO phase for a mass imbalance ratio of η = 0.6 and interaction U = 4tL. The underlying uniaxially modulated LO state is observed through
the finite-Q peaks in S(q) and �(q), at low temperatures. Fluctuation progressively disorders the system and restores the fourfold symmetry.
However, signatures of short-range correlations survive up to T > 2Tc (where Tc ∼ 0.01tL). The temperatures are measured in units of tL.

different η’s mentioned in the figure caption. At η = 0.4 and
0.6, the finite-momentum pairing takes place at Q = (0,π )
and (0,π/2), respectively. At T = 0, the DOS is computed
using the variational scheme on a system size of 60 × 60.
We have further compared our ground-state results with the
one obtained by Green’s function formalism (shown by dotted
curve) and have observed qualitative agreement between the
two.

Thermal evolution of the species-resolved spectral function
Aσ (k,ω) along the {0,0} to {π,π} scan across the Brillouin
zone for two different choices of η are shown next, in Fig. 12.
The multiband nature of the dispersion spectra is evident at
low temperatures. In agreement with the DOS, there is no hard
gap at the Fermi level, while soft gaps or depletion of spectral
weights are observed at the shifted Fermi levels. As in case
of the BP phase, the thermal disordering scales continue to be
species dependent.

Before closing this section, we discuss about two quantities
which crucially depend on the imbalance of population and
mass in the system. The first quantity is the momentum-
resolved occupation of the fermion species nσ (k), which maps
out the Fermi surface architecture. In presence of an underlying
inhomogeneous pairing field such as the LO superfluid, we
expect a nontrivial Fermi surface and show the same for two
different choices of mass imbalance ratio η = 0.4 and 0.6,
in Fig. 13. As in the case of DOS the T = 0 calculations
are carried out on a larger system size of 60 × 60 using the
variational technique. Apart from the mismatch in size, the
Fermi surfaces now show twofold symmetry consequent to
the uniaxial modulation of the pairing field at this particular
parameter point. Thermal evolution progressively smears out
the directional asymmetry in the Fermi surface, and at T > 2Tc

the expected fourfold symmetry is restored. Owing to the
asymmetry of the Fermi surface, pairing now essentially takes
place only at selected Q values [51].

The second quantity of interest is the low-energy spectral
weight distribution A(k, 0) which gives information about the
nature of the superfluid gap. In Fig. 14 we plot A(k, 0) at
η = 0.4 and 0.6 as it evolves in temperature. A very interesting
behavior emerges from this figure, wherein in spite of an
isotropic s-wave symmetry of the pairing field, the superfluid
gap is now “nodal,” arising purely out of the finite-momentum
scattering that takes place in the LO phase. The gap isotropy
is restored at T > 2Tc. Momentum-resolved photoemission
spectroscopy is one such experimental tool which can probe
the angular dependence of the gap. While the presence of an
underlying LO phase guarantees a nodal gap structure, the
exact symmetry of the gap (as well as the Fermi surface) is
dictated by the pairing momentum Q and thus by the mass
imbalance ratio η. We believe that such nontrivial behavior of
the gap would have intriguing signatures in species-resolved
transport measurements. We, however, do not touch upon those
issues in this paper.

C. Effect of interaction

In the last few sections we have discussed how the
interplay of mass and population imbalances bring about
several intriguing features in a Fermi-Fermi mixture, at
a particular interaction strength. One of the principal ad-
vantages of the cold atomic gas quantum emulator is the
ability to control the interaction strength and, thus, it is
of significant interest to understand how the interplay be-
tween the population and mass imbalances alter the well-
known picture of BCS-BEC crossover in balanced Fermi
gas.

In this section, we briefly discuss the interplay and present
our observations in terms of the m-T phase diagram at η = 0.6
for different choices of interaction strength in Fig. 15. The
phase diagram remains qualitatively the same at other mass
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FIG. 11. [(tL) → units of tL] Thermal evolution of species-resolved DOS at a population imbalance of h = 1.0tL corresponding to the LO
regime, for selected mass imbalance ratio of η = 0.4 [(a) and (b)] and η = 0.6 [(c) and (d)]. The state is pseudogapped even at the lowest
temperature owing to the band structure effects. Note the additional van Hove singularities that arise due to the underlying modulated state with
Q = {0,π} at η = 0.4 and Q = {0,π/2} at η = 0.6. The T = 0 DOS is determined from the variational calculation on a lattice size of 60 × 60,
while for T �= 0 we use Monte Carlo simulations on a lattice of size 24 × 24. The dotted blue curve in each panel corresponds to the results
obtained by the Green’s function formalism, at the ground state. Access to large system sizes by this technique enables us to demonstrate the
van Hove singularities prominently. The results obtained by Green’s function formalism agree reasonably with the one obtained through the
variational calculations.

imbalance ratio. Figure 15 can roughly be compared with
Figs. 8 and 9 of Ref. [35]. In the limit of small polarization,
the system is in the breached pair state comprising of uniform
superfluidity with finite polarization. Note that we do not make
a distinction between a BCS state with a gap at the Fermi
level and a Sarma phase with gapless superconductivity, as

has been discussed in Ref. [35]. At the interaction regime we
are in the BCS description of the state ceases to be valid. At
T �= 0 there is spontaneous emergence of islands with nonzero
polarization, giving rise to coexisting superfluid and magnetic
behavior in the BP phase [51]. At the tricritical point Tc1 the
order of thermal transition changes from second to first within

FIG. 12. Thermal evolution of light (left) and heavy (right) species LO spectral function A(k,ω) across the Brillouin zone for k = {0,0} to
{π,π} at h = 1.0tL, U = 4tL and mass imbalance ratio η = 0.4 and 0.6. Note the multibranch nature of the dispersion spectra arising due to LO
modulations. Note that there is no hard gap at the Fermi level, rather there is depletion of spectral weight at the shifted Fermi level (ω = ±h).
The temperatures are measured in units of tL.
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FIG. 13. Thermal evolution of single-particle occupation for the different species [nα(k)], where α = L,H ; mapping out the Fermi surface
at η = 0.4 and 0.6 for h = 1.0tL. Note the mismatch in size of the Fermi surfaces owing to the imbalance. The T = 0 results are once again
obtained using the variational calculation at large system size of L = 60. The anisotropy in the Fermi surface architecture arises due to the
modulated underlying state. The isotropy of the Fermi surface is regained at high temperature. The temperatures are measured in units of tL.

the BP phase. Akin to the continuum case [35] the first-order
transition is marked by discontinuity in polarization as well
as in density. The resulting forbidden region in Figs. 8 and 9
of Ref. [35] is the unstable region in Fig. 15 of this paper.
At still larger polarization, a first-order transition takes place
between the unstable BP phase and the LO phase at the Lifshitz

point Tc2. However, it must be noted that in case of lattice
fermions for weak and intermediate interactions the Tc1 and
Tc2 are distinct, unlike the continuum phase diagram where the
Lifshitz point coincides with the tricritical point. As shown in
Fig. 15, at strong interaction (U = 6tL) there is indeed a single
critical point where the BP phase undergoes a second-order

FIG. 14. Thermal evolution of low-energy spectral weight distribution A(k,0) at the Fermi level η = 0.4 and 0.6, mapping out the
superconducting gap structure. Note that in spite of an isotropic s-wave pairing field, a “nodal” gap structure is realized at low temperature. At
T ∼ 2Tc the gap isotropy is restored. The temperatures are measured in units of tL.
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FIG. 15. [(tL) → units of tL] Polarization-temperature (m-T ) phase diagram for η = 0.6 at different interactions (a) U = 3tL, (b) U = 4tL,
and (c) U = 6tL. At strong interaction (U = 6tL) the system undergoes a second-order transition from a BP to LO regime “without” an
intervening unstable regime involving first-order transition.

transition to an LO phase, without an intervening first-order
unstable regime.

