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PT -symmetric gain and loss in a rotating Bose-Einstein condensate
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PT-symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain
and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact
interaction which are known to support ground states with vortices. Due to the particle exchange with the
environment transport phenomena through ultracold gases with vortices can be studied. We find that even
strongly interacting rotating systems support stable P77 -symmetric ground states, sustaining a current parallel
and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or
enter the condensate through its borders creating the required net current.
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I. INTRODUCTION

One of the most desired effects studied in Bose-Einstein
condensates is the formation of vortices that arise when the
condensates are brought into rotation [1]. Vortices were first
studied in different low-temperature quantum systems such as
superfluid helium [2] and superconductors [3]. In 1961 the
Gross-Pitaevskii equation was formulated to describe vortices
in a Bose-Einstein condensate [4,5]. Shortly after the first
realizations of these ultracold condensates [6,7], Butts and
Rokhsar [8] used a variational approach consisting of a linear
combination of the low-energy angular-momentum eigenstates
of the harmonic oscillator to show that such vortices form them-
selves if the Bose-Einstein condensate is rotated. Only months
later the calculations were experimentally confirmed by Madi-
son et al. [9]. At this time, numerical methods such as the
finite-element method made the exact numerical study of these
systems possible, thus providing a much higher precision [10].

The study of transport phenomena is a common interest in
Bose-Einstein condensates, e.g., through optical lattices [11]
or even random potentials [12], as well as in superfluids [13,14]
and, naturally, in superconductors [15]. If a Bose-Einstein
condensate is discussed in the mean-field approximation of
the Gross-Pitaevskii equation, the necessary particle gain and
loss can be described by imaginary potentials [16], rendering
the Hamiltonian non-Hermitian [17]. Up to now, such Hamil-
tonians have been studied extensively [16,18-23], and the
particle in- and out-coupling were compared to many-particle
calculations justifying their use in mean-field theory [24,25].
The particle loss can be induced by a focused electron beam
[26] while particles are added by letting them fall into the
condensate from a second condensate [27].

In 1998 Bender and Boettcher [28] discovered that non-
Hermitian Hamiltonians can support stationary solutions if
they are P7 symmetric. This finding not only opened the
possibility of postulating new theoretical concepts to replace
the long accepted requirement of Hermitian Hamiltonians

*daniel.haag @itp1.uni-stuttgart.de

2469-9926/2018/97(3)/033607(7)

033607-1

[29-31] but started many other theoretical and experimental
studies in optical [32—40] and electronic systems [41,42]. In
these systems, the non-Hermitian Hamiltonian does not de-
scribe the full quantum mechanical system but a macroscopic
quantity such as the electric field in a wave guide system or
the electric current. Inspired by the proposal of Klaiman et al.
[33], Bose-Einstein condensates were studied as an additional
realization using a double-well system, where particles are
injected into one well and removed from the other [43-47].

These studies show that P77 -symmetric condensates pro-
vide an excellent framework for the theoretical study of particle
transport through vortex systems. There exists a vast number
of numerical and exact analytical calculations, describing
stationary vortex states in P7-symmetric systems [48-50].
However, these vortex states are not stable ground states
but instead highly excited states. Due to the P7T -symmetric
potential, the vortex structure of such states is typically lost
for strong particle in- and out-coupling.

The formation of vortices in the ground state can be achieved
by rotating a nonisotropic trap [51], stirring the condensate [9],
or inducing a synthetic magnetic field [52,53]. The different
methods all lead to similar equations of motion [9,51,53], one
of which is the Gross-Pitaevskii equation in a rotating frame.
In natural units and for a rotation axis and angular frequency
(0,0,9) it reads

i%I/f(r,t) = [-A + Via(r) + 87 Na|yp (r,0)|?

— QLY (r,p), )

where Vi, describes the rotating potential in the rotating frame.

A solution ¥ (r,t) = Y (r)e”"* is stationary with respect
to the rotating frame and fulfills the stationary rotating Gross-
Pitaevskii equation:

py(r) =[—A + Vi(r) + 8 Nalyr(r)|* — QL 1y (r).
)

Note that for + = 0 the wave functions in the rotating and
laboratory frame are the same. It can be directly seen that
the mean-field energy in the rotating frame differs from the
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nonrotating form, Eyg, and reads
Em.ror = Ewr — QU(L). 3)

If the potential lacks complete rotational symmetry, a non-
rotating state can no longer be stationary. The ground state
of the system is then determined by the modified mean-field
energy Ewnr ot [S1], allowing the study of vortex filaments in
superfluids and other coherent quantum material.

To solve the stationary rotating Gross-Pitaevskii equation
we employ the finite-element method described in Ref. [54].
The three-dimensional wave function is approximated by
product states of cubic or higher-order B-splines. To achieve
more accurate results, the knots defining the splines are placed
recursively such that the error of the kinetic part is minimized.
The final number of splines per dimension is reached when the
approximated error lies beyond the accuracy of reading on the
resulting figure. Depending on the state and the B-spline order,
20 to 60 splines are required per dimension.

