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Quantum quench in a harmonically trapped one-dimensional Bose gas
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We study the nonequilibrium dynamics of a one-dimensional Bose gas trapped by a harmonic potential for a
quench from zero to infinite interaction. The different thermodynamic limits required for the equilibrium pre-
and post-quench Hamiltonians are the origin of a few unexpected phenomena that have no counterparts in the
translational-invariant setting. We find that the dynamics is perfectly periodic with breathing time related to the
strength of the trapping potential. For very short times, we observe a sudden expansion leading to an extreme
dilution of the gas and to the emergence of slowly decaying tails in the density profile. The haste of the expansion
induces an undertow-like effect with a pronounced local minimum of the density at the center of the trap. At
half period there is a refocusing phenomenon characterized by a sharp central peak of the density, juxtaposed to
algebraically decaying tails. We finally show that the time-averaged density is correctly captured by a generalized
Gibbs ensemble built with the conserved mode occupations.
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I. INTRODUCTION

Over the last decade, the nonequilibrium dynamics of
isolated quantum systems has been the focus of an intensive
theoretical research. A main driving force behind this hu-
mongous theoretical work has been the constantly growing
experimental activity on trapped ultracold atomic gases which
enabled the realization and the study of the nonequilibrium
evolution of isolated quantum systems [1–9]. The simplest
nonequilibrium situation which attracted a lot of attention is
the quantum quench [10], i.e., the unitary time evolution from
an initial state which is an eigenstate (usually the ground state)
of a local Hamiltonian different from the one governing the
evolution (for reviews see Refs. [11–13]).

An interesting outcome of both theoretical and experi-
mental investigations is that generic and integrable systems
show markedly different behavior. Generic systems relax to
stationary states locally described by a thermal Gibbs ensemble
with a temperature set by the conserved energy [9,14–17].
Conversely, integrable systems keep memory of the initial state
also for infinite time because of the constraints imposed by an
infinite set of local and quasilocal conserved charges. In this
case, the stationary state is locally described by a generalized
Gibbs ensemble in which all relevant conservation laws are
taken into account [1,8,18–38].

However, most of the studies in the literature miss a
very important aspect of cold-atom experiments; namely, that
experimental systems are not translationally invariant but the
atoms are trapped by an external inhomogeneous (generally
parabolic) potential. The presence of the trapping potential
makes an exact analytic description very difficult (if not
impossible) in interacting many-body systems.

The interacting one-dimensional Bose gas trapped
by a harmonic potential is well described by the

Hamiltonian

Ĥc =
∫ ∞

−∞
dx

[
φ†(x)

(
−1

2
∂2
x + 1

2
ω2x2

)
φ̂(x)

+ cφ̂†(x)φ̂†(x)φ̂(x)φ̂(x)

]
, (1)

where the boson field φ̂(x) satisfies the canonical commutation
relations [φ̂(x),φ̂†(y)] = δ(x − y), c is the strength of the two-
body interaction, ω is the trap frequency, and we work in units
such that m = h̄ = 1. In the absence of the external potential,
the Hamiltonian (1) is the integrable Lieb–Liniger Hamiltonian
[39] which is exactly solvable by means of Bethe ansatz for all
values of the interaction strength c.

Global interaction quenches correspond to the abrupt
change of the coupling c in the homogeneous system and
were the focus of several works [40–63]. Other nonequilibrium
situations of the Lieb–Liniger model, even in the presence of a
trap, have also been studied [64–76], as well as the effects
of a box confining potential [77] and the consequences of
different (anyonic) exchange statistics [78,79]. The solution
of the quench problem for finite interaction strength c in
the post-quench Hamiltonian required the introduction of the
quench-action approach [80,81] and exact knowledge of the
many-body overlaps whose determination is a very difficult
problem [46,82–89]. On the other hand, for zero and infinite
interaction more elementary techniques can be used to access
the entire many-body dynamics.

An external trapping potential breaks translational invari-
ance and the Hamiltonian (1) ceases to be integrable for generic
couplings c. There are two special values of c where the model
is still exactly solvable for arbitrary values of ω. For c = 0
the Hamiltonian (1) describes a free bosonic gas. Conversely,
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an infinite repulsion c = +∞ makes the bosons impenetrable,
and the gas can be mapped onto a system of free fermions [90].

For the homogeneous case, analytic results were derived for
the quench from c = 0 to c = ∞ in Ref. [45] (and generalized
to other observables in Refs. [51,79]). Despite the quadratic
nature of the initial and final Hamiltonians, the nonequilibrium
dynamics turned out to be highly nontrivial. In particular,
Wick’s theorem does not hold for finite times because the initial
and final modes, one being bosonic and the other fermionic,
are not linearly related. To mimic the experimental setups, the
same quench was investigated in the presence of a hard-wall
confining potential in Ref. [77], where important differences
were derived compared with the homogeneous case, e.g., the
relaxation was found to take place in two steps.

In this paper we make a further step in closing the gap
towards the description of current cold-atom experiments by
studying the quench from the noninteracting to the strongly
repulsive gas confined by a harmonic potential. The study of
this nonequilibrium dynamics suffers from all of the complica-
tions already highlighted in homogeneous systems [45,77,79];
in particular the absence of Wick’s theorem at finite times due
to the nonlinear relation between pre- and post-quench modes.
There is, however, a further and more cumbersome issue related
to the nonexistence of a unique finite-density thermodynamic
limit (TDL) valid both for pre- and post-quench Hamiltonian.
Indeed, for homogeneous systems the TDL is defined for
arbitrary value of c as the limit of the number of particles,
N , and the length of the system, L, going to infinity with
fixed density N/L. In a trapped system, the extension of the
atomic cloud in the ground state is not fixed and depends on
the interaction strength. In the case of free bosons (c = 0),
the ground state is the condensate in which all atoms are
in the single-particle ground state of spatial extension �b �√

1/ω. Conversely for c = ∞, the density of the effectively
fermionic cloud is described by the famous Wigner semicircle
law n(f )(x) = (2

√
Nω/π )[1/2 − x2ω/(4N )]1/2 of extension

�f � √
N/ω. Thus in the free bosonic case, a finite density

TDL is obtained taking N,�b → ∞ with n = N/�b � N
√

ω

kept constant, while in the impenetrable case the correct limit is
taken by keeping nf = N/�f � √

Nω fixed. The competition
of these two different TDLs is one of the main difficulties in
making the quench problem well defined.