D. Comparison with experiments

We now consider an experimentally realizable Fermi-
Fermi mixture and attempt to make some quantitative pre-
dictions about it based on our discussions in the previous
sections. A suitable candidate for the same is 6Li-40K mix-
ture [18,19,21,22]. Even though superfluidity is yet to be
achieved, Feshbach resonance as well as the formation of
heteromolecules 6Li-40K has already been attained for this
mixture.

In order to analyze the behavior of 6Li-40K mixture, we
choose the mass imbalance ratio to be η = 0.15. For the
population imbalance, we select h = 0.6tL corresponding to
the system in BP regime, close to unitarity. We believe that
as compared to the LO superfluid regime, the BP phase is
more readily accessible to the experimental probes, owing to
its higher thermal scales. This justifies our choice of h = 0.6tL.

We begin the discussion of our results by demonstrating
the BCS-BEC crossover for the 6Li-40K mixture. Figure 16(a)
shows the pairing field structure factor [S(0,0)] (at q = 0)
across the BCS-BEC crossover. In the intermediate and strong
coupling regimes (U � 4tL) the ground state of the system
at this population imbalance corresponds to an unpolarized
superfluid (USF). The finite-temperature counterpart of the
same leads to the BP phase. In the weak coupling regime
(U < 4tL), the system is a partially polarized Fermi liquid
(PPFL) in the ground state and does not show any long-range
order.

Figure 16(b) shows the temperature dependence of polariza-
tion across the BCS-BEC crossover. Increasing interaction sup-
presses the polarization and uniform superfluid state is realized
over a wider regime of temperature. At large interactions where
the fermions form tightly bound pairs, the required population
imbalance to break the pair and create finite polarization is
large, leading to the suppression in the polarization. In striking
contrast is the weak (U < 4tL) interaction limit where even at
the ground state there is a large finite polarization, indicating
a PPFL state.

We present the Tc scale for the 6Li-40K mixture as deter-
mined from S(0, 0) in Fig. 16(c). There are two key effects
which decide the behavior of the Tc scale. We discuss them

pointwise. (i) The primary effect is the suppression of the Tc

by the imbalance in mass. Close to unitarity, at U = 4tL the Tc

for a mass balanced system is T bal
c ∼ 0.15tL, in comparison to

T imb
c ∼ 0.03tL ∼ 0.2T bal

c for 6Li-40K mixture. The estimated
Tc of the 6Li-40K mixture (at U = 4tL) amounts to T imb

c ∼ 11.7
nK. (ii) The second effect on Tc arises out of the population
imbalance. A weaker interaction shrinks the regime of both
the uniform and modulated superfluid and rapidly gives way
to a PPFL state. Thus, at a fixed population imbalance, the
system can be in a PPFL state at weak interactions, while a
large interaction would correspond to a uniform superfluid state
at the same imbalance. Consequently, at a fixed population
imbalance, on traversing through the BCS-BEC crossover,
a uniform superfluid state would be realized only beyond a
critical interaction (Uc). The behavior is significant and is in
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FIG. 16. [1/tL → units of tL] (a) Pairing field structure factor
[S(0, 0)] at a population imbalance of h = 0.6tL and mass imbalance
ratio of η = 0.15 (corresponding to the 6Li-40K mixture) for different
interactions. (b) Temperature dependence of polarization [m(T )] at
different interactions. A large interaction suppresses the polarization.
(c) BCS-BEC crossover at η = 0.15. Tc(U ) has its maxima (corre-
sponding to unitarity) at U = 5tL, (d) BCS-BEC crossover replotted in
terms of the experimental scales appropriate for the 6Li-40K mixture.
Note that at a fixed population imbalance, the uniform superfluidity
sets in beyond a critical interaction (U > Uc). The dashed line shows
that for U < Uc, the superfluid order collapses.
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FIG. 17. [(tL) → units of tL] Density of states (DOS) corresponding to the light- (a)–(c) and heavy-fermion (d)–(f) species for a mass
imbalance ratio of η = 0.15 for selected U -T cross sections. The temperatures corresponding to the two species are normalized by their respective
kinetic energy scales. At U = 3tL, in the temperature regime under consideration the DOS pertaining to both species shows nonmonotonic
thermal evolution. There is no hard gap at the Fermi level at this interaction since the lowest-temperature state corresponds to a partially
polarized Fermi liquid (PPFL). At U = 4tL, the DOS exhibits nonmonotonic behavior with increasing temperature and leads to depletion of
the spectral weight at the Fermi level. The onset of nonmonotonicity marks the temperature scales T H

max and T L
max (see text) corresponding to

the heavy and light species, respectively. The inset highlights the nonomonotonic behavior close to the Fermi level. At U = 5tL the thermal
evolution of the DOS is monotonic up to a very high temperature, beyond which the scales T L

max and T H
max (not shown in the figure) set in.

contrast to the balanced system in which any arbitrarily small
attractive interaction gives rise to a uniform superfluid state.

Figure 16(c) further shows that Tc(U ) has a peak at U = 5tL,
corresponding to the unitarity in the context of lattice fermion
model (see Discussion section). We estimate the Tc(U ) scale
in experimental units and map out the expected BCS-BEC
crossover for the 6Li-40K mixture in Fig. 16(d). At unitarity,
the mixture has a Tc ∼ 15 nK.

In Fig. 17 we show the thermal evolution of DOS
for the two species at different interactions. At U = 3tL
there is no long-range ordered ground state of the system,
consequently, there is no hard gap at the Fermi level even
at the lowest temperature. There is a depletion in spectral
weight at the Fermi level, giving rise to a pseudogap phase.
Thermal evolution leads to further depletion of the spectral
weight at the Fermi level, in agreement with m(T ) [Fig. 16(b)]
which shows a reduction in polarization at high temperatures,
indicating emergence of short-range correlations. A larger
interaction (4U = tL) gives rise to a hard gap at the Fermi
level, which fills up monotonically with temperature before
undergoing a nonmonotonic thermal evolution at T L

max (T H
max)

corresponding to the light (heavy) species. At U = 5tL the T L
max

and T H
max scales are significantly high and are not shown in

Fig. 17.
We next analyze the momentum-resolved spectral function

Aσ (k,ω). In Fig. 18 we show the thermal evolution of the
species-resolved spectral function at three different interac-
tions, along the {0,0} to {π,π} scan across the Brilllouin
zone. The figure shows species-dependent thermal scales in
the problem.

