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Dynamical resonances and stepped current in an attractive quantum pump
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We report on the transport properties of a single-mode quantum pump that operates by the simultaneous
translation and oscillation of a potential well. We examine the dynamics comparatively using quantum, classical,
and semiclassical simulations. The use of an attractive or well potential is found to present several striking features
absent if a barrier potential is used instead, as usually favored. The trapping of particles by the well for variable
durations and subsequent release leads to a fractal-like structure in the distribution of the classical scattering
trajectories. Interference among them leads to a rich dynamical structure in the quantum current, conspicuously
missing in the classical current. Specifically, we observe sharp steps, spikes, and dips in the current as a function
of the incident energy of the carriers and determine that a dynamical version of Fano resonance has a role that
depends on the direction of incidence and on multiple scattering by the potential.
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I. INTRODUCTION

When precise and limited flow is a priority, time-varying
pumps are a better alternative to static bias. Quantum pumps
apply that principle to generate directed biasless flow at the
scale of individual electrons and other carriers, but with quan-
tum mechanics adding novel features absent in classical flow.
Practically all quantum pumps studied have utilized barrier
potentials, being a natural extension of classical analogs. But,
as evident even in elementary treatments, quantum mechanics
blurs the distinction between scattering by wells and by
barriers, so that wells could be used just as well as barriers
to generate flow. Wells, however, provide richer dynamics
because of the inherent possibility of entrapment of carriers
for varying durations, providing more diverse possibilities for
mixing very different classical trajectories. We identify and
study some of those features in this paper in the context of a
pump mechanism that mimics a traditional paddlewheel.

Quantum pumps were conceived by Thouless as a way
of creating quantized flow based on the same topological
arguments he used to explain the integer quantum Hall effect
[1], but by replacing a coordinate degree of freedom with time
[2,3]. In the decades since, with advances in nanotechnology,
the focus shifted to generating controlled directed flow by using
time-varying potentials of charge [4–18], spin [19–21], and
even entanglement [22,23] in typical mesoscopic circuits, and
the scope broadened to include superconductors [24], graphene
[25], and carbon nanotubes [26,27]. However, despite the
sustained theoretical interest, experimental demonstration has
been challenging, with varied success involving spin currents
[20], hybrid normal-superconducting systems [24], and carbon
nanotubes [27].

One of the major issues has been that the charge of the
carriers, when subjected to time-varying potentials, creates
competing effects that could potentially dominate [28,29].
This, along with progress in cold-atom dynamics in microtraps
and waveguides [30], led one of us to suggest alternate im-
plementation with trapped neutral ultracold fermionic atoms

[31]. In a subsequent study [32], we developed an approach for
simulating general mesoscopic transport (including quantum
pumps) with wave packets of ultracold bosons, which can
access details of transport dynamics at a single-mode level
instead of the usual multimode average inherent for electrons.

A series of studies [33–37] afterwards revealed that in
this approach, the underlying scattering dynamics by a time-
varying potential can be studied in its own right, replete with
rich features that include signatures of chaos, fractal struc-
tures, and counterintuitive flow and offering, via semiclassical
analysis, a fertile system for examining the interface between
quantum and classical dynamics. This current study is aligned
with these latter developments in the context of ultracold
atoms, where the focus is on the details of the scattering
dynamics involved rather than on the generation of net directed
flow. But, differently from preceding studies, we examine the
effects of using a well or attractive potential.

We describe the mechanism of an attractive paddlewheel
pump in Sec. II, and then present our wave-packet approach
for examining its quantum dynamics in Sec. III and classical
dynamics in Sec. IV. We discuss and analyze the primary
features of the pumped current in Sec. V, contrasting the
classical and quantum results, and in Sec. VI, we examine the
scattered momentum distribution to explain those features. We
use semiclassical simulations in Sec. VII to bridge the strik-
ingly different results obtained in the quantum and classical
scenarios. We conclude with a summary of our findings and
possibilities for further work.