To overcome this problem, all physical variables must be
rescaled with the number of particles, N , in nonstandard way.
It is not straightforward to understand the correct rescaling
because of the competition of the different length scales.
Once the proper parametrizations have been understood, the
limit of large N can be taken and many of the computations
become almost elementary. In this way we derive, among the
other results, exact integral expressions for the time-dependent
density profile and show that its time average is entirely
captured by a generalized Gibbs ensemble.

The paper is organized as follows: In Sec. II we review the
Bose–Fermi mapping for the final Hamiltonian and introduce
the technique to compute time-evolved quantities. The basic
building block is the initial fermionic correlation function
which we determine analytically. In Sec. III we derive an-
alytic expressions for the time-evolved fermionic two-point
function and for the particle density. In Sec. IV we construct
a generalized Gibbs ensemble in terms of the conserved

mode occupations and show that it correctly describes the
time-averaged density and fermionic correlations. We give our
conclusions in Sec. V.

II. MODEL AND QUENCH

In this section we summarize some simple and well-known
properties of pre- and post-quench Hamiltonians that are
needed to study the quench dynamics of the coupling strength
from c = 0 to c = ∞ in a one-dimensional Bose gas trapped
by a harmonic potential described by the Hamiltonian (1).

A. The initial setup

The system is prepared in the N -particle ground state of the
free-boson Hamiltonian Ĥ0, given by Eq. (1) with c = 0. The
quadratic Hamiltonian Ĥ0 can be diagonalized in terms of the
one-particle creation and annihilation operators

ξ̂q =
∫ ∞

−∞
dxϕ∗

q (x)φ̂(x), ξ̂ †
q =

∫ ∞

−∞
dxϕq (x)φ̂†(x), (2)

where the index q is a non-negative integer and the one-particle
eigenfunctions ϕq(x) solve the Schrödinger equation of the
one-dimensional quantum harmonic oscillator,

∂2
xϕq(x)/2 − ω2x2ϕq(x)/2 = εqϕq(x). (3)

Explicitly, the normalized eigenfunctions are

ϕq(x) = 1√
2qq!

(ω

π

)1/4
Hq(x

√
ω)e−ωx2/2, (4)

where Hq(x) ≡ ∂
q
s exp(2xs − s2)|s=0 are the Hermite polyno-

mials, and εq = ω(q + 1/2) are the one-particle energy levels.
The mode operators obey canonical commutation relations
[ξ̂p,ξ̂

†
q ] = δp,q .

In terms of the modes ξ̂q in Eq. (2), the pre-quench
Hamiltonian Ĥ0 is diagonal:

Ĥ0 =
∞∑

q=0

εq ξ̂
†
q ξ̂q , (5)

and the normalized N -particle ground state is the Bose–
Einstein condensate,

|ψ0(N )〉 = 1√
N !

(ξ̂ †
0 )N |0〉, (6)

where |0〉 is the Fock vacuum (defined by ξ̂q |0〉 = 0 ∀ q ∈
N). The two-point correlation function of bosonic fields in
the ground state can be computed by using the relation
〈ψ0(N )|ξ̂ †

pξ̂q |ψ0(N )〉 = Nδp,0δq,0, yielding

〈ψ0(N )|φ̂†(x)φ̂(y)|ψ0(N )〉 = n√
π

e−ω(x2+y2)/2, (7)

where n ≡ N
√

ω is an average density given by the ratio of the
total particle number and the oscillator length 1/

√
ω. Setting

x = y we get the density profile

n0(x) ≡ 〈ψ0(N )|φ̂†(x)φ̂(x)|ψ0(N )〉 = n√
π

e−ωx2
. (8)
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B. The quench protocol

The quench protocol considered in this paper consists of
turning on an infinitely strong repulsion at t = 0: the time
evolution for t > 0 is governed by Ĥ∞, the Hamiltonian
(1) with c = ∞. This Hamiltonian describes the celebrated
Tonks–Girardeau (TG) gas [90] which is a system of impene-
trable bosons. To study this system, it is customary to introduce
hard-core bosonic fields �̂(x), �̂†(x) which satisfy a hybrid
algebra: they obey an effective Pauli principle (induced by the
infinite repulsion) at the same location but they commute at
different points,

[�̂(x),�̂†(y)] = 0, x �= y, [�̂†(x)]2 = [�̂(x)]2 = 0. (9)

In terms of these hard-core fields, Ĥ∞ is quadratic,

Ĥ∞ =
∫ ∞

−∞
dx�̂†(x)

(
−1

2
∂2
x + 1

2
ω2x2

)
�̂(x), (10)

and the infinitely strong repulsion is encoded in the hybrid
commutation relations.

The hard-core boson fields can be mapped to fermionic
fields [90] by the Jordan–Wigner transformation

̂(x) = exp

{
iπ

∫ x

0
dz�̂†(z)�̂(z)

}
�̂(x), (11a)

̂†(x) = �̂†(x) exp

{
−iπ

∫ x

0
dz�̂†(z)�̂(z)

}
. (11b)

The fermionic fields satisfy canonical anticommutation
relations {̂(x),̂†(y)} = δ(x − y). The bosonic density op-
erator �̂†(x)�̂(x) is mapped to the fermionic density operator
̂†(x)̂(x). In terms of the fermionic fields the Hamiltonian
(10) becomes

Ĥ∞ =
∫ ∞

−∞
dx̂†(x)

(
−1

2
∂2
x + 1

2
ω2x2

)
̂(x), (12)

that can be diagonalized by fermion mode operators η̂q , η̂
†
q

defined by

̂(x) =
∞∑

q=0

ϕq(x)η̂q , η̂q =
∫ ∞

−∞
dxϕ∗

q (x)̂(x), (13)

where the single-particle eigenfunctions ϕq(x) are again given
by Eq. (4). In terms of the fermionic mode operators the
Hamiltonian is diagonal

Ĥ∞ =
∞∑

q=0

εq η̂
†
q η̂q =

∞∑
q=0

εqn̂q, (14)

and we introduced the fermionic mode occupation operators
n̂q ≡ η̂

†
q η̂q .