The spectral function for U = 3tL reveals that at the lowest
temperature there is finite weight at the Fermi level and
consequently the dispersion spectra are gapless for both the
species. Increase in temperature leads to depletion of weight,
giving rise to a small but finite gap at the Fermi level. This is
a special case of temperature driven gapless to gap transition,
arising out of short-range correlations.

We now present the thermal phase diagram across the
BCS-BEC crossover for the 6Li-40K mixture in Fig. 19(a).
While in the PG-I regime both 6Li and 40K would show
pseudogap behavior, in the PG-II regime it is only the 6Li

species which is in the pseudogap phase. 40K in the PG-II
regime is a partially polarized Fermi liquid. Note that a similar
observation has also been made in the context of continuum
model [38,57]. Both T L

max and T H
max are significantly higher

than Tc and consequently are better accessible to experimental
probes, such as rf spectroscopy.

For 6Li-40K mixture close to unitarity we expect the PG-I
regime to survive upto T L

max ∼ 58.5 nK while the PG-II regime
should be observable even at T H

max ∼ 108 nK, as shown in
Fig. 19(b). Another suitable probe is the momentum-resolved
spectroscopy which can provide evidence of unequal thermal
disordering temperatures corresponding to the two fermion
species, a behavior that would be qualitatively similar to the
one shown in Fig. 18.

IV. DISCUSSION

The preceding sections comprise the main results of this
work. We now touch upon in brief certain aspects on the
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FIG. 18. Spectral function maps along the {0,0} to {π,π} scan across the Brilllouin zone for the (left) light- and (right) heavy-fermion
species at η = 0.15 and population imbalance of h = 0.6tL, for different U -T cross sections. Notice that at U = 3tL increase in temperature
opens up a gap at the shifted Fermi level in the dispersion spectra corresponding to both species. The heavy species undergoes faster thermal
disordering since it experiences higher scaled temperature.

model under consideration and its connection to cold atomic
experiments in continuum; we also discuss about the Green’s
function formalism that has been used in this work to compute
the ground-state quasiparticle properties and benchmark the
results obtained with those from Monte Carlo simulations.

A. Connection to continuum unitary gas

The results presented in this paper are based on a lattice
fermion model while at the same time they are motivated
by experiments on unitary Fermi gas. In this regard, there
are few issues that need highlighting. We discuss them
below.

1. Concept of unitarity

For the cold atomic gases, the interaction strength is
quantified in terms of the s-wave scattering length aD , with D

being the spatial dimensionality. The corresponding coupling
constant is defined as kF aD , where kF is the Fermi wave
vector. For a 3D gas, the limit of unitarity can be defined
as the coupling strength at which the first two-body bound
state is formed. With a3D → ∞ as g → gc, where g is the
interaction strength, it can be easily seen that 1/kF a3D = 0 at
gc, corresponding to unitarity. At the same time, gc corresponds
to the point across the BCS-BEC crossover where the transition
temperature is maximum, with T max

c /EF ∼ 0.15 for 3D Fermi
gas. Within the framework of a lattice fermion model (3D
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FIG. 19. [(tL) → units of tL] (a) Interaction-temperature (U -T ) phase diagram at η = 0.15 corresponding to the 6Li-40K mixture. The figure
shows the Tc scale along with the pseudogap scales for this mixture at a population imbalance of h = 0.6tL. Both the species exhibit pseudogap
behavior in the PG-I regime, while in the PG-II regime only the light species is pseudogapped. The thermal scales of the individual species are
defined with respect to their corresponding kinetic energy scales. (b) Thermal scales in terms of the experimental units as would be observable
in 6Li-40K mixture, in species-resolved rf spectroscopy. Close to unitarity (U = 4tL), the pseudogap phase is expected to be observable in both
the species up to T ∼ 58 nK, beyond which the pseudogap feature survives only in the light species up to T ∼ 108 nK. Thus, even though the
Tc ∼ 15 nk is strongly suppressed in this mixture, short-range pair correlations should be observable up to significantly higher temperatures in
experiments.
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Hubbard model), it has been found that the first two-body
bound state is formed at a critical interaction strength ofUc/t ∼
7.9. Interestingly, quantum Monte Carlo (QMC) studies have
found that for a 3D system, the maximum Tc is at U/t ∼ 8
[95]. This brings out the concept that the critical interaction
for the formation of two-body bound state in a lattice fermion
model coincides with the interaction at maximum Tc.

In case of 2D gas at continuum a2D → ∞ as g → 0,
since the two-body bound state is formed at any arbitrary
interaction. This definition, however, corresponds to deep
inside the BCS regime where a weak coupling description is
valid. With increasing interaction the system crosses over to
Bose limit as a2D → 0. The coupling at crossover is defined
via ln(kF a2D) → 0. Interpolation between the BCS and BEC
limits showed that maximum Tc occurs at ln(kF a2D) → 0, with
T max

c /EF ∼ 0.1 [96]. While a 3D-like definition (a2D → ∞
as g → 0) puts the unitarity limit in 2D deep inside the BCS
regime, an alternate definition as [ln(kF a2D)]−1 → ∞ is a
better choice, first because it captures the crossover between
the BCS and BEC regimes correctly and also because it
corresponds to the maximum Tc. In other words, the definition
[ln(kF a2D)]−1 → ∞ is adequate to capture the two important
features of unitarity in 2D, viz., (i) at unitarity neither a pure
bosonic nor a fermionic description is sufficient and (ii) the
Tc is maximum.

QMC calculation on 2D Hubbard model has shown that
the maximum Tc is obtained at U/t ∼ 5. In our numerical
simulations, we call U/t ∼ 4 being close to unitarity where
Tc ∼ 0.9T max

c [76].

2. Continuum limit out of lattice model

The present calculations are carried out at a fixed total
chemical potential of μ = −0.2tL, which is close to the half-
filling and the Fermi surface is distinctly noncircular and the
lattice effects are dominant. We observe that even in the limit
of low density where the Fermi surface is circular and εk ∼ k2

is a reasonable approximation, it is difficult to capture the
continuum effects through the lattice model. At interactions
close to unitarity (U ∼ 5tL) even if the Fermi levels occupy
the lower edge of the band, scattering effects couple the states at
upper edge. With these high-energy states being lattice specific,
even at low enough densities the results obtained do not match
with that of continuum [97,98]. In order to obtain continuum
“universal” physics out of lattice simulations, one needs to go
to extremely low densities ∼0.001, corresponding to lattice
size of ∼104. This is, however, outside the range of what can
be attained in the present day.

B. Single-channel decomposition

In this work, a single-field decomposition in the pairing
channel has been used. In general, such a decomposition
can not capture the instabilities in all the channels and one
needs to take into account the decomposition in the pairing,
density, and spin channels, particularly in the FFLO regime.
However, in one of our recent works [51] we have shown
that even in the FFLO phase the density channel modulations
are very weak. Moreover, being away from half-filling, the
density modulations are not as important in this study as it
would have been at n = 1. Decomposition in the additional
magnetic channel might lead to quantitative difference in

our results. However, while such multichannel decomposition
can be readily incorporated within a mean field formalism, a
non-Gaussian fluctuation theory like the one presented in this
work would be a difficult goal to achieve with a multichannel
decomposition. In order to keep the problem numerically
tractable, we have chosen for a single-channel decomposition.
We believe that inclusion of other channels would not lead to
qualitative changes in our results.