II. ATTRACTIVE PADDLEWHEEL PUMP

A quantum pump in mesoscopic electronics generates
directed flow without bias, by using time-varying potential
through quasi-one-dimensional (1D) nanowires connected to
macroscopic contacts that act as source and absorbing reser-
voirs for fermionic carriers. Carrier motion [38] is assumed
ballistic in the wires, so the current is determined by the
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scattering at the potential. The current can be defined as
the integral over contributions at each incident momentum
p0 = h̄k0,

JF (t) =
∫ ∞

−∞

dk0

2π
f (k0)J (k0,t),

J (k0,t) = (h̄/m)〈ψ(k,t)|k|ψ(k,t)〉/〈ψ(k,t)|ψ(k,t)〉, (1)

where f (k0) is the Fermi distribution function and ψ(k,t) the
scattering wave function generated by incident mode eik0x . The
net current can be then understood as the sum over modes of
the single-mode current,

Js(k0,t) = 1
2 [J (+|k0|,t) + J (−|k0|,t)], (2)

the incoherent sum due to the lack of coherence between
particles from different reservoirs and randomization of phase
in each reservoir. The single-mode current is of primary interest
here, since it showcases the scattering dynamics prominently.
Furthermore, we assume implementation with ultracold atoms
trapped in a quasi-1D waveguide, with focused lasers serving
as the pumping potential [31].

Minimally, to operate as a continuous pump the potential
needs to be cyclic, and it requires two independently varying
parameters to generate sustained unidirectional flow. The
simplest such pump mimics a paddlewheel, composed of a
single barrier that oscillates while translating a distance before
resetting, just like the motion of a sequence of paddles in water.
We explored such a pump for the case of a repulsive or barrier
potential in a previous paper [37]. The paddlewheel mechanism
is therefore an obvious choice for an initial exploration of the
effects of an attractive or well potential in quantum pumps.
Assuming sinusoidal motion, an attractive paddlewheel pump
can be implemented with the potential

V (x,t) = U0e
−(x−f (t))2/(2σ 2)[1 + A sin(ωosct + φ)]. (3)

where U0 < 0. The depth of the well, oscillating with fre-
quency ωosc, and its position, f (t) = mod (vt,d) resetting
after distance d = 2πv/ωtran, constitute the two independent
time-varying parameters required. We set φ = 3π/2 and
ωosc = ηωtran with integer η, so for η = 1 the bottom of the
well traces a curve shown schematically in Fig. 1. As the
well vanishes at x = d at the end of a cycle, it reemerges
at x = 0, the span d chosen for the two frequencies to be
commensurate. Our choice of a Gaussian shape is dictated by
its smoothness and for being the typical laser profile, with a
view to implementation with focused lasers in ultracold atoms.

In our simulations, the results are presented in dimension-
less form, and in the case of ultracold atoms in a waveguide,
the transverse harmonic trap frequency ωr can be used to set
the energy, length, and time units ε = h̄ωr , l = √

h̄/mωr , and
τ = ω−1

r , with m being the mass of individual atoms. Such a
choice of units yields a form of the Schrödinger equation that is
equivalent to setting h̄ = m = 1. Unless otherwise specified,
we use the parameters U0 = −0.5, A = 1, v = 1.5, σ = 5,
and ωosc = 0.2, which set the reset span of the pump to be
d = 47.1η. These values were chosen to correspond to realistic
experimental parameters [37].
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FIG. 1. (a) The schematic of the attractive paddlewheel mecha-
nism wherein a well potential oscillates while translating to the right
and then resets. (b) A snapshot of a classical simulation with a stream
of particles incident from the left, scattered by the potential. (c)–(e)
Snapshots of a quantum simulation with counterpropagating wave
packets incident on the potential from either side and scattered by it.
Note the packet incident from the right transmits almost unaffected.
In all cases the potential is shown as a dashed green line and gauged
along the right axis, and for the quantum case (c)–(e), the length scale
for the potential, along the upper axis, is expanded (10×) for greater
detail.

III. QUANTUM SIMULATION

The single-mode current can be simulated with wave
packets of ultracold atoms, confined to waveguides, with the
group velocity simulating carrier motion [31]. Broad wave
packets, for which the time of passage through the potential
substantially exceeds both the dwell time at the potential [39]
and the time periodicity of the potential, behave like plane
waves as is usually assumed in mesoscopic transport. In order
to emulate carriers incident from either side, wave packets
ψ±(x,t = 0−) initially centered to the left or the right of
the potential are propelled towards it with momenta ±h̄k0,
respectively. Each packet is allowed to evolve independently
via the time-dependent Schrödinger equation for the time-
varying pump potential until a time T when the entire packet
had interacted with the potential. Figure 1 shows snapshots of
such a simulation.