In the following we focus on the space- and time-dependent
density as well as on the more general two-point fermionic
correlation function

C(x,y; t) ≡ 〈exp(iĤ t)̂†(x)̂(y) exp(−iĤ t)〉, (15)

where the notation 〈. . . 〉 ≡ 〈0(N )| . . . |0(N )〉 stands for
expectation values in the initial state. The density profile is
given by the correlation function evaluated at x = y, i.e.,
n(x; t) = C(x,x; t).

The time-evolved correlation function can be expressed in
terms of the post-quench modes as

C(x,y; t) =
∑
p,q

ϕ∗
p(x)ϕq(y)ei(εp−εq )t 〈η̂†

pη̂q〉. (16)

Another manageable expression for the correlator can be
obtained by plugging Eq. (13) into Eq. (16), yielding

C(x,y; t)

=
∫ ∞

−∞
dx0

∫ ∞

−∞
dy0K∗(x,x0; t)K(y,y0; t)〈̂†(x0)̂(y0)〉,

(17)

where the kernel,

K(x,y; t) ≡
∞∑

q=0

ϕq(x)ϕ∗
q (y)e−iεq t (18)

is the harmonic-oscillator Green’s function, i.e.,

〈x|ψ(t)〉 =
∫ ∞

−∞
dyK(x,y; t)〈y|ψ(0)〉. (19)

Interestingly, the kernel has an analytical closed form
obtainable by using the mode functions (4) and Mehler’s
formula [91]

∞∑
q=0

ρq

2qq!
Hq(x)Hq(y) =

exp
[ − ρ2(x2+y2)−2ρxy

1−ρ2

]
√

1 − ρ2
, (20)

leading to

K(x,y; t) =
(ω

π

)1/2 exp
{
iω

(x2+y2) cos (ωt)−2xy

2 sin (ωt)

}
√

2i sin (ωt)
. (21)

The kernel K(x,y; t) is a 2π -periodic function in ωt, is sym-
metric under the exchange of the space variables, K(y,x; t) =
K(x,y; t), and satisfies the time-reversal propertyK∗(x,y; t) =
K(x,y; −t). The kernel is not translationally invariant since it
depends both on (x − y) and (x + y).

C. Initial fermionic correlation function

The initial fermionic two-point function is a crucial in-
gredient for the calculation of the time-evolved correlation
function (17). Its calculation is not straightforward because
of the non-Gaussian nature of the initial state in terms of the
post-quench fermionic operators.

The Jordan–Wigner transformation (11) relates the
fermionic operators to the bosonic ones and can be used to
rewrite the two-point function (for x < y) as [45,77]

〈̂†(x)̂(y)〉

=
∞∑

j=0

(−2)j

j !

∫ y

x

dz1 · · ·
∫ y

x

dzj

×〈�̂†(x)�̂†(z1) · · · �̂†(zj )�̂(zj ) · · · �̂(z1)�̂(y)〉,

(22)

where the factor (−2)j results from normal ordering.
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The multipoint correlator in Eq. (22) can be evaluated by
replacing the hard-core boson fields with the canonical ones
(as justified in Refs. [45,77] from a lattice discretization), i.e.,

〈�̂†(x)�̂†(z1) · · · �̂†(zj )�̂(zj ) · · · �̂(z1)�̂(y)〉
= 〈φ̂†(x)φ̂†(z1) · · · φ̂†(zj )φ̂(zj ) · · · φ̂(z1)φ̂(y)〉. (23)

The right-hand side of Eq. (23) is evaluated as a straightforward
application of Wick’s theorem:

〈φ̂†(x)φ̂†(z1) · · · φ̂†(zj )φ̂(zj ) · · · φ̂(z1)φ̂(y)〉

= ϕ∗
0 (x)ϕ0(y)

j∏
i=1

|ϕ0(zi)|2〈(ξ̂ †
0 )j+1(ξ̂0)j+1〉. (24)

Using now ξ̂0|0(N )〉 = √
N |0(N − 1)〉, we obtain

〈(ξ̂ †
0 )j+1(ξ̂0)j+1〉 = N !/(N − j − 1)! leading to

〈̂†(x)̂(y)〉

= ϕ∗
0 (x)ϕ0(y)

∞∑
j=0

(−2)j

j !

N !

(N − j − 1)!

∣∣∣∣
∫ y

x

dz|ϕ0(z)|2
∣∣∣∣
j

,

(25)

where the absolute value takes into account the exchange of
integration limits for x > y. Using∣∣∣∣

∫ y

x

dz|ϕ0(z)|2
∣∣∣∣ = 1

2
|Erf(y

√
ω) − Erf(x

√
ω)| (26)

finally leads to

〈̂†(x)̂(y)〉

= N
√

ω√
π

e−ω(x2+y2)/2[1 − |Erf(y
√

ω) − Erf(x
√

ω)|]N−1.

(27)

Equation (27) is valid for any finite value of ω and N . Let us
discuss how we can obtain a consistent nontrivial result in the
thermodynamic limit (TDL). To have a finite density we have
to consider N → ∞, ω → 0 with N

√
ω = n. At this point, we

are forced to rescale distances with the trap frequency to avoid
a trivial result. The proper rescaling leading to a nontrivial form
is to keep r ≡ √

ω(x + y)/2 finite as ω → 0 while z = x − y

is finite without rescaling. In this regime, the limit of Eq. (27)
can be taken, leading to

〈̂†(x)̂(y)〉 = n√
π

e−r2
exp

(
− 2n√

π
e−r2 |z|

)
. (28)

The TDL defined in this way may seem rather artificial at first,
but it is the only way to accommodate fermion correlations in
a bosonic ground state. It is a direct consequence of the fact
stressed in the introduction that bosonic and fermionic TDLs
are different when the gas is trapped by a harmonic potential.

In Fig. 1 we compare this asymptotic form with the exact
finite-N expression (27), reporting an excellent agreement in
the TDL. In what follows, Eq. (28) is the starting point to
analytically compute the time-evolved two-point function (17)
and the fermionic mode occupations.
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FIG. 1. Initial fermionic correlation function (27) as a function
of nz = n(x − y) for fixed r = √

ω(x + y)/2 (top panel) and as
a function of r for fixed nz (bottom panel). The numerical data
for N = 1/

√
ω = 200 (symbols) are compared with the analytical

scaling function given by Eq. (28) (solid lines).