C. Effect of quantum fluctuations

One of the principal approximations that has been used
in this work is the neglect of the quantum fluctuations. As
discussed earlier, we treat the pairing field as classical and
retain the spatial fluctuations while neglecting the temporal
fluctuations. Within the framework of continuum model, this
could be a poor approximation, however, in case of a lattice
model it is reasonable. In the continuum FFLO state, the
low-energy fluctuation arises from (i) the phase symmetry
of the U(1) order parameter, (ii) the translational, and (iii)
the rotational symmetry breaking [99]. Consequently, in two-
dimensional system, long-range order can not be sustained
even at T = 0, rendering the corresponding mean field theory
invalid. In a lattice model, while the phase field has “XY”-type
low-energy excitations, the translational and rotational modes
are already gapped out since the spatial symmetry is already
broken by the underlying lattice [49]. For example, it is well
known that models with XY symmetry show long-range order
in 2D and undergo BKT transition at finite temperature. The
issue of fluctuation thus reduces to verifying how well the U(1)
symmetry Tc is captured by our model in comparison to a full
QMC study. A population imbalanced system is difficult to be
studied within a QMC approach owing to the fermionic sign
problem. However, benchmarking the results for a balanced
system as obtained by our technique with those obtained using
QMC shows fairly good agreement [100]. The comparison
along with the arguments presented above suggests that our
technique is suitable to capture the relevant fluctuations and
the corresponding finite-temperature behavior.

D. Finite-size effect

We have shown that unlike the balanced system, in presence
of population and mass imbalances a critical interaction Uc is
required for realizing the uniform (q = 0) superfluid state. In
order to verify whether the requirement of Uc is an artifact of
the finite-size lattice we have carried out the ground state as
well as the finite-temperature calculations at different system
sizes. Figure 20 shows the mean field ground state at U = 3tL
for different system sizes. We observe that for any system
size the superfluid pairing field amplitude is finite up to a
population imbalance of hc ∼ 0.5. For h > hc the system is a
partially polarized Fermi liquid (PPFL). The figure shows that
the regimes of various phases are stable against the choice of
the system sizes and one can thus rule out the possibility of
the finite-size effect in the results presented in this paper. In
order to validate the robustness of our finite-temperature results
against the system size effects, we have further calculated (not
shown here) the BCS-BEC crossover at various system sizes.
We observe no appreciable effect of the system size on the
BCS-BEC crossover behavior of the system.
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FIG. 20. Variation of the pairing field amplitude with population
imbalance at U = 3tL at the ground state for different system sizes.
Notice that for sufficiently large systems, the critical population
imbalance marking the phase boundaries is independent of the system
size. h is measured in units of tL.

E. Green’s function formalism

The effect of interplay of population and mass imbalance
on the quasiparticle properties constitutes one of the key
results of this work. It was observed that the single-particle

FIG. 21. Dispersion spectrum of the two species in the BP regime
(h = 0.6tL) obtained through the BdG calculation (top panels) in
comparison to those obtained through Green’s function formalism
(bottom panels) at different mass imbalance ratio η.

density of states (DOS) deviates significantly from the BCS
prediction and reveals additional subgap and supergap features.
At the ground state, a low-order approximation of the Green’s
function of the electron can be set up, which can capture
the quasiparticle behavior. The scheme is found to give fairly
accurate results over a large �0 − η − h parameter space. The
species-resolved Green’s function can be approximated as

GLL(k,iωn) = 1

iωn − [ε(k) + μL] − �LL(k,iωn)

GHH (k,iωn) = 1

iωn − [ε(k) + μH ] − �HH (k,iωn)
,

where

�LL(k,iωn) = |�0|2
4

{
1

[ω + ε(−k − Q) − μH ]

+ 1

[ω + ε(−k + Q) − μH ]

}
,

�HH (k,iωn) = |�0|2
4

{
1

[ω + ε(−k − Q) − μL]

+ 1

[ω + ε(−k + Q) − μL]

}

with εii(k) = −2tii[cos(kx + cos(ky)] where, ii = L,H . From
the above expressions one can extract the spectral function as

FIG. 22. Dispersion spectrum of the two species in the LO
regime (h = tL) obtained through the BdG calculation (top panels)
in comparison to those obtained through Green’s function formalism
(bottom panels) at different mass imbalance ratio η.
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ALL(k,ω) = −(1/π )ImGLL(k,ω + iδ) |δ→0. Similar expres-
sion can be obtained for AHH (k,ω).

In Figs. 21 and 22 we have compared our results ob-
tained through Monte Carlo simulations with those obtained
through the Green’s function formalism at h = 0.6tL and 1.0tL,
representative of the BP and LO phases, respectively. We have
shown the spectral function [Aσ (k,ω)] maps at different mass
imbalance ratio η for the light- and heavy-fermion species.
The agreement between the results obtained through the two
techniques is fairly good, and along with capturing the species-
dependent behavior of the dispersion spectra, the technique
also reproduces the multibranched dispersion spectra for the
LO state. The agreement justifies our choice of the Green’s
function formalism to access quasiparticle behavior at large
system sizes at the ground state.

V. CONCLUSIONS

In conclusion, we have investigated the BCS-BEC crossover
of mass imbalanced Fermi-Fermi mixture within the frame-
work of a two-dimensional lattice fermion model. We have
mapped out the thermal phase diagram in the η-T plane and
have shown how the thermal scales are suppressed by the
imbalance in mass. Further, investigation of the quasiparticle
behavior revealed that unlike the balanced superfluid, the
Fermi-Fermi mixture comprises of two pseudogap regimes as
PG-I, in which the single-particle excitation spectra of both

the species are pseudogapped and PG-II, where only the light
species is pseudogapped. We have further investigated the
interplay of population imbalance in such Fermi-Fermi mix-
tures and have shown that at a fixed imbalance in population
uniform superfluidity is realized only beyond a critical Uc

unlike the balanced superfluid. Moreover, it was shown that a
modulated LO superfluid state gives rise to a nodal superfluid
gap in spite of an s-wave pairing field symmetry. We have
made quantitative predictions of the thermal scales pertaining
to the 6Li-40K mixture and have suggested that experimental
techniques such as rf and momentum-resolved photoemission
spectroscopy can be used to probe the PG-I regime upto T ∼
58 nK and PG-II regime up to T > 108 nK, in this mixture,
close to the unitarity. While the Tc is strongly suppressed in
this mixture, signatures of short-range pair correlation survive
up to significantly higher temperatures. We believe that our
results can serve as suitable benchmarks for the experimental
observations of 6Li-40K mixture.

ACKNOWLEDGMENTS

The author gratefully acknowledges Professor P. Majumdar
for the insightful comments on the manuscript. The HPC clus-
ter facility of Harish Chandra Research Institute, Allahabad,
is duly acknowledged. A part of this work was carried out
at IMSc, Chennai, India, and the author acknowledges the
hospitality provided during the visit.