The scattered wave function ψ±(k,T ) in momen-
tum space on integration yields the average current
J (±|k0|,T ) = ∫

dk k|ψ±(k,T )|2 and scattering probabilities∫ ∞
0 dk|ψ±(k,T )|2 and

∫ 0
−∞ dk|ψ±(k,T )|2. In experiments with

cold atoms, wave packets can be prepared within an additional
axial trap centered away from the potential, transport initiated
by switching it off and giving the atoms the appropriate mo-
mentum with Bragg beams [40], ψ(x,0+) = e±ik0xψ(x,0−),
and, after scattering, imaging the spatial and momentum
distribution.
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The asymmetric scattering by the time-varying potential
results in nonvanishing net current Js(k0,t) on averaging the
contributions from the left and right incident packets according
to Eq. (2). The multimode current of fermions can be computed
by sampling the single-mode current over the relevant range
of incident momenta and approximating the integral in Eq. (1)
by a Riemann sum. We do not focus on that here, since that
would only average [37] out many of the prominent features of
the scattering dynamics that is of primary interest here. In our
simulations, we leave out contributions from outgoing carriers,
corresponding to packets moving away from the potential
at t = 0, since their interaction, if any, with the potential
is negligible and their contributions to the net current are
therefore typically small [32].

IV. CLASSICAL SIMULATION

We also simulate the dynamics of the pump classically to
distinguish features that are of strictly quantum origin. The
wave packets are replaced by a stream of uniformly spaced
particles matching the initial momentum of the quantum
wave packets, p0 = ±h̄k0. The particles are propagated by
Hamilton’s equations,

dx

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂x
, (4)

until their interaction with the well is effectively complete. The
particles are then assembled in momentum bins of equal width,
[pi − δp/2,pi + δp/2], and a histogram of the number of
particles, Ni , in each bin is the classical counterpart of the final
momentum distribution. The total current is then calculated to
be the average of the momentum distribution, weighted by
the value of the momentum, arising from identical streams
incident from the left (p0 = +h̄k0,x0 < 0) and from the right
(p0 = −h̄k0,x0 > 0) of the potential,

J± = 1

N

∑
N±

i pi, J = 1
2 (J+ + J−). (5)

V. FEATURES OF PUMPED CURRENT

We examine the features of the pumped current, both
classically and quantum mechanically, plotting both together
for each case and aspect we consider. We find that the quan-
tum current and scattering profile display prominent features
conspicuously missing in their classical counterparts, which,
however, always follow the general trend of the former as
a sort of average or coarse graining of the quantum picture.
The quantum pumped current for a paddlewheel with a well
potential is plotted in Fig. 2 as a function of incident kinetic
energy for two cases, both with ωosc = ωtran. Three features
are immediately prominent:

(1) There are sharp stepped reductions of the current when
the incident kinetic energy is a positive integer multiple of the
oscillation period, k2

0/2 = nωosc.
(2) For the first step, when k2

0/2 < ωosc, sharp dips appear
in a pattern that brings the dips progressively closer together.

(3) At subsequent steps k2
0/2 > ωosc, the dips are replaced

by spikes in a similar recurring pattern.
Notably, these features are absent in the current generated

by the equivalent barrier paddlewheel as is shown in the inset
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FIG. 2. The pumped current as a function of the kinetic energy
of the incident packet, for a well paddlewheel, is plotted for both
classical and quantum dynamics. The quantum-mechanical current
shows three features: (i) steps at multiples of the oscillation frequency,
(ii) sharp dips over the first step, and (iii) spikes over subsequent
steps. These features are conspicuously absent in the classical current,
which, however, follows the general trend of the quantum current.
The current profile is displayed for two different periodicities ωosc =
ωtran = 0.2 and 0.4, the latter showing the proportionate doubling of
the step periodicity. The inset shows the quantum current for a barrier
paddlewheel, with otherwise identical parameters.

in Fig. 2, for which U0 → −U0 = +0.5, all else remaining the
same [37]. The sharp dips and spikes are entirely absent, and
instead of the step structure there is a smooth undulation at the
periodicity of the oscillation. This establishes that all of these
features arise specifically from having an attractive pumping
potential.

The features arise only from the left incident packet as
shown in Fig. 3(a), where we plot separately the contribu-
tions to the current due to wave packets incident from the
left, J (+|k0|), and from the right, J (−|k0|). This is further
underscored in Fig. 3(b), where the transmission probability
due to the respective packets is plotted, and there is 100%
transmission for incidence from the right, whereas there are
sharp dips in the transmission probability for incidence from
the left. The latter corresponds to the primary features in the
current profile with the largest dips in transmission occurring
where the steps appear in the current. Although present in the
probability distribution, those features are magnified by the
momentum redistribution that also contributes to the current.