III. TIME-DEPENDENT QUANTITIES

In this section we explicitly compute the time evolution of
the two-point fermionic correlation function and of the density
profile. Due to the periodicity of the kernel (21), we do not
expect relaxation for large times but oscillatory behavior.

A. Fermionic correlation function

The starting point of our calculation is to apply the integral
representation of the correlation function (17) by using the
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explicit form of the harmonic-oscillator kernel (21) and the
the initial two-point function (28).

The two-point fermionic correlation function evolves under
the simultaneous action of two harmonic kernel operators [cf.
Eq. (17)]. The product of the kernels can be written as

K∗(x,x0; t)K(y,y0; t)

= ω
exp

{
i
√

ωz0[r−r0 cos (ωt)]+z[r0−r cos (ωt)]
sin (ωt)

}
2π | sin (ωt)| , (29)

where, following the recipe for the TDL introduced at the end
of the previous section, we introduced the variables

r = √
ω

x + y

2
, z = x − y,

r0 = √
ω

x0 + y0

2
, z0 = x0 − y0. (30)

Changing integration variables in Eq. (17) from (x0,y0) to
(r0,z0), the z0 integral can be evaluated analytically by using
A

∫ ∞
−∞ dz0e

−2A|z0|eiαz0 = 1/[1 + α2/(4A2)]. Thus the correla-
tion function can be written as a single integral as

C(x,y; t)

=
√

ω

2π |sin(ωt)|
∫ ∞

−∞
dr0

exp
[

i
√

ω

sin (ωt)z[r0 − r cos (ωt)]
]

1 + (√
π[r−r0 cos (ωt)]

2N sin (ωt) er2
0
)2 .

(31)

It is cumbersome, but straightforward to show that, as t → 0,
we recover the initial correlation function (28). The correlator
is periodic with period T = π/ω. As a fundamental test, we
checked numerically that, by evolving the finite-size correla-
tion (27) with the kernel (17), we recover Eq. (31) for large N .

The correlator in Eq. (31) is well defined everywhere except
when ωt = π/2 and r = 0 simultaneously (i.e., for two points
symmetric with respect to the center of the trap at half period).
In this case the integral (31) diverges because the integrand is
ei

√
π/2zr0 . While the integral genuinely diverges in the TDL, it

is important to work out the N dependence of this divergence.
To do so, we first identify the origin of the divergence with
the fact that replacing Eq. (27) with Eq. (28) we dropped a
subleading Gaussian factor ∼ exp(−ωz2/4) which becomes
important only for ωt = π/2 and r = 0 when it induces an N -
dependent cutoff for the r0 integral. Reintroducing this factor,
the z0 integral becomes

n0

∫
dz0e

−2n0|z0|e−ωz2
0/4 = 2n0

√
π

ω
e4n2

0/ωerfc
2n0√

ω
,

where n0 ≡ n0(r0) = n/
√

πe−r2
0 is the initial density (8) in r0.

Taking now the TDL N → ∞ with n constant, this function
of r0 approaches a box function of height 1. The edges of the
box are located at the inflection points ±r∗

0 which numerically
are very well approximated by r∗

0 ≈
√

ln(4N/
√

π ). Then, at
this very special point the correlation function is

C
(
x, − x;

π

2ω

)
≈

√
ω

2π

∫ r∗
0

−r∗
0

dr0 =
√

ω

π

√
ln(4N/

√
π ).

(32)

There is another interesting limit of the correlation function
that can be worked out more explicitly. Indeed, the integral in
Eq. (31) can be simplified when the two points are far from
the center of the trap. In this limit, the Gaussian factor in
the denominator of the integrand cuts off the integral around
r0 ≈ r∗ =

√
ln(2N sin ωt/

√
π ). Thus, for r � r∗ the term

r0 cos(ωt) can be neglected. Under this assumption, the integral
can be performed by expanding ei

√
ωzr0/ sin(ωt) in powers of z,

obtaining

C(x,y; t)

≈ −
√

ωe−iζ r cos (ωt)

2
√

2π | sin (ωt)|
∞∑

k=0

(−ζ 2/8)k

k!
Lik+1/2

(
− 1

ρ2

)
,

(33)

where we introduced the new variables ζ = √
ωz/ sin(ωt) and

ρ = √
πr/[2N sin(ωt)]. Here Lis(z) ≡ ∑∞

j=1 zj/(j s) is the
polylogarithm function. Using the series representation of the
polylogarithm function we finally obtain

C(x,y; t) ≈ −
√

ωe−iζ r cos (ωt)

2
√

2π |sin(ωt)|
∞∑

j=1

e
− ζ2

8j

√
j

(
− 1

ρ2

)j

. (34)

When r is very large, specifically for ρ � 1 [i.e., r �
2N sin(ωt)/

√
π ], the leading term in the sum (34) is the one

with j = 1, and hence the correlation function decays as r−2

with distance from the center of the trap. In this regime, the
two-point function decays as a Gaussian of the separation
z with a typical length ∼ sin ωt/

√
ω. However, the sum in

Eq. (34) [or equivalently (33)] describes the entire regime
r � r∗. Consequently, for large enough N , there is always
an intermediate window of r , i.e.,

√
ln(2N sin ωt/

√
π) � r �

2N sin(ωt)/
√

π , in which several terms in the sum (34) are
needed to capture the correct behavior.

To show the rough behavior of the fermionic correlation
function, in Fig. 2 we report two selected plots for ωt = π/4.
Both plots show how Eq. (33) describes very accurately the
correlation function for moderately large values of r and N . In
the top panel, it is also shown how the asymptotic power-law
tail for large r in Eq. (34) sets up at r ∼ O(N ). We carefully
checked that a similar agreement is found for arbitrary values
of ωt .