[1] C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett. 92,
040403 (2004).

[2] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach,
A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403
(2004).

[3] J. Kinast, S. L. Hemmer, M. E. Gehm, A. Turlapov, and J. E.
Thomas, Phys. Rev. Lett. 92, 150402 (2004).

[4] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H.
Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201 (2004).

[5] C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin, Phys. Rev.
Lett. 90, 053201 (2003).

[6] J. Zhang, E. G. M. van Kempen, T. Bourdel, L. Khaykovich, J.
Cubizolles, F. Chevy, M. Teichmann, L. Tarruell, S. J. J. M. F.
Kokkelmans, and C. Salomon, Phys. Rev. A 70, 030702 (2004).

[7] C. H. Schunck, M. W. Zwierlein, C. A. Stan, S. M. F. Raupach,
W. Ketterle, A. Simoni, E. Tiesinga, C. J. Williams, and P. S.
Julienne, Phys. Rev. A 71, 045601 (2005).

[8] Y. Ohashi, Phys. Rev. Lett. 94, 050403 (2005).
[9] T.-L. Ho and R. B. Diener, Phys. Rev. Lett. 94, 090402 (2005).

[10] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev.
Lett. 94, 230403 (2005).

[11] J. Levinsen, N. R. Cooper, and V. Gurarie, Phys. Rev. Lett. 99,
210402 (2007).

[12] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. B 72, 224513
(2005).

[13] D. Inotani, R. Watanabe, M. Sigrist, and Y. Ohashi, Phys. Rev.
A 85, 053628 (2012).

[14] G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).
[15] W. V. Liu and F. Wilczek, Phys. Rev. Lett. 90, 047002 (2003).

[16] M. M. Forbes, E. Gubankova, W. V. Liu, and F. Wilczek, Phys.
Rev. Lett. 94, 017001 (2005).

[17] D. E. Sheehy and L. Radzihovsky, Ann. Phys. 322, 1790
(2007).

[18] E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A.
Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke,
J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and
P. S. Julienne, Phys. Rev. Lett. 100, 053201 (2008).

[19] M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K.
Dieckmann, Phys. Rev. Lett. 100, 010401 (2008).

[20] A.-C. Voigt, M. Taglieber, L. Costa, T. Aoki, W. Wieser, T. W.
Hänsch, and K. Dieckmann, Phys. Rev. Lett. 102, 020405
(2009).

[21] L. Costa, J. Brachmann, A.-C. Voigt, C. Hahn, M. Taglieber,
T. W. Hänsch, and K. Dieckmann, Phys. Rev. Lett. 105,
269903(E) (2010).

[22] D. Naik, A. Trenkwalder, C. Kohstall, F. M. Spiegelhalder, M.
Zaccanti, G. Hendl, F. Schreck, R. Grimm, T. M. Hanna, and
P. S. Julienne, Eur. Phys. J. D 65, 55 (2011).

[23] F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E.
Wille, G. Hendl, F. Schreck, and R. Grimm, Phys. Rev. A 81,
043637 (2010).

[24] T. G. Tiecke, M. R. Goosen, A. Ludewig, S. D. Gensemer, S.
Kraft, S. J. J. M. F. Kokkelmans, and J. T. M. Walraven, Phys.
Rev. Lett. 104, 053202 (2010).

[25] G.-D. Lin, W. Yi, and L.-M. Duan, Phys. Rev. A 74, 031604
(2006).

[26] S.-T. Wu, C.-H. Pao, and S.-K. Yip, Phys. Rev. B 74, 224504
(2006).

033617-18

https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.040403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.120403
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.150402
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.92.203201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.70.030702
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevLett.94.050403
https://doi.org/10.1103/PhysRevLett.94.050403
https://doi.org/10.1103/PhysRevLett.94.050403
https://doi.org/10.1103/PhysRevLett.94.050403
https://doi.org/10.1103/PhysRevLett.94.090402
https://doi.org/10.1103/PhysRevLett.94.090402
https://doi.org/10.1103/PhysRevLett.94.090402
https://doi.org/10.1103/PhysRevLett.94.090402
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.99.210402
https://doi.org/10.1103/PhysRevLett.99.210402
https://doi.org/10.1103/PhysRevLett.99.210402
https://doi.org/10.1103/PhysRevLett.99.210402
https://doi.org/10.1103/PhysRevB.72.224513
https://doi.org/10.1103/PhysRevB.72.224513
https://doi.org/10.1103/PhysRevB.72.224513
https://doi.org/10.1103/PhysRevB.72.224513
https://doi.org/10.1103/PhysRevA.85.053628
https://doi.org/10.1103/PhysRevA.85.053628
https://doi.org/10.1103/PhysRevA.85.053628
https://doi.org/10.1103/PhysRevA.85.053628
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1016/0022-3697(63)90007-6
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.90.047002
https://doi.org/10.1103/PhysRevLett.94.017001
https://doi.org/10.1103/PhysRevLett.94.017001
https://doi.org/10.1103/PhysRevLett.94.017001
https://doi.org/10.1103/PhysRevLett.94.017001
https://doi.org/10.1016/j.aop.2006.09.009
https://doi.org/10.1016/j.aop.2006.09.009
https://doi.org/10.1016/j.aop.2006.09.009
https://doi.org/10.1016/j.aop.2006.09.009
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.053201
https://doi.org/10.1103/PhysRevLett.100.010401
https://doi.org/10.1103/PhysRevLett.100.010401
https://doi.org/10.1103/PhysRevLett.100.010401
https://doi.org/10.1103/PhysRevLett.100.010401
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.102.020405
https://doi.org/10.1103/PhysRevLett.105.269903
https://doi.org/10.1103/PhysRevLett.105.269903
https://doi.org/10.1103/PhysRevLett.105.269903
https://doi.org/10.1103/PhysRevLett.105.269903
https://doi.org/10.1140/epjd/e2010-10591-2
https://doi.org/10.1140/epjd/e2010-10591-2
https://doi.org/10.1140/epjd/e2010-10591-2
https://doi.org/10.1140/epjd/e2010-10591-2
https://doi.org/10.1103/PhysRevA.81.043637
https://doi.org/10.1103/PhysRevA.81.043637
https://doi.org/10.1103/PhysRevA.81.043637
https://doi.org/10.1103/PhysRevA.81.043637
https://doi.org/10.1103/PhysRevLett.104.053202
https://doi.org/10.1103/PhysRevLett.104.053202
https://doi.org/10.1103/PhysRevLett.104.053202
https://doi.org/10.1103/PhysRevLett.104.053202
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevA.74.031604
https://doi.org/10.1103/PhysRevB.74.224504
https://doi.org/10.1103/PhysRevB.74.224504
https://doi.org/10.1103/PhysRevB.74.224504
https://doi.org/10.1103/PhysRevB.74.224504


THERMAL TRANSITIONS, PSEUDOGAP BEHAVIOR, AND … PHYSICAL REVIEW A 97, 033617 (2018)

[27] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. Lett. 97, 100404
(2006).

[28] M. Iskin and C. A. R. Sá de Melo, Phys. Rev. A 76, 013601
(2007).

