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Survival resonances in an atom-optics system driven by temporally and spatially periodic dissipation
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We investigate laser-cooled atoms periodically driven by pulsed standing waves of light tuned close to an
open atomic transition. This nonunitary system displays survival resonances for certain driving frequencies. The
survival resonances emerge as a result of the matter-wave Talbot-Lau effect, similar to the Talbot effect causing
quantum resonances in the atom optics δ-kicked rotor. Since the Talbot-Lau effect occurs for incoherent waves,
the survival resonances can be observed using thermal atoms. A microlensing effect can enhance the height and
incisiveness of the resonances. This may find applications in precision measurements.
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I. INTRODUCTION

Periodically driven one-dimensional systems play a central
role in studies of nonlinear dynamics. They exhibit a wide
range of dynamical phenomena and are the simplest systems
to display chaotic behavior. An important experimental plat-
form among such systems is the atom-optics δ-kicked rotor
(AODKR) [1]. It consists of a quantum particle that receives
δ kicks at regular time intervals from a spatially periodic
potential. Its rich dynamics has enabled clear experimental
investigations of a prodigious range of quantum effects. Specif-
ically, experiments have shown that particular combinations
of parameters and initial conditions can lead to directional
transport in symmetric systems [2,3] and hierarchies of quan-
tum resonances (QRs) and quantum accelerator modes, where
the transfer of energy to the particle is unbounded [4–9]. The
AODKR’s sub-Fourier characteristics and ability to generate
coherent superpositions of states with highly different mo-
menta have led to suggestions that it can be applied as a tool
in atom interferometry and precision measurements, such as
the determination of the fine structure constant α or the local
gravitational field [9–17].

The δ kicks in the AODKR cause a spatially periodic
phase modulation of the particle’s wave function, which leads
to splitting of an initial momentum eigenstate into multiple
diffraction orders. In this paper, we introduce an extension to
the standard AODKR. In addition to a phase modulation, the
kicks also modulate the wave function’s amplitude by adding
spatially periodic loss. In terms of the classical rotor [18],
our alternative approach gives each kick a finite probability
of “survival” or “death” of the rotor that depends on its angle
at the time of the kick. The system could therefore be deemed as
the “δ-killed rotor.” The system is nonunitary and a meaningful
dynamic observable is the survival probability of the rotor or
particle. We show that the survival probability exhibits a series
of resonances for certain kicking periods, that is, for particular
time intervals between the kicks. The survival resonances
relate to the QRs known from the standard AODKR. However,
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the physical principles underpinning the resonance effects are
distinct. The appearance of standard QRs is based on phase
pattern revivals due to the matter-wave Talbot effect [19] and
is highly sensitive to the initial momentum of the atoms [6,20].
This requires heavy initial momentum selection; otherwise,
the resonant atoms are observed on a large background of
nonresonant atoms, when using an initial source of thermal
atoms [8,9,17]. In contrast, survival resonances are based on
the matter-wave Talbot-Lau effect [21], which allows for their
observation using incoherent atoms without a large unwanted
background.

We study the survival resonances for different experimental
parameters and how their shape evolves as a function of time.
The height of the resonances is enhanced by a microlensing
effect [22] originating from the still present phase modulation
of the wave function. The microlensing effect also affects the
shape of the survival resonances, resulting in very sharp fea-
tures that are ideal for precision measurements. Furthermore,
the height of the resonances decays in the long time limit,
showing that the resonant phenomenon is a transient effect. The
experimental results generally agree well with a model based
on the one period time evolution operator that is characteristic
of the periodically driven system.

The structure of the paper is the following. Section II
describes the experimental system and how to model it. Section
III shows measurements and calculations of the atomic survival
probability as a function of different parameters, while Sec. IV
provides a general discussion and conclusions.