B. Evolution of density profile

The time-evolved density is given by Eq. (31) evaluated at
coincident points x = y, i.e.,

n(x; t) =
√

ω

2π |sin(ωt)|
∫ ∞

−∞
dr0

1

1 + (√
π[r−r0 cos (ωt)]

2N sin (ωt) er2
0
)2 ,

(35)

where we recall that r = √
ωx. It is cumbersome but elemen-

tary to show that, for t → 0, the density profile reproduces
the initial Gaussian distribution (8). The latter is a function
of r = √

ωx and n, i.e., it obeys bosonic scaling in the trap.
Instead at finite times 0 < ωt < π , the density is a function of
r,ωt, and N . This shows, as anticipated in the introduction, that
a nonequilibrium TDL in which we keep the density constant
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FIG. 2. Fermionic correlation function at fixed time ωt = π/4
as a function of the distance r from the center of the trap at fixed
separation z (top panel) and the other way around (bottom panel).
The symbols are the exact data at finite N (the apparent singularities
are just sign changes in logarithmic scale). The full red line in the top
(bottom) panel is the large r asymptotics in Eq. (33) [Eq. (34)], where
the first twenty terms in the sum have been kept. The dot-dashed line
in the top panel is the very-large-r algebraic tail, i.e., the first term of
Eq. (34).

and eliminate the N dependence cannot be consistently taken
at arbitrary time. This awkward behavior is a consequence of
the different scaling properties of bosons and fermions in the
harmonic trap.

In Fig. 3 we show the spacetime contour plot of n(x; t)
for different numbers of particles, N . The dynamics is peri-
odic with period T = π/ω. Moreover, n(x; t) = n(x,π/ω − t)
holds, so the time evolution between 0 < t < T/2 is reversed
between T/2 < t < T . The physics is not very transparent
from these color plots but it becomes clearer by looking at fixed
time slices such as those shown in Fig. 4. Let us describe the
panels of this figure. In the very early stage of the evolution,
the cloud expands very quickly with particles moving from
the center to the edges of the trap. During this expansion, the
initial Gaussian profile becomes a density profile with slowly
decaying tails. The expansion is faster for higher number of
particles N : the Pauli principle makes the particles repel each
other after the quench and the effect is larger for tighter initial
confinement. The undertow following the expansion creates
a local minimum or “dip” at the center of the trap, as an
unexpected new effect. Interestingly, at half period ωt = π/2
we observe a “recondensation” or “refocusing” phenomenon
(i.e., the density in the center becomes higher), but always
in the presence of very fat tails. The effect however becomes
fainter with increasing number of particles.

The refocused density profile at the special time t = T/2 =
π/(2ω) can be obtained analytically as

n(x; T/2) =
√

ω

2π

∫ ∞

−∞
dr0

1

1 + (√
πr

2N
er2

0
)2

= −
√

ω

2
√

2π
Li1/2

(
−4N2

πr2

)
. (36)

As was discussed earlier, the apparent divergence at r = 0 is
an artifact of the TDL in the initial condition, i.e., in replacing
Eq. (27) with Eq. (28). For finite but large N , the density at
t = T/2 at the origin behaves as

n(0; T/2) ≈ n

N

1

π

√
ln(4N/

√
π ). (37)

In Fig. 5 we compare Eq. (37) (solid line) with the numerically
evaluated density by using the exact initial correlation function
(17) in the integral (27). The exact numerical result shows an
oscillation with the parity of N which very slowly disappears
in the thermodynamic limit. The average of the values for
neighboring even and odd N agrees very well with the analytic
prediction (37).

Finally, we consider the tails of the density profile by
analyzing the large x behavior of (35). The tails for r � r∗ =√

ln(2N sin ωt/
√

π ) follow from Eq. (33) by setting x = y

(i.e., z = ζ = 0), which yields

n(x; t)√
ω

≈ − 1

2
√

2π |sin(ωt)|Li1/2

(
−4N2 sin2 (ωt)

πr2

)
. (38)

The Li1/2 function crosses over between two different regimes
depending on whether the argument is much larger or much
smaller than 1. Consequently, for any finite value of N there is
an intermediate region r∗ � r � N in which [92]

n(x; t) ∼
√

ω

π | sin (ωt)|

√
ln

2N sin (ωt)√
πr

for r∗ � r � N,

(39)
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FIG. 3. Contour plots of the rescaled density n(x; t)/n given by Eq. (35) for different number of particles, N.

which crosses over to

n(x; t) ∼
√

2ω

π3/2
|sin(ωt)|N

2

r2
for r � N > r∗. (40)

To show the correctness of the analytic result (38), in Fig. 6
we compare it with the large distance behavior of the density
profile obtained by numerically evaluating the integral (35) for
ωt = π/4, chosen as a representative time.

C. Time-averaged density profile

The time average over a period of Eq. (46) is

n(x; t) ≡ 1

T

∫ T

0
dtn(x; t)

=
√

ω

2π2

∫ ∞

−∞
dr0

∫ π

0

dτ

sin τ

1

1 + (√
π[r−r0 cos (τ )]

2N sin (τ ) er2
0
)2
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FIG. 4. Snapshots of rescaled density n(x; t)/n at different rescaled times ωt as a function of rescaled distance from the center, x
√

ω.
Different lines represent different initial particle numbers N . At time t = 0 all curves collapse on the initial Gaussian profile.
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FIG. 5. Particle density at the center of the trap at time t =
π/(2ω) = T/2. The numerically evaluated integral (27) using the
exact initial correlator (17) is shown in symbols. The red circles
and black squares correspond to N even and odd, respectively, while
the blue diamonds represent the average over N and N + 1. The
asymptotic behavior (37) is plotted in solid black line.

=
√

ωr

2π2

∫ ∞

−∞
db

∫ 1

−1
ds

1

1 − s2 + a(1 − bs)2 , (41)

where τ = ωt , s = cos τ , b = r0/r , and we introduced

a = πr2

4N2
e2r2

0 . (42)

The s integral can be worked out, yielding

n(x; t) =
√

ωr

2π2

∫ ∞

−∞
db

ln s1−1
s1+1 − ln s2−1

s2+1

(ab2 − 1)(s1 − s2)
, (43)

where s1 and s2 are the roots of the equation (ab2 − 1)s2 −
2abs + (a + 1) = 0.