We now show that the dips arise from a mechanism akin
to Fano resonances [41,42], which occur when the incident
energy matches a bound-state energy Eb < 0, but now subject
to Floquet’s theorem, whereby the scattered state will display
sidebands En = E0 ± nω, with n = 0,±1,±2, . . . and ω =
ωosc = ωtran in this case. Such resonances have been noted in
some previous studies for scattering by an oscillating barrier
[43,44], but for a paddlewheel there is simultaneous translation
as well, which not only allows for net current to be generated
in a biasless circuit but also fundamentally alters the dynamics.
Thus, while for simple oscillation E0 = k2

0/2, in our case for
wave packets incident from the right and traveling to the left
with negative group velocity (k0 = −|k0|), we have instead
E0 = (|k0| + v)2/2, accounting for the relative velocity of
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FIG. 3. (a) The distinct features of the quantum current originate
entirely in the scattering of the packet incident from the left of the
potential, further confirmed by plotting the transmission probability
for packets incident from both directions in (b), which shows that the
packet incident from the right transmits completely. The parameters
for (a) and (b) correspond to the ωosc = ωtran = 0.2 quantum current
profile in Fig. 2. (c) Increasing the well width, σ = 5, to 10 and 15
reduces the current, but retains its features, whereas (d) increasing the
well depth, U0 = −0.5, to −1.0 increases the current but smudges its
features. For all cases, the classical current follows the average trend
of the quantum current but lacks its distinctive features.

packet and potential. Therefore, resonance with a bound state
will require

|k0| = −v ±
√

2(−|Eb| + nωosc). (6)

With our choice of parameters, where v = 1.5 and ωosc =
0.2, and for the median depth of the well, corresponding
to U0 = −0.5, A = 0, the bound-state eigenvalues are Eb =
(−0.433,−0.307,−0.198,−0.108,−0.0405,−0.000247). It is
therefore clear that the condition in Eq. (6) cannot be satisfied
except for high values of n, with proportionately lower proba-
bility, else the right-hand side would be negative or complex.
Hence, the transmission probability for packets incident from
the right is featureless. In the case of the packets incident
from the left, the incident velocity k0 = +|k0| is positive,
and E0 = (|k0| − v)2/2, accounting for the relative velocity
of packet and potential, and the resonance with a bound state
now requires

|k0| = v ±
√

2(−|Eb| + nωosc). (7)

This can, however, be satisfied for a range of values starting
from the lowest value of n = 1, and therefore the packets
incident from the left show striking features associated with
Fano-like resonance with bound states.

The key difference between Eqs. (6) and (7) is the sign of
the velocity v, not its magnitude, and the sign is determined by
the direction of incidence. This is consistent with the dramatic
difference between left and right incident packets, where,
despite the higher relative velocity, the right incident packets
transmit without any features as seen in Figs. 3(a) and 3(b).
Furthermore, these equations also highlight the importance of
the oscillation, since without it the square-root term would
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FIG. 4. The distinct features in the quantum-mechanical current
are absent if either of the two frequencies is set to zero, (a) ωosc = 0 or
(b) ωtran = 0, indicating that they arise due to the interplay of the two
periodicities. Those features are diminished if the two frequencies
differ, although still commensurate; two cases of η = ωosc/ωtran = 2
are shown: (c) ωosc = 0.2, ωtran = 0.1 and (d) ωosc = 0.4, ωtran = 0.2.
For all cases, the classical current follows the average trend of the
quantum current but is relatively smooth.

be imaginary in both cases, making a resonance condition
impossible; this is confirmed in Fig. 4(a), where we switch
off the oscillation and the resonance structure completely
disappears.

The dynamics is, however, further complicated by repeated
interaction of the wave packet with the well potential as it
resets in position after each cycle. This is particularly relevant
for lower incident velocities for which the time of traversal
is longer. Repeated interactions can enable reaching higher
sideband values n and, hence, the prominent dips at low
incident energy.

We examined the current profile by varying several of the
relevant parameters. In Fig. 3(c) we varied the well width and
in Fig. 3(d) we varied the well depth. It is clear that the features
are left intact on increasing the well width, but the net pumped
current diminishes. On the other hand, increasing the well
depth increases the pumped current as should be expected from
a stronger potential; however, the features are diminished.