II. THE SYSTEM

We experimentally realize the δ-killed rotor by exposing a
cloud of laser-cooled atoms to a sequence of optical standing-
wave pulses. We ignore interactions between the atoms, which
is valid for a dilute gas. As shown in Fig. 1(a), we treat the atom
(of mass M) as a three-level system, consisting of an initial
hyperfine ground state |g〉, a dark hyperfine ground state |gD〉,
and an excited state |e〉. We consider the atom to be lost if it goes
to the dark state |gD〉. The optical standing wave is formed by
retroreflecting a laser beam that has an angular frequency ωL

and wave number kL. ωL is tuned within two natural line widths
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FIG. 1. (a) Simplified energy level diagram. The blue arrow
represents the absorption of a photon and the wavy lines represent
the spontaneous emission. (b) Time sequence of the experiment (not
to the scale), with LC for laser cooling and OP for optical pumping
stages. (c) Microlensing effect due to the optical dipole force. A blue
detuned standing wave acts as an array of lenses causing the atomic
density distribution (lower panel) to form a narrower peak at time δt

after the application of the pulse.

� of the open transition from the ground state |g〉 to the excited
state |e〉. We use short standing-wave pulses, which allow us
to neglect the evolution caused by the kinetic energy term for
these brief durations (Raman-Nath approximation). Thus, by
using dipole and rotating-wave approximations, the dynamics
during the pulse is described by the Hamiltonian [23]:

H = −
(

h̄� + ih̄�

2

)
|e〉〈e|

+ h̄�0

2
cos(kLx)(|e〉〈g| + |g〉〈e|), (1)

where x is the atomic position operator and � ≡ ωL − ωge

is the laser detuning (ωge denotes the atomic transition
frequency). �0 is the on resonance Rabi frequency at the
antinodes of the standing wave for the |g〉 to |e〉 transition.
The non-Hermitian decay term −(ih̄�/2) accounts for the
relaxation from the excited state into |gD〉. We thereby
neglect the spontaneous decay into the state |g〉 that causes an
additional incoherent background.

The light field of the standing wave effectively acts
as a diffraction grating which modulates both the phase
and amplitude of the atomic wave function. We can
define a “grating operator” G, which describes the
effect of a standing-wave pulse on the wave function of
atoms remaining in |g〉. Equation (1) gives G = (1 −
λ2/λ1)−1[exp (−iλ2τ/h̄) − λ2 exp (−iλ1τ/h̄)/λ1]. λ1,2 =
−(h̄� + ih̄�/2)/2 ∓

√
(h̄� + ih̄�/2)2 + h̄2�2

0 cos2 (kLx)/2
are the eigenvalues of H and τ is the pulse duration.

In the case of a far-off-resonance standing wave (� � �),
the light field yields a conservative spatially periodic potential.
G reduces to the familiar unitary phase grating operator
G = exp[−iφd cos (2kLx)] (φd = �2

0τ/8�) from the standard
AODKR [9]. When the standing wave is resonant (� = 0),
G is an absorption grating, which depletes the population
of the initial ground state everywhere except in the vicinity
of the nodes; i.e., it modulates the amplitude of the atomic
wave function [24]. The population in the initial ground
state is therefore not conserved and the system is dissipative.
For standing-wave light with a frequency close to an open

atomic transition, G simultaneously modulates the phase and
amplitude of the atomic wave function. Thus, we can write
G = A(x) exp[iφ(x)], where A(x) ∈ [0,1] and φ(x) ∈ [0,2π )
for all x.

The temporal periodicity of the system allows us to con-
struct a one-period time-evolution operator F that governs the
dynamics of the wave function of the atoms that remain in |g〉:

F = exp

[
− i

h̄

p2

2M
(T − τ )

]
G, (2)

where p is the atomic momentum operator and T is the kicking
period. The exponential operator arises from the free evolution
between pulses, and G gives the time evolution caused by
the standing-wave pulse. The atomic wave function after N

standing-wave pulses is then simply given by |ψN 〉 = FN |ψ0〉,
where |ψ0〉 is the initial wave function. Since G is nonunitary,
so is this evolution.