Equation (43) is valid for arbitrary x. Its large-distance
behavior is readily obtained by using Eq. (38), which, changing
integration variable to s = cos ωt, leads to

n(x; t)/
√

ω ≈ − 1

(2π )3/2

∫ 1

−1
ds

Li1/2
[ − 4N2

πr2 (1 − s2)
]

1 − s2

= −
√

2

4π

∞∑
k=1

(k − 1)!√
k(k − 1/2)!

(
−4N2

πr2

)k

. (44)

In Fig. 7 we report the time average (43) for different
N showing that, for sufficiently large distances, all curves
collapse on the same function of the rescaled variable r/N

given by Eq. (44).

0 5 10 15 20
0.01

0.1

1

N = 5
N = 10
N = 20

x 1/2

n(
x;

t)
N

/n
FIG. 6. Large-distance behavior of the rescaled density profile

n(x; t)N/n at fixed initial density n and different particle numbers N .
The numerically evaluated integral in Eq. (35) is compared with the
asymptotic expansion (38) (gray lines).

IV. THE GENERALIZED GIBBS ENSEMBLE

One of the main results about the nonequilibrium quench
dynamics of translational invariant integrable systems is that

0.01 0.1 1 10
0.001

0.01

0.1

1
N = 5
N = 10
N = 20

r/N

n(
x;

t)
N

/n

FIG. 7. Large-distance behavior of the rescaled time-averaged
density profile n(x; t)N/n against r/N for different particle num-
bers on a double logarithmic scale. The asymptotic is captured
by Eq. (44) (gray thin solid line) which for r/N → ∞ decays as
2
√

2/π 5/2(r/N )−2 (gray thin dot-dashed line).
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local observables attain stationary values which are the same as
if the entire system was in a statistical ensemble in which all the
relevant integrals of motion are taken into account as dynamical
constraints. This statistical ensemble is the generalized Gibbs
ensemble (GGE) [18] in which the conservation of a complete
set of local and quasilocal integrals of motion is imposed
[19–38].

In the case of nonhomogeneous systems, the literature is
much less clear. As the role of locality is less stringent, it
is natural to wonder whether a GGE may describe some
relevant features of the system. In the case studied in this
manuscript, stationary values are not attained for long times
so we can only ask whether a GGE captures the time-averaged
values of some local observables. The most reasonable set
of conserved charges to be considered here are the fermionic
mode occupation numbers n̂q in Eq. (14).

Consequently, the goal of this section is to study some
properties of the GGE,

ρ̂GGE = Z−1 exp

(
−

∑
q

λqn̂q

)
, (45)

where Z ensures that Trρ̂GGE = 1. The Lagrange multipliers
λq are fixed by the requirement that each integral of motion n̂q

assumes the same value in the initial state (〈n̂q〉 ≡ 〈ψ0|n̂q |ψ0〉)
and in the GGE (〈n̂q〉GGE ≡ Tr[ρ̂GGEn̂q]). For a free-fermionic
model, solving the GGE conditions 〈n̂q〉 = 〈n̂q〉GGE is straight-
forward since the mode occupation satisfies Fermi statistics
and hence 〈n̂q〉GGE = (1 + eλq )−1 leading to eλq = 1/〈n̂q〉 − 1.

The elementary building blocks of the GGE are then the
expectation values of the fermionic mode occupations in the
initial state 〈n̂q〉. These can be obtained from the initial
correlator (27) of the real-space fermionic fields 〈̂†(x)̂(y)〉.
From the knowledge of 〈n̂q〉 we can, in principle, recover the
expectation value in the GGE of an arbitrary local observable
and of its correlations at finite distance. In the next section we
explicitly work out 〈n̂q〉 for large N and we show that from
the resulting GGE we may recover the time-average density
profile (43).

The time average of Eq. (16) is given by

C(x,y; t) =
∞∑

q=0

ϕ∗
q (x)ϕq(y)〈n̂q〉, (46)

which only depends on the fermionic mode occupations.
Given that by GGE construction 〈n̂q〉 = 〈n̂q〉GGE and that
〈η̂†

qηp〉GGE = δqpn̂q , the time-averaged fermionic correlation
and the GGE one CGGE(x,y) ≡ Tr[ρGGE†(x)(y)] are equal.
This implies that also the density profiles in the GGE and
the time-averaged one are equal, since they are just the
corresponding correlations for x = y.

A. Fermionic mode occupation

The expectation values of the conserved fermionic mode
occupations 〈n̂q〉 are obtained by plugging the initial correla-
tion function (27) in the definition of the fermionic modes (13):

〈n̂q〉 =
∫ ∞

−∞
dx

∫ ∞

∞
dyϕq(x)ϕ∗

q (y)〈̂†(x)̂(y)〉. (47)

FIG. 8. Rescaled fermionic mode occupation N〈n̂q〉 in logarith-
mic scale as function of qπ/(2N2) for different particle numbers
N . The numerical data, evaluated by using Eq. (47), collapse on the
asymptotic universal function (full black line) given by Eq. (51).

To proceed we plug into this expression the TDL (28) of
〈̂†(x)̂(y)〉. To ensure that this approximation does not
introduce systematic errors, we evaluated the double integral
(47) numerically by using both the TDL [cf. Eq. (28)] and
the finite N [cf. Eq. (27)] expressions of the initial correlation
function and found that, for sufficiently large N , they lead to
the same result.

Thus the desired mode occupation can be written as

〈n̂q〉 =
∫ ∞

−∞
dx

∫ ∞

∞
dyϕq (x)ϕ∗

q (y)
n√
π

e−r2

× exp

(
− 2n√

π
e−r2 |z|

)
, (48)

where z = x − y and r = √
ω(x + y)/2. As long as we keep

q finite, in the TDL (N → ∞, ω → 0 with N
√

ω fixed) the
previous integral gives 〈n̂q〉 → 1 for all q. However, for N

large but finite, whenever q ∼ ln N , the mode occupation 〈n̂q〉
deviates from one (see the appendix).