[29] C.-H. Pao, S.-T. Wu, and S.-K. Yip, Phys. Rev. A 76, 053621
(2007).

[30] M. M. Parish, F. M. Marchetti, A. Lamacraft, and B. D. Simons,
Phys. Rev. Lett. 98, 160402 (2007).

[31] G. Orso, L. P. Pitaevskii, and S. Stringari, Phys. Rev. A 77,
033611 (2008).

[32] A. Gezerlis, S. Gandolfi, K. E. Schmidt, and J. Carlson, Phys.
Rev. Lett. 103, 060403 (2009).

[33] R. B. Diener and M. Randeria, Phys. Rev. A 81, 033608 (2010).
[34] N. Takemori and A. Koga, J. Phys. Soc. Jpn. 81, 063002

(2012).
[35] J. E. Baarsma, K. B. Gubbels, and H. T. C. Stoof, Phys. Rev. A

82, 013624 (2010).
[36] J. E. Baarsma, J. Armaitis, R. A. Duine, and H. T. C. Stoof,

Phys. Rev. A 85, 033631 (2012).
[37] Z. Lan, G. M. Bruun, and C. Lobo, Phys. Rev. Lett. 111, 145301

(2013).
[38] R. Hanai, T. Kashimura, R. Watanabe, D. Inotani, and Y.

Ohashi, Phys. Rev. A 88, 053621 (2013).
[39] Y.-J. Lin, K. Jimenez-Garcia, and I. B. Spielman, Nature

(London) 471, 83 (2011).
[40] P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai,

and J. Zhang, Phys. Rev. Lett. 109, 095301 (2012).
[41] L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah,

W. S. Bakr, and M. W. Zwierlein, Phys. Rev. Lett. 109, 095302
(2012).

[42] L. Jiang, X.-J. Liu, H. Hu, and H. Pu, Phys. Rev. A 84, 063618
(2011).

[43] G. B. Partridge, W. Li, Y. A. Liao, R. G. Hulet, M. Haque, and
H. T. C. Stoof, Phys. Rev. Lett. 97, 190407 (2006).

[44] Y.-i. Shin, C. H. Schunck, A. Schirotzek, and W. Ketterle,
Nature (London) 451, 689 (2008).

[45] C. H. Schunck, Y. Shin, A. Schirotzek, M. W. Zwierlein, and
W. Ketterle, Science 316, 867 (2007).

[46] Y. Shin, M. W. Zwierlein, C. H. Schunck, A. Schirotzek, and
W. Ketterle, Phys. Rev. Lett. 97, 030401 (2006).

[47] Y.-a. Liao, A. S. C. Rittner, T. Paprotta, W. Li, G. B. Partridge,
R. G. Hulet, S. K. Baur, and E. J. Mueller, Nature (London)
467, 567 (2010).

[48] T. K. Koponen, T. Paananen, J.-P. Martikainen, and P. Törmä,
Phys. Rev. Lett. 99, 120403 (2007).

[49] Y. L. Loh and N. Trivedi, Phys. Rev. Lett. 104, 165302 (2010).
[50] M. J. Wolak, B. Grémaud, R. T. Scalettar, and G. G. Batrouni,

Phys. Rev. A 86, 023630 (2012).
[51] M. Karmakar and P. Majumdar, Phys. Rev. A 93, 053609

(2016).
[52] M. Karmakar and P. Majumdar, Eur. Phys. J. D 70, 220 (2016).
[53] L. He, M. Jin, and P. Zhuang, Phys. Rev. B 73, 214527 (2006).
[54] L. He, M. Jin, and P. Zhuang, Phys. Rev. B 74, 214516 (2006).
[55] D. Roscher, J. Braun, and J. E. Drut, Phys. Rev. A 91, 053611

(2015).
[56] J. Braun, J. E. Drut, T. Jahn, M. Pospiech, and D. Roscher,

Phys. Rev. A 89, 053613 (2014).
[57] R. Hanai and Y. Ohashi, Phys. Rev. A 90, 043622 (2014).
[58] H. Guo, C.-C. Chien, Q. Chen, Y. He, and K. Levin, Phys. Rev.

A 80, 011601 (2009).

[59] G. G. Batrouni, M. J. Wolak, F. Hbert, and V. G. Rousseau,
Europhys. Lett. 86, 47006 (2009).

[60] M. Lu, N. Q. Burdick, and B. L. Lev, Phys. Rev. Lett. 108,
215301 (2012).

[61] A. Frisch, K. Aikawa, M. Mark, F. Ferlaino, E. Berseneva, and
S. Kotochigova, Phys. Rev. A 88, 032508 (2013).

[62] P. Pieri, A. Perali, G. C. Strinati, S. Riedl, M. J. Wright, A.
Altmeyer, C. Kohstall, E. R. Sánchez Guajardo, J. Hecker
Denschlag, and R. Grimm, Phys. Rev. A 84, 011608 (2011).

[63] S. Nascimbne, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon,
Nature (London) 463, 1057 (2010).

[64] K. B. Gubbels, J. E. Baarsma, and H. T. C. Stoof, Phys. Rev.
Lett. 103, 195301 (2009).

[65] M. O. J. Heikkinen, D.-H. Kim, and P. Törmä, Phys. Rev. B 87,
224513 (2013).

[66] M. O. J. Heikkinen, D.-H. Kim, M. Troyer, and P. Törmä, Phys.
Rev. Lett. 113, 185301 (2014).

[67] S. Chiesa and S. Zhang, Phys. Rev. A 88, 043624 (2013).
[68] J. Braun, J. E. Drut, and D. Roscher, Phys. Rev. Lett. 114,

050404 (2015).
[69] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht, Phys.

Rev. Lett. 71, 3202 (1993).
[70] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Phys.

Rev. A 75, 023610 (2007).
[71] A. Perali, P. Pieri, L. Pisani, and G. C. Strinati, Phys. Rev. Lett.

92, 220404 (2004).
[72] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, Phys.

Rev. Lett. 96, 160402 (2006).
[73] A. Bulgac, J. E. Drut, and P. Magierski, Phys. Rev. Lett. 99,

120401 (2007).
[74] V. K. Akkineni, D. M. Ceperley, and N. Trivedi, Phys. Rev. B

76, 165116 (2007).
[75] M. Randeria and E. Taylor, Annu. Rev. Condens. Matter Phys.

5, 209 (2014).
[76] T. Paiva, R. Scalettar, M. Randeria, and N. Trivedi, Phys. Rev.

Lett. 104, 066406 (2010).
[77] W. E. Evenson, J. R. Schrieffer, and S. Q. Wang, J. Appl. Phys.

41, 1199 (1970).
[78] Y. Dubi, Y. Meir, and Y. Avishai, Nature (London) 449, 876

(2007).
[79] P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195

(1985).
[80] H. Tamaki, Y. Ohashi, and K. Miyake, Phys. Rev. A 77, 063616

(2008).
[81] N. Dupuis, Phys. Rev. B 70, 134502 (2004).
[82] T. K. Kopeć, Phys. Rev. B 65, 054509 (2002).
[83] R. T. Scalettar, E. Y. Loh, J. E. Gubernatis, A. Moreo, S. R.