In our experiments, we use 85Rb atoms and their F = 3 and
F = 2 hyperfine ground states as |g〉 and |gD〉. |e〉 is the F ′ = 3
excited state on the D2 transition. As illustrated in Fig. 1(b), we
first laser cool a cloud of atoms to a temperature of 5 μK and
optically pump them into the F = 3 ground state |g〉. We then
expose them to a sequence of N brief optical standing-wave
pulses with kicking period T . The pulse duration τ is 300 ns,
which fulfills the Raman-Nath condition. The standing-wave
light propagates horizontally along the x axis [see Fig. 1(c)].
It is formed by retroreflecting a linearly polarized (along z)
laser beam of diameter 3.5 mm (1/e2) and power of 3 mW.
When the standing-wave light excites an atom to the F ′ = 3
state, it can spontaneously decay into the F = 2 ground state
|gD〉. During the pulse sequence, a bias magnetic field of
5.6 G, along the y axis, quenches the dark state in the F = 3
ground-state manifold. We measure the survival probability
(the proportion of atoms surviving in the F = 3 ground state)
immediately after the pulse sequence by detecting fluorescence
while exciting them on the closed F = 3 to F ′ = 4 transition
on the D2 line.

III. RESULTS

To explore the system, we measured the survival probability
while varying experimental parameters.

A. Survival resonances

Figure 2(a) displays the result of varying the kicking period
between the pulses for N = 7 and �/2π = −10 MHz. It
shows a series of survival resonances for specific values of
the time interval. These are separated by half the Talbot
time TT/2 = 32.4 μs (where TT = πM/h̄k2

L = 64.8 μs is
the Talbot time for 85Rb atom [20]). The emergence of the
survival resonances can be conceptually understood through
the matter-wave Talbot-Lau effect [21,25], which is illustrated
in Fig. 2(b). When an incoherent atomic wave impinges on two
identical absorption gratings separated by a time T , a density
modulation of the atomic cloud can be observed at time T

after the second grating [21]. Figure 2(b) shows the atomic
density distribution at time T after the second grating as T

is changed. When the time between the gratings is an integer
multiple of half the Talbot time nTT/2, where n ∈ N, then a
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FIG. 2. (a) The survival probability as a function of kicking period
T after a train of N = 7 pulses. Each point is the mean of 90
experimental runs and the error bars show the standard deviation
of the mean. The solid line is the calculation based on Eq. (2). (b)
Matter-wave Talbot-Lau interference. The color map represents the
calculated atomic density distribution at time T after two pulses
separated by T . The horizontal axis is T , and the vertical axis is
the coordinate along the standing wave with λ being the wavelength
of the light.

grating-like spatial atomic distribution will occur at this time.
This density pattern is a near perfect “self-image” of the atomic
distribution after the second grating. If a third standing-wave
pulse is applied when this high-contrast distribution forms,
then the atoms have a high probability of surviving it since
most of them are localized around the nodes. This effect leads
to the survival resonances in Fig. 2(a). From the third pulse
and onward, the previous two pulses will ensure that the atoms
are near the nodes of the standing wave when T = nTT/2.
Figure 2(a) displays five such survival resonances, the first
three of which are for n = 1 to 3, while the last two are for
n = 14 and 15, showing that the phenomena persist for large
pulse separations.

In the standard δ-kicked rotor, QRs occur as a result of
the matter-wave Talbot effect, which for resonant condition
leads to revivals of the spacial phase patterns imprinted by
previous kicks at the time of the next kick. QRs thereby
manifest themselves as unbounded transfer of kinetic energy
due to the resulting linear increase in the amplitude of the
spacial phase modulation with pulse number N [6,19]. The
survival resonances are therefore intimately related to QRs in
the standard δ-kicked rotor. However, instead of the spacial
phase pattern revivals the Talbot-Lau revivals of the density
pattern leads to enhanced survival.