In Fig. 8 we report the rescaled mode occupation N〈n̂q〉
as a function of q/N2. This figure provides strong numerical
evidence that the data for all values of N collapse on a universal
smooth function. Therefore, in the TDL, Eq. (48) for the modes
with q/N2 ∼ O(1) greatly simplifies. Indeed, we can use the
asymptotic expansion of the Hermite polynomials for large q,

e−ωx2/2Hq(x
√

ω) ∼ 2�(q)

�(q/2)
cos(x

√
2ωq − qπ/2), (49)
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and for large q and large N (with N
√

ω = n fixed) we can
approximate Eq. (47) as

〈n̂q〉 ≈ n

π

√
2

πq

∫ ∞

−∞
dr

∫ ∞

−∞
dz

× [cos(z
√

2ωq) + (−1)q cos(2r
√

2q)]

× e−r2
exp

(
− 2n√

π
e−r2 |z|

)
, (50)

where we used (2�[q]/�[q/2])2/(2qq!) ≈ √
2/(πq) for q �

1. For ω → 0 keeping ωq constant, the term proportional
to (−1)q is highly oscillating and vanishes in the TDL. The
smooth term is easily integrated over z, leading to

〈n̂q〉 ≈ 1

π
√

2q

∫ ∞

−∞
dr

e−2r2

e−2r2 + πq/(2N2)

= 1

N

[
− 1

2
√

2q̃
Li 1

2

(
− 1

q̃

)]
≡ ñ(q̃), (51)

where q̃ ≡ πωq/(2n2) = πq/(2N2). This analytic result is
compared in Fig. 8 with the numerical evaluation of the mode
occupation showing an excellent agreement for large enough
N . Moreover, as a consequence of − ∫ ∞

0
dz

π
√

2z
Li 1

2
(− 1

z
) = 1,

Eq. (51) satisfies the sum rule
∑

q〈n̂q〉 = N, suggesting that,
in the TDL, only a vanishing fraction of the particles are not
in modes with q ∼ O(N2); see the appendix for more details.

The asymptotic behavior of Eq. (51) for both small and large
values of q̃ is easily worked out. For q̃ � 1 the distribution 〈n̂q〉
shows a power-law decay N〈n̂q〉 � 1/(2

√
2q̃3/2). For q � 1,

we use the asymptotic expansion of the polylogarithm function
for −z � 1 [92] to obtain N〈n̂q〉 � √− ln(q̃)/(2πq̃). This
divergence as q̃ → 0 is a consequence of the rescaling because,
as already stressed, as q → 0 we have 〈n̂q〉 → 1.

B. Density profile in generalized Gibbs ensemble for finite N

The goal of this section is to show that it is possible to obtain
directly the GGE density profile from 〈n̂q〉 and to numerically
recover, for finite but large N , the time-average (43) as it should
be by construction.

The GGE density profile nGGE(x) in terms of the mode
occupations is simply

nGGE(x) =
∞∑

q=0

|ϕq(x)|2Tr[n̂q ρ̂GGE] =
∞∑

q=0

〈n̂q〉|ϕq(x)|2.

(52)
The asymptotic scaling form (51) is valid for large q, so we
split nGGE(x) in two sums

nGGE(x) =
q1∑

q=0

〈n̂q〉|ϕq(x)|2 +
∞∑

q=q1+1

ñ(q̃)|ϕq(x)|2, (53)

where q1 ∼ ln(N ). For q < q1 we have 〈n̂q〉 � 1. At this point
the second sum can be approximated by an integral and the
above equation should reproduce (43). Anyhow, the situation
is not so simple because there are severe finite-size effects on
〈n̂q〉 as numerically shown in the appendix. Thus, Eq. (53),
although correct, is accurate only for enormous values of N .
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FIG. 9. Comparison between the time-averaged density n(x; t)
(43) (full lines) and the GGE density nGGE(x) (54) (symbols) vs
r = √

ωx for different particle numbers N . In Eq. (54) we used the
conservative values of q1 = 20 and q2 = 1000 for the three values of
N reported.

To have a prediction for moderate large values of N we
heuristically proceed as follows: We further split into two
parts the second sum in Eq. (53): for q � q2 ≈ 2r2 we use
Eq. (49) to approximate the wave function and we analytically
work out the integral in which the rapidly oscillating cos2(. . . )
factor is replaced by 1/2. Then for the sum up to q1, we
do not approximate 〈n̂q〉 � 1, but we use the actual value of
〈n̂q〉 which for finite N is slightly different from one. Putting
together the three pieces constructed in this way we thus finally
obtain

nGGE(x) =
q1∑

q=0

〈n̂q〉|ϕq(x)|2 +
q2∑

q=q1+1

ñ(q̃)|ϕq(x)|2

− Li3/2(−1/q̃2)

(2π )3/2 , (54)

where q̃2 = π (q2 + 1)/(2N2). This result is compared with the
time-averaged profile (43) in Fig. 9: in spite of the heuristic
reasoning the agreement is perfect. In the spirit of the GGE,
this shows that it is possible to obtain time-averaged values
without solving the entire many-body dynamics, but only from
the knowledge of the integrals of motion in the initial state.

V. CONCLUSION

We studied the nonequilibrium dynamics after a quantum
quench of a one-dimensional Bose gas in the presence of an
external trapping harmonic potential. We consider the case
in which the interaction parameter is quenched from zero
to infinity, i.e., we switch from noninteracting to strongly
interacting bosons. The setup breaks translational invariance
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so the particle density and the two-point fermionic correlation
function have a nontrivial time evolution, as a first important
difference compared with the homogeneous case [45].

The main physical and technical difficulty in this study is
related to the nature of the thermodynamic limit. Indeed, in the
initial state all bosons are in the same one-particle state, and the
trap frequency ω introduces a natural length scale 1/

√
ω for

the bosonic thermodynamic quantities which is independent
of the number of particles. However, the time evolution is
governed by an essentially fermionic Hamiltonian, and the
Pauli principle favors a different typical length scale of the
thermodynamic quantities which is

√
N/ω and does depend on

the number of particles. Here we overcame this difficulty, but
the price to pay is that various observables, lengths, distances
and all physical variables have to be rescaled in a nonstandard
way with the number of particles N .