White, D. J. Scalapino, R. L. Sugar, and E. Dagotto, Phys. Rev.
Lett. 62, 1407 (1989).

[84] N. Trivedi and M. Randeria, Phys. Rev. Lett. 75, 312 (1995).
[85] S. Allen, H. Touchette, S. Moukouri, Y. M. Vilk, and A.-M. S.

Tremblay, Phys. Rev. Lett. 83, 4128 (1999).
[86] M. Keller, W. Metzner, and U. Schollwöck, Phys. Rev. Lett.

86, 4612 (2001).
[87] M. Capone, C. Castellani, and M. Grilli, Phys. Rev. Lett. 88,

126403 (2002).
[88] A. Toschi, M. Capone, and C. Castellani, Phys. Rev. B 72,

235118 (2005).
[89] A. Toschi, P. Barone, M. Capone, and C. Castellani, New J.

Phys. 7, 7 (2005).

033617-19

https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevLett.97.100404
https://doi.org/10.1103/PhysRevA.76.013601
https://doi.org/10.1103/PhysRevA.76.013601
https://doi.org/10.1103/PhysRevA.76.013601
https://doi.org/10.1103/PhysRevA.76.013601
https://doi.org/10.1103/PhysRevA.76.053621
https://doi.org/10.1103/PhysRevA.76.053621
https://doi.org/10.1103/PhysRevA.76.053621
https://doi.org/10.1103/PhysRevA.76.053621
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevLett.98.160402
https://doi.org/10.1103/PhysRevA.77.033611
https://doi.org/10.1103/PhysRevA.77.033611
https://doi.org/10.1103/PhysRevA.77.033611
https://doi.org/10.1103/PhysRevA.77.033611
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevLett.103.060403
https://doi.org/10.1103/PhysRevA.81.033608
https://doi.org/10.1103/PhysRevA.81.033608
https://doi.org/10.1103/PhysRevA.81.033608
https://doi.org/10.1103/PhysRevA.81.033608
https://doi.org/10.1143/JPSJ.81.063002
https://doi.org/10.1143/JPSJ.81.063002
https://doi.org/10.1143/JPSJ.81.063002
https://doi.org/10.1143/JPSJ.81.063002
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.82.013624
https://doi.org/10.1103/PhysRevA.85.033631
https://doi.org/10.1103/PhysRevA.85.033631
https://doi.org/10.1103/PhysRevA.85.033631
https://doi.org/10.1103/PhysRevA.85.033631
https://doi.org/10.1103/PhysRevLett.111.145301
https://doi.org/10.1103/PhysRevLett.111.145301
https://doi.org/10.1103/PhysRevLett.111.145301
https://doi.org/10.1103/PhysRevLett.111.145301
https://doi.org/10.1103/PhysRevA.88.053621
https://doi.org/10.1103/PhysRevA.88.053621
https://doi.org/10.1103/PhysRevA.88.053621
https://doi.org/10.1103/PhysRevA.88.053621
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1038/nature09887
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095301
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevLett.109.095302
https://doi.org/10.1103/PhysRevA.84.063618
https://doi.org/10.1103/PhysRevA.84.063618
https://doi.org/10.1103/PhysRevA.84.063618
https://doi.org/10.1103/PhysRevA.84.063618
https://doi.org/10.1103/PhysRevLett.97.190407
https://doi.org/10.1103/PhysRevLett.97.190407
https://doi.org/10.1103/PhysRevLett.97.190407
https://doi.org/10.1103/PhysRevLett.97.190407
https://doi.org/10.1038/nature06473
https://doi.org/10.1038/nature06473
https://doi.org/10.1038/nature06473
https://doi.org/10.1038/nature06473
https://doi.org/10.1126/science.1140749
https://doi.org/10.1126/science.1140749
https://doi.org/10.1126/science.1140749
https://doi.org/10.1126/science.1140749
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1103/PhysRevLett.97.030401
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1038/nature09393
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.99.120403
https://doi.org/10.1103/PhysRevLett.104.165302
https://doi.org/10.1103/PhysRevLett.104.165302
https://doi.org/10.1103/PhysRevLett.104.165302
https://doi.org/10.1103/PhysRevLett.104.165302
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.86.023630
https://doi.org/10.1103/PhysRevA.93.053609
https://doi.org/10.1103/PhysRevA.93.053609
https://doi.org/10.1103/PhysRevA.93.053609
https://doi.org/10.1103/PhysRevA.93.053609
https://doi.org/10.1140/epjd/e2016-70250-2
https://doi.org/10.1140/epjd/e2016-70250-2
https://doi.org/10.1140/epjd/e2016-70250-2
https://doi.org/10.1140/epjd/e2016-70250-2
https://doi.org/10.1103/PhysRevB.73.214527
https://doi.org/10.1103/PhysRevB.73.214527
https://doi.org/10.1103/PhysRevB.73.214527
https://doi.org/10.1103/PhysRevB.73.214527
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevB.74.214516
https://doi.org/10.1103/PhysRevA.91.053611
https://doi.org/10.1103/PhysRevA.91.053611
https://doi.org/10.1103/PhysRevA.91.053611
https://doi.org/10.1103/PhysRevA.91.053611
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.89.053613
https://doi.org/10.1103/PhysRevA.90.043622
https://doi.org/10.1103/PhysRevA.90.043622
https://doi.org/10.1103/PhysRevA.90.043622
https://doi.org/10.1103/PhysRevA.90.043622
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1103/PhysRevA.80.011601
https://doi.org/10.1209/0295-5075/86/47006
https://doi.org/10.1209/0295-5075/86/47006
https://doi.org/10.1209/0295-5075/86/47006
https://doi.org/10.1209/0295-5075/86/47006
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevLett.108.215301
https://doi.org/10.1103/PhysRevA.88.032508
https://doi.org/10.1103/PhysRevA.88.032508
https://doi.org/10.1103/PhysRevA.88.032508
https://doi.org/10.1103/PhysRevA.88.032508
https://doi.org/10.1103/PhysRevA.84.011608
https://doi.org/10.1103/PhysRevA.84.011608
https://doi.org/10.1103/PhysRevA.84.011608
https://doi.org/10.1103/PhysRevA.84.011608
https://doi.org/10.1038/nature08814
https://doi.org/10.1038/nature08814
https://doi.org/10.1038/nature08814
https://doi.org/10.1038/nature08814
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevLett.103.195301
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevB.87.224513
https://doi.org/10.1103/PhysRevLett.113.185301
https://doi.org/10.1103/PhysRevLett.113.185301
https://doi.org/10.1103/PhysRevLett.113.185301
https://doi.org/10.1103/PhysRevLett.113.185301
https://doi.org/10.1103/PhysRevA.88.043624
https://doi.org/10.1103/PhysRevA.88.043624
https://doi.org/10.1103/PhysRevA.88.043624
https://doi.org/10.1103/PhysRevA.88.043624
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.114.050404
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevLett.92.220404
https://doi.org/10.1103/PhysRevLett.92.220404
https://doi.org/10.1103/PhysRevLett.92.220404
https://doi.org/10.1103/PhysRevLett.92.220404
https://doi.org/10.1103/PhysRevLett.96.160402
https://doi.org/10.1103/PhysRevLett.96.160402
https://doi.org/10.1103/PhysRevLett.96.160402
https://doi.org/10.1103/PhysRevLett.96.160402
https://doi.org/10.1103/PhysRevLett.99.120401
https://doi.org/10.1103/PhysRevLett.99.120401
https://doi.org/10.1103/PhysRevLett.99.120401
https://doi.org/10.1103/PhysRevLett.99.120401
https://doi.org/10.1103/PhysRevB.76.165116
https://doi.org/10.1103/PhysRevB.76.165116
https://doi.org/10.1103/PhysRevB.76.165116
https://doi.org/10.1103/PhysRevB.76.165116
https://doi.org/10.1146/annurev-conmatphys-031113-133829
https://doi.org/10.1146/annurev-conmatphys-031113-133829
https://doi.org/10.1146/annurev-conmatphys-031113-133829
https://doi.org/10.1146/annurev-conmatphys-031113-133829
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1103/PhysRevLett.104.066406
https://doi.org/10.1063/1.1658878
https://doi.org/10.1063/1.1658878
https://doi.org/10.1063/1.1658878
https://doi.org/10.1063/1.1658878
https://doi.org/10.1038/nature06180
https://doi.org/10.1038/nature06180
https://doi.org/10.1038/nature06180
https://doi.org/10.1038/nature06180
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRevA.77.063616
https://doi.org/10.1103/PhysRevA.77.063616
https://doi.org/10.1103/PhysRevA.77.063616
https://doi.org/10.1103/PhysRevA.77.063616
https://doi.org/10.1103/PhysRevB.70.134502
https://doi.org/10.1103/PhysRevB.70.134502
https://doi.org/10.1103/PhysRevB.70.134502
https://doi.org/10.1103/PhysRevB.70.134502
https://doi.org/10.1103/PhysRevB.65.054509
https://doi.org/10.1103/PhysRevB.65.054509
https://doi.org/10.1103/PhysRevB.65.054509
https://doi.org/10.1103/PhysRevB.65.054509
https://doi.org/10.1103/PhysRevLett.62.1407
https://doi.org/10.1103/PhysRevLett.62.1407
https://doi.org/10.1103/PhysRevLett.62.1407
https://doi.org/10.1103/PhysRevLett.62.1407
https://doi.org/10.1103/PhysRevLett.75.312
https://doi.org/10.1103/PhysRevLett.75.312
https://doi.org/10.1103/PhysRevLett.75.312
https://doi.org/10.1103/PhysRevLett.75.312
https://doi.org/10.1103/PhysRevLett.83.4128
https://doi.org/10.1103/PhysRevLett.83.4128
https://doi.org/10.1103/PhysRevLett.83.4128
https://doi.org/10.1103/PhysRevLett.83.4128
https://doi.org/10.1103/PhysRevLett.86.4612
https://doi.org/10.1103/PhysRevLett.86.4612
https://doi.org/10.1103/PhysRevLett.86.4612
https://doi.org/10.1103/PhysRevLett.86.4612
https://doi.org/10.1103/PhysRevLett.88.126403
https://doi.org/10.1103/PhysRevLett.88.126403
https://doi.org/10.1103/PhysRevLett.88.126403
https://doi.org/10.1103/PhysRevLett.88.126403
https://doi.org/10.1103/PhysRevB.72.235118
https://doi.org/10.1103/PhysRevB.72.235118
https://doi.org/10.1103/PhysRevB.72.235118
https://doi.org/10.1103/PhysRevB.72.235118
https://doi.org/10.1088/1367-2630/7/1/007
https://doi.org/10.1088/1367-2630/7/1/007
https://doi.org/10.1088/1367-2630/7/1/007
https://doi.org/10.1088/1367-2630/7/1/007