The solid line in Fig. 2(a) represents a numerical calculation
where an ensemble of initially Gaussian wave packets are
evolved using Eq. (2). The widths of the Gaussian wave packets
correspond to the initial temperature, and the ensemble covers
a period of the standing wave homogeneously. We account
for an imbalance of the standing-wave beam intensities using
measured losses from the viewports and the retromirror and fit
the initial standing-wave beam intensity. An offset has been

FIG. 3. Survival resonance for different standing-wave detunings.
Measured data (markers with error bars) and calculations (solid lines)
for survival resonance at the first Talbot time. (a) Red detuning:
�/2π = −10 MHz, (b) resonant light: � = 0 MHz (the inset shows
the calculation on a magnified scale), and (c) blue detuning: �/2π =
10 MHz.

added to the calculation to account for spontaneous decay
back to the F = 3 ground state. The calculation agrees well
with the data and the fitted intensity agrees with the one
estimated from the beam power and size within 25%. This
confirms that the model captures the dynamics of the system
for the parameters used. Calculations in the following figures
are done in a similar manner, but using the beam intensity
found in Fig. 2(a). For off-resonance kicking periods longer
than 100 μs, the experimental data deviate from the numerical
calculation. Experimental effects that are not included in the
model which could contribute to this include low-frequency
phase noise of the standing wave due to vibrations of the
retroreflecting mirror, the atoms’ transverse motion in the
standing wave beam which could contain phase distortions,
and small residual forces on the atoms, for example, originating
from stray magnetic field gradients.

The comb of survival resonances in Fig. 2(a) bears similar-
ities to the equally spaced frequency resonances in a Fabry-
Perot interferometer. In both cases, the resonances occur due
to multipath interference. Each standing-wave pulse diffracts a
wave function into a number of diffraction orders. The survival
resonances emerge when diffraction orders originating from
the same initial state constructively interfere at the nodes of
subsequent standing-wave pulses. The system is therefore a
many-path atom interferometer.

B. Effect of microlensing

In addition to modulating the amplitude of the atomic wave
function, the standing-wave pulses also modulate its phase.
The relative strengths of these effects can be changed by
changing the detuning � of the standing wave. Figure 3 shows
the survival resonance at the Talbot time TT (n = 2) for three
different detunings (�/2π = 0 and ±10 MHz) with N = 7.
When the standing-wave light is detuned [Figs. 3(a) and 3(c)],
the line shape of the survival resonances is asymmetric with
a steep edge on one side and a smooth edge on the other.
Meanwhile, the peak survival is obtained for T slightly below
or above the exact Talbot time TT for red or blue detuned light,
respectively. These effects originate from the phase modulation
of the atomic wave function, which gives rise to a microlensing
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effect. When the optical frequency of the standing wave is
tuned above the atomic transition, the optical dipole force
directs atoms towards the low-intensity regions (the standing-
wave nodes). The atoms remaining in the ground state |g〉 will
therefore form tight foci at a time δt after each pulse [see
Fig. 1(c)], which offsets the survival resonance slightly from
TT as seen in Fig. 3(c). We note that a similar microlensing
effect has previously been used to realize nanolithography
by producing a periodic array of localized metastable atoms
[22]. When the standing wave is red detuned [Fig. 3(a)], the
optical dipole force points away from the standing-wave nodes,
causing the survival resonance peak to shift oppositely. For
a resonant standing wave (� = 0), the survival resonance is
symmetric and centered at T = TT as shown in the inset of
Fig. 3(b), but for the measured data in Fig. 3(b), the peak height
is below the noise level.

Comparing the measured data in Fig. 3 to the calculation
(solid lines), we see a good agreement for red detuning
while there is a discrepancy in the peak heights for the blue-
detuned standing wave. This could be due to the two-level
approximation of Eq. (1), since the presence of additional ex-
cited hyperfine states makes spontaneous emission and phase
modulation of the atomic wave function differ in magnitude
between red and blue detunings.

A useful feature in Fig. 3 is that the survival resonance
provides a steep edge when the standing wave is not at reso-
nance. This allows for precise determination of the period of a
signal like that in Fig. 2(a), and thereby of the recoil frequency
ωr = π/2TT [26] (which in turn can be used to determine
the fine structure constant α [27]). The increase in precision
yielded by the steep edges results from the enhancement of
high-order diffraction due to the phase modulation provided
by the off-resonance standing wave. In this way, using near-
resonant light provides a way of getting a high sensitivity (steep
edge) without losing signal size (peak height).

C. Pulse number evolution

To further understand the dynamics of the system, we
now study how the survival resonances evolve with the pulse
number N . We determine the trends of the peak height and
width on the steep side of the survival resonance by fitting
a two-piece normal distribution to both the calculated and
measured data. Figure 4 shows the resulting steep-side standard
deviations (a) and peak heights (b) for the peak at the Talbot
time (n = 2) and �/2π = −10 MHz.