In Fig. 4, we illustrate the role of the two frequencies at play,
by turning off each in turn. When we set ωosc = 0 in Fig. 4(a),
the well translates with fixed median depth U0 = −0.5 and
then resets, and, in this case, all the manifestly quantum
features disappear, and the current profile closely follows the
classical current. Then we set ωtran = 0 in Fig. 4(b) whereby
the well oscillates in place without translating. Due to the
symmetry there is no net current [7], so we plot the transmission
probability due to the left incident packet and find substantial
undulations, but quite distinct from when both periodicities are
present. It is therefore clear that the quantum features arise as
an interplay between the two frequencies. Furthermore, it is
also essential to have the two frequencies be the same, not just
commensurate, as we checked by doubling the ratio of the two
frequencies to be η = 2 in Figs. 4(c) and 4(d). We show two
cases, ωosc = 0.2, ωtran = 0.1 and ωosc = 0.4, ωtran = 0.2, and
for both, while there are oscillations, the features are not quite
as prominent and are rather irregular. This further supports that
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the interplay of the two frequencies is crucial for creating the
striking features seen in Fig. 2.

VI. MOMENTUM DISTRIBUTION

In order to better understand the features of the quantum
current, we examine the scattered momentum space probability
density, plotted as a function of the outgoing kinetic energy in
Fig. 5 for a left incident packet. We do so for a representative
case for the three principal features—step, dip, and spike—and
discuss them below.

Steps. At the steps, a new Floquet peak appears in the
scattered distribution around zero kinetic energy, indicating
that, as the incident energy reaches the oscillation energy,
ωosc = ωtran, this new lower value becomes energetically avail-
able and signals a shift of the distribution to lower energies.
This causes the sudden reduction in the net current manifest as a
step structure. Notably, even for a barrier potential, undulations
in the current profile are observed at a period corresponding to
that of the oscillation. However, it is much more dramatic in the
attractive case, since there is a dip in the transmission as well,
as seen in Fig. 3(a), signifying that a fraction of the particles
become trapped in the well for a while when the incident kinetic
energy matches the energy of oscillation.

Dips. At the dips, we see a bimodal distribution with a
noticeable enhancement of the peaks near zero energy. This
suggests a resonant behavior where the energy of the incident
packet matches a bound state and is trapped for a while during
the cycles and eventually escapes with reduced energy.

Spikes. The momentum distribution shows that in the
regions between the spikes there is a clear bimodal distribution,
whereas at the spike itself the two parts blend with a skewing
to higher momenta. This is just the reverse of what happens
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from the left, as a function of the kinetic energy k2/2, shown left to
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the values of k2/2 where each of the following features appears in the
quantum-mechanical current in Fig. 2 (for ωosc = ωtran = 0.2): step
(top panels), dip (middle panels), and spike (bottom panels).

at the dips, where the bimodal distribution becomes most
pronounced, which suggests that spikes actually represent a
narrower regime between broader, shallower resonance dips,
and the same mechanism is at work as at the much sharper dips.

VII. SEMICLASSICAL ANALYSIS

We conducted a semiclassical analysis to get some insights
into the contrast between the quantum and the classical cur-
rents. In addition to Hamilton’s equations in Eq. (4), we need
to time-evolve S̃(p,t), the momentum space counterpart of the
classical action,

dS̃

dt
= −x

dp

dt
− H, (8)

which serves as the phase in the semiclassical (SC) wave
function in momentum space,

ψSC(p,t) = ∑
j

√
ρ0

(
x

j

0

)∣∣∂p/∂x0

∣∣− 1
2

x
j

0

ei[S̃j (p,t)/h̄−μj π/2], (9)

with μj being the Maslov index [33,45]. Since the potential
is periodic, the final momentum p ≡ h̄k is a periodic function
of the initial position, x0, of the particles, with each p having
contributions from multiple initial positions x0(p,t), as evident
in Fig. 6(a), where a vertical slice corresponding to a given
momentum would intersect the curve at multiple points. It
is clear from the figure that even within each period there
are numerous branches arising from particles incident at the
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momentum of k0 = +0.475, displayed at various levels of zoomed-in
detail, with (a) showing the periodicity and the rest showing details
within each period. (e) Semiclassical (green spikes, left axis) and clas-
sical (smooth red, right axis) scattered momentum distributions, both
obtained from evaluating ψSC in Eq. (9) by including and excluding
interference among branches, respectively; the Floquet peaks emerge
from the interference. (f) Comparison of the semiclassical with the
classical and quantum current profiles for the case ωosc = ωtran = 0.2
displayed in Fig. 2.
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well at different segments of a cycle that still lead to the
same final momentum. Therefore, the sum in Eq. (9) is over
both (i) intracycle branches within a cycle and (ii) intercycle
repetition due to the periodicity. In the semiclassical wave
function, the initial density of particles determines ρ0 chosen to
match the profile of the initial quantum probability distribution,
and the local slope in Fig. 6(a) of x0 versus p determines
the Jacobian |∂p/∂x0|, whereas p versus final position x