MADHUPARNA KARMAKAR PHYSICAL REVIEW A 97, 033617 (2018)

[90] A. Garg, H. R. Krishnamurthy, and M. Randeria, Phys. Rev. B
72, 024517 (2005).

[91] S. Kumar and P. Majumdar, Eur. Phys. J. B 50, 571 (2006).
[92] J. P. Gaebler, J. T. Stewart, T. E. Drake, D. S. Jin, A. Perali, P.

Pieri, and G. C. Strinati, Nat. Phys. 6, 569 (2010).
[93] P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).
[94] A. I. Larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47,

1136 (1964) [Sov. Phys. JETP 20, 762 (1965)].
[95] A. Sewer, X. Zotos, and H. Beck, Phys. Rev. B 66, 140504

(2002).

[96] M. G. Ries, A. N. Wenz, G. Zürn, L. Bayha, I. Boettcher, D.
Kedar, P. A. Murthy, M. Neidig, T. Lompe, and S. Jochim,
Phys. Rev. Lett. 114, 230401 (2015).

[97] A. Privitera, M. Capone, and C. Castellani, Phys. Rev. B 81,
014523 (2010).

[98] A. Privitera and M. Capone, Phys. Rev. A 85, 013640
(2012).

[99] L. Radzihovsky, Phys. Rev. A 84, 023611 (2011).
[100] S. Tarat and P. Majumdar, Europhys. Lett. 105, 67002

(2014).

033617-20

https://doi.org/10.1103/PhysRevB.72.024517
https://doi.org/10.1103/PhysRevB.72.024517
https://doi.org/10.1103/PhysRevB.72.024517
https://doi.org/10.1103/PhysRevB.72.024517
https://doi.org/10.1140/epjb/e2006-00173-2
https://doi.org/10.1140/epjb/e2006-00173-2
https://doi.org/10.1140/epjb/e2006-00173-2
https://doi.org/10.1140/epjb/e2006-00173-2
https://doi.org/10.1038/nphys1709
https://doi.org/10.1038/nphys1709
https://doi.org/10.1038/nphys1709
https://doi.org/10.1038/nphys1709
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRev.135.A550
https://doi.org/10.1103/PhysRevB.66.140504
https://doi.org/10.1103/PhysRevB.66.140504
https://doi.org/10.1103/PhysRevB.66.140504
https://doi.org/10.1103/PhysRevB.66.140504
https://doi.org/10.1103/PhysRevLett.114.230401
https://doi.org/10.1103/PhysRevLett.114.230401
https://doi.org/10.1103/PhysRevLett.114.230401
https://doi.org/10.1103/PhysRevLett.114.230401
https://doi.org/10.1103/PhysRevB.81.014523
https://doi.org/10.1103/PhysRevB.81.014523
https://doi.org/10.1103/PhysRevB.81.014523
https://doi.org/10.1103/PhysRevB.81.014523
https://doi.org/10.1103/PhysRevA.85.013640
https://doi.org/10.1103/PhysRevA.85.013640
https://doi.org/10.1103/PhysRevA.85.013640
https://doi.org/10.1103/PhysRevA.85.013640
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1103/PhysRevA.84.023611
https://doi.org/10.1209/0295-5075/105/67002
https://doi.org/10.1209/0295-5075/105/67002
https://doi.org/10.1209/0295-5075/105/67002
https://doi.org/10.1209/0295-5075/105/67002