In Fig. 4(a), we see that the widths of the resonances mono-
tonically decrease with increasing N . This is not surprising
since a higher N leads to population of higher diffraction
orders that accumulate phases at higher rates during the free
evolutions. This results in a more stringent requirement on the
free evolution time to guarantee that the different diffraction
orders are in phase to produce sharp coherence echoes at the
times of the pulses. For comparison, the Fourier limit states
that the time required to distinguish two close frequencies is
inversely proportional to the frequency difference �ω [16].
This gives that the time required to discriminate the periods of
two signals is also inversely proportional to their difference.
Figure 4(a) shows that the calculated data is well fitted by
a power law (blue line), but the power is not N−1 (shown
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FIG. 4. Measured (red circles) and calculated (blue squares)
steep-side standard deviation (plotted using double logarithmic
scales) (a) and height (b) of the survival resonance as a function of
N . The blue line in panel (a) is a power-law fit to the calculation
while the black line is a curve proportional to 1/N for comparison.
The standing wave is red detuned 10 MHz from the F = 3 to F ′ = 3
atomic transition, similar to Fig. 2(a).

as black line) as expected from the Fourier relation. Recall
that the experiment duration is approximately proportional to
N in the large-N limit. The fitted power of −1.45 therefore
shows that the system exhibits sub-Fourier behavior [28] as is
also seen with the standard AODKR [11,16]. The experimental
data initially displays a similar power relation, until the width
gets so small that the signal-to-noise ratio is poor.

In Fig. 4(b), we see a significant discrepancy between
calculated and measured peak heights for N < 6. In this region,
there is a significant offset present (up to 16%) in the measured
data due to spontaneous decay back to the F = 3 ground
state, which may contribute to the discrepancy. Additionally,
for small N the survival probability as a function of T has a
more complex behavior than clearly separated resonances, but
we do not expect this to contribute to the discrepancy since
the height evaluation method is the same for the experimental
data and the calculation. For N > 6, the agreement between
calculation and measurement is better. A decaying peak height
(for large N ) is expected since each standing-wave pulse will
continue to remove atoms from the F = 3 ground state due
to the imbalance of the standing-wave intensities, resulting
in the nodes having finite intensity. For a perfectly balanced
standing wave, calculations show that we still see a decay,
albeit at a significantly lower rate. This is because the atomic
distributions at the time of pulses have a finite width.

In order to clearly observe resonance peaks for a given
detuning and pulse number, the standing-wave intensity should
be chosen in a range that occurs as a trade-off between two
effects. If the intensity is too low, one simply sees a high
survival for all driving periods. On the other hand, if a too high
intensity is used, the height of the peaks become too small to
observe. Higher peaks for large N in Fig. 4(b) can therefore
be observed simply by reducing the standing-wave intensity.

IV. DISCUSSION AND CONCLUSIONS

An intriguing feature of the system is its relative tech-
nical simplicity. The light for the standing wave is derived
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from the same laser that is used for laser cooling the ini-
tial atomic sample, and the experiment output is a simple
internal state detection. In future work, it would therefore
be interesting to investigate how to use the survival res-
onances for gravity measurements, since the simplicity of
our system makes it a good candidate for a compact atomic
gravimeter.

To conclude, we have studied an alternative approach to
the quantum δ-kicked particle in which the amplitude of the
wave function is modulated in addition to the usual phase
modulation. The survival probability of the particle during
each kick is therefore dependent on its position in the standing
wave. This dissipative system displays a comb of narrow
survival resonances separated by TT/2 when the kicking period

is scanned. The survival resonances are a consequence of
the matter-wave Talbot-Lau effect and can therefore easily
be observed with an incoherent ensemble of particles. The
phase modulation causes a microlensing effect that focuses
the particles to positions with high survival probability, and
thereby enhances the height of the survival resonances. The
relatively simple experimental construction combined with the
sharp features may make the resonances a useful tool in future
precision measurements and experiments.
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