Because of the strange interplay between the bosonic
and fermion nature of the problem, there are several novel
and unexpected features which have no counterpart in the
homogeneous case [45]. First, the nonequilibrium dynamics
is exactly periodic with period T = π/ω and relaxation never
occurs. This “breathing” of the particle cloud in the trap is
not a surprise, it is a consequence of having equally spaced
single-particle levels and it is common to many nonequilibrium
situations of one-dimensional Bose gas in a harmonic trap.
However, it is a marked difference with the homogeneous
problem [45], as well as with the evolution in a hard-wall trap
[77], where relaxation dynamics is always the rule.

As soon as the the infinitely repulsive interaction is switched
on, the cloud of bosons starts expanding because of the
strong repulsion. This expansion becomes faster as the particle
number increases as a consequence of the tighter confinement.
To characterize this dynamics, we provided analytic results
for the equal-time fermionic two-point correlation function.
Although not being experimentally measurable, this is the
building block for the calculation of all observables. We used
this correlation to obtain an analytic expression for the particle
density valid for large number of particles: remarkably, the
originally localized particle cloud with Gaussian decaying tails
acquires a much broader shape characterized by an algebraic
large distance decay. The expansion is so fast that there is an
undertow-like effect such that, for certain times, the density
has a pronounced local minimum at the center of the trap. At
half period t = π/(2ω) we observe a refocusing phenomenon
with the density showing again a sharp peak at the center,
but always with algebraically decaying tails at large distance.
Interestingly, while in the initial state the average density is
n = N

√
ω, at finite time as well as for the time-average value

we have densities which are proportional to n/N which is
suppressed even with respect to the density of the fermions
ground state nf = n/

√
N . A physical explanation of this

behavior could be that the initial confinement is so tight that the
particles have the energy to move much further away compared
with the equilibrium configuration.

We also worked out the GGE built with the conserved
fermionic mode occupations. The latter have been analytically
obtained in the large-particle-number limit, showing that they
obey a nontrivial scaling for high-energy modes. We showed
that the density distribution computed in this GGE coincides,
for large N , with the time-averaged profile.

Many relevant observables have not been computed here
and require further investigations Among these, the most
important one is probably the bosonic two-point correlation
which has been obtained in the stationary state both for the
homogeneous case [45] and for hard-wall confinement [77]. Its
time evolution required the use of more elaborated techniques
and has been possible only for homogeneous systems [51,79].
An analogous calculation in the harmonic trap seems much
harder than in the above cases, even if limited to the time-
average expectation. Another open issue concerns the time
evolution of the entanglement entropy. For the homogeneous
case, the stationary-state entanglement is known [48] and, by
using the quasiparticle spreading of entanglement [93], it has
been possible to work out the entire time evolution [94]. It
is a remarkable problem to understand how the quasiparticle
spreading is modified in this nonhomogeneous quench also in
view of a recent cold-atom experiment [9]. Most of the known
approaches for the entanglement entropy in inhomogeneous
settings only deal with the low-energy physics (as, e.g., in
Refs. [95,96]), while in a quench setup high-energy modes
are governing the dynamics.
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APPENDIX: FINITE-N SCALING OF 〈n̂q〉
In this appendix we provide the details about the crossover

of 〈n̂q〉 between the two regimes in q which takes place around
q ∼ ln N . Our starting point is the exact form of 〈n̂q〉:

〈n̂q〉 =
∫ ∞

−∞
dr

∫ ∞

∞
dzAe− ω

4 z2−2A|z| e−r2

2qq!
√

π
Hq

(
r +

√
ωz

2

)

×Hq

(
r −

√
ωz

2

)
, (A1)

where A = n exp(−r2)/
√

π . Since we are interested in the
large-N behavior, we proceed by expanding the Hermite
polynomials in powers of

√
ω. Using

∂k
xHq(x) = 2kk!

(
q

k

)
Hq−m(x), (A2)

one obtains

Hq

(
r +

√
ωz

2

)
Hq

(
r −

√
ωz

2

)

=
q∑

k,p=0

(−1)k
(

q

k

)(
q

p

)

×Hq−k(r)Hq−p(r)
(√

ωz
)k+p

, (A3)

where in the sum only terms with k + p even contribute.
Plugging the previous result in Eq. (A1), the integral over z
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FIG. 10. Mode occupation for very large N . The exact numer-
ically evaluated integral (47) (symbols) is compared with Eq. (A6)
(full lines) and with the semiclassical approximation (A7) (dashed
lines).

can be evaluated as∫ ∞

−∞
dzzp+kAe− ω

4 z2−2A|z| = (−4)
p+k

2 ∂
p+k

2
ω I(2A/

√
ω), (A4)

with I(z) = √
πz exp(z2)erfc(z), which finally leads to the

following expansion:

〈n̂q〉 �
q∑

p,k=0

(−1)k(−4)
p+k

2 q!

p!k!
√

(q − k)!(q − p)!

(√
ω√
2

)k+p

×
∫ ∞

−∞
drϕ̃q−k(r)ϕ̃q−p(r)

[
∂

p+k

2
ω I(2A/

√
ω)

]
, (A5)

where ϕ̃k(r) are the harmonic-oscillator eigenfunctions with
trap frequency ω = 1.

For ω → 0, the leading term is the one with p = k = 0. Fur-
thermore, we can approximate I(2A/

√
ω) ≈ �(2A2 − ω/4),

which is justified by the Gaussian cutoff in the r integral.
Within this approximation we get

〈n̂q〉 �
∫ r∗

−r∗
drϕ̃q(r)2, (A6)

where r∗ =
√

ln(8N2/π )/2 is the positive root of the equation
2A2 − ω/4 = 0. In Fig. 10 Eq. (A6) is compared with the exact
numerical evaluation of 〈n̂q〉, finding a reasonable agreement.

A closed form for Eq. (A6) can be obtained in the semi-
classical limit. In this limit, ϕ̃q(r)2 � (2q + 1 − r2)−1/2/π for
r ∈ [−√

2q + 1,
√

2q + 1]. Therefore, as far as
√

2q + 1 <

r∗, i.e., for q < q∗ ≡ ln(8N2/π )/4 − 1/2, 〈n̂q〉 = 1 because
of the normalization condition. Conversely, for q > q∗,

〈n̂q〉 � 2

π
arctan

(
r∗√

2q + 1 − r∗2

)
, (A7)

which is a universal scaling function in terms of the rescaled
variable q/r∗2.
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