(not plotted) fixes the Maslov index as follows: Within each
cycle, we start from μj = 0, and at each turning point where
dp/dx = 0, it is incremented by +1 or −1 for clockwise or
counterclockwise turns, respectively [33].

Our conclusions, however, can only be qualitative in nature,
because as shown in Figs. 6(a)–6(d), the attractive paddlewheel
contains a fractal-like structure of branches in the scattered
momenta, making it challenging to evaluate the semiclassical
wave function precisely. We had to, of a necessity, approximate
the Maslov index using the plot of initial position versus p, be-
cause the final position versus p is substantially more compli-
cated due to branches getting twisted and stretched with time.
We also introduced cutoffs to limit the number of branches.

Figure 6(e) shows the semiclassical momentum distribution
resulting from retaining only the two major branches in each
cycle, where |ψSC(p,t)|2 contains the effect of interference
among the different classical trajectories that creates the
Floquet peaks seen in the quantum distribution. Also shown
is the classical momentum distribution obtained by taking
the absolute square of each term in Eq. (9) before summing,
whereby the phase information is lost and the Floquet peaks
are replaced by a relatively smooth curve.

In Fig. 6(f), we plot the semiclassical current∫
dp p|ψSC(p,t)|2 for a range of incident momenta. We

see emergent features at about the same locations as where
the quantum-mechanical current profile has structure. Since
the only difference between the classical and the semiclassical
cases is that the different trajectories with the same final
momentum can interfere for the latter, it is clear that the
quantum-mechanical current acquires its prominent structures
mostly due to such interference, caused by particle density
trapped in the well for varying durations and subsequently
released with a range of different momenta. Considering
that our cutoffs lead to inclusion of only the major branches
in each cycle, it is to be expected that our computed
semiclassical current is not a close quantitative match for the
quantum-mechanical current. However, progressive inclusion
of more branches should improve the agreement, with
increasingly finer branches having diminishing contributions.

VIII. CONCLUSIONS

We studied a quantum pump that operates with a single well
or attractive potential executing a cyclical motion that mimics
a traditional paddlewheel. In contrast to pumps operating by
barrier or repulsive potentials, the single-mode pumped current
demonstrates a set of striking features that include sharp
dips, spikes, and steps as a function of the incident carrier
momentum. We showed that the dips arise from a dynamical
version of Fano resonance when the incident energy matches
a bound-state energy of the well, but with the important caveat
that in our case the relative velocity of the carriers and the well
creates a significant asymmetry between incidence from the
left and the right. Multiple interactions with the potential dur-
ing time of traversal also impact the features, allowing access
to higher-order Floquet sidebands creating deep resonances.
Examination of the momentum distribution and a qualitative
semiclassical analysis confirmed that the trapping of particles
by the well for variable durations leads to a very rich and
fractal-like structure of the scattered momenta. Interference of
all such trajectories having the same final momenta creates
the prominent features in the quantum current, which are
conspicuously absent in the classical current, also simulated
here in conjunction.

From an applications standpoint, the sharp steps and dips
visible in the current could be used to control the flow precisely
by tuning the parameters to be in their vicinity. There are
substantial possibilities for future research on the quantitative
analysis of the semiclassical dynamics to examine how the
interference of the classical trajectories at different hierarchy
of branch size inclusions approach the quantum dynamics. The
difference between classical and quantum dynamics is clearly
magnified by the use of a well potential, and hence this can be a
useful system to examine the interface and crossover between
quantum and classical dynamics, as well as in the study of
quantum chaos [35]. Well-based pumps clearly have much
richer dynamics and therefore more complicated variations
like a turnstile [6,34] would be interesting to examine in future
works, particularly in regards to if and how the single-mode
dynamical features are manifest in the context of multimode
fermionic systems.
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