Before discussing our numerical results, we have to empha-
size that since the potential is time independent in the rotating
frame it rotates with the same frequency as the condensate. In
particular in the case of potentials that are not isotropic in the
rotating plane, this must be considered.

In Sec. II a two-dimensional study of a rotating PT -
symmetric potential is conducted. To study particle transport
along the vortices, a three-dimensional investigation is per-
formed in Sec. III, followed by a short conclusion in Sec. IV.

II. TWO-DIMENSIONAL SYSTEM

Due to the enormous numerical advantage it is reasonable
to start with two-dimensional calculations, i.e., the lowest
dimensional system that can provide states with vortices. Ef-
fectively two-dimensional condensates are routinely realized
in experiments [55-57]. We consider a rotational invariant
harmonic trap. In this case, the rotating Gross-Pitaevskii
equation in two dimensions assumes the form

i (x,y) =[—A+ 1> + )
+ 87 Nae|y(x,y)I* — QL ] (x,y), (@)

where a modified interaction strength 87 Na. appears due
to the reduced dimension; its exact value depends strongly
on the physical system that is simulated. For the sake of
readability, this distinction between the two-dimensional and
three-dimensional interaction strengths is dropped in the re-
mainder of the section.

To describe the in- and out-coupling of particles the PT -
symmetric imaginary potential

Vi(y) = —iy sgn(y) ®)

is used. For positive values of y the potential describes a gain
of particles for y < 0 and a loss of particles for y > 0. The
potential is constant in both regions. This ensures that the same
amount of particles is coupled in and out of the system for every
possible P7T -symmetric wave function. Thus, a comparison
between different parameter sets and different numbers of
vortices is directly possible. It must be emphasized that the
potential is used inside the rotating frame and therefore is itself
rotating around the point x = y =0, i.e., the gain and loss
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FIG. 1. Ground states of the rotating isotropic harmonic oscillator
without gain and loss (y = 0) for @ = 0.85(a), 2 = 0.88 (b, ¢), 2 =
0.91 (d), 2 = 0.94 (e, f) in all possible y-symmetric configurations.
Note that the states with two, three, and four vortices exhibit a two-,
three-, and fourfold symmetry instead of full rotational symmetry.
The interaction strength is fixed to Na = 1.

contributions are rotating alongside the wave function. This
poses an additional challenge to any experimental realization.
While particle losses can easily be rotated, the gain requires a
more subtle adaption by, e.g., steering the falling atoms or by
simultaneously rotating the feeding condensate.

The starting point of this discussion is the case y = 0 of an
isolated system. For the two-dimensional analysis performed
in this section the strength of the nonlinearity is fixed to
Na = 1. To reveal the multiple vortex ground states predicted
by Butts et al. [8] various vortex configurations were created
to act as initial values for the nonlinear root search used in the
finite-element method. Using imaginary time propagation and
careful tracing of all branches of solution found, we identified
a total of six different ground states in the range of the rotation
frequency from Q = 0 to Q2 = 0.94. Four of these states are
shown in Fig. 1, possessing one [v; in (a)], two [v; in (b, )],
three [v3 in (d)], or four [v4 in (e, f)] vortices. These states, with
the exception of the state with one central vortex, vy, do not
have rotational symmetry but instead show a two-, three- and
fourfold symmetry, respectively. For the sake of completeness
we note that in the parameter regime discussed in this section,
an additional ground state with four vortices but twofold
symmetry can be observed for 2 = 0.9315. Applying higher
rotation frequencies, the number of vortices would increase
even further, until hexagonal vortex grids can be observed [1].
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FIG. 2. Mean-field energy of the four ground states v, at 2 =
0.85(a), v, at 2 = 0.88 (b, ¢), v3 at 2 = 0.91 (d), and v4 at 2 = 0.94
(e, f) for Na = 1 as a function of the in- and out-coupling strength y .
The orientations are chosen in the same way as presented in Fig. 1.
‘While both ground states with two vortices on a central axis parallel to
the current are unstable for any y # O (b, f), all other configurations
show stable stationary ground states in some parameter regimes. All
spectra with the exception of the state v; (d) are even functions of y.
Inside the spectra of the state v; (d), the two tangent bifurcations and
the involved states at the parameter y = 0 are marked as a reference
for Fig. 3.

By switching on the P7-symmetric potential (5), the
stationary states vy, v, v3, and vy become subject to a gain
and loss of particles. The imaginary part of the potential, and
therefore the particle exchange, rotates concurrently with the
wave function. The P T -symmetric potential at# = 0 induces a
current in the y direction. Real eigenvalues and stable behavior
can therefore be expected only if the particle density at y = 0
is symmetric with respect to the reflection y — —y. Figure 1
shows all possible orientations of the four states that fulfill this
requirement.

The stability of all states is analyzed via the Bogoliubov—de
Gennes equations in the rotating frame:

[—A+ V() — pu — o+ 167 Na|ypo(r)|* — QL Ju(r)

+ 87 Nayg(ryv(r) = 0, (6a)
[—A 4+ V*(r) — u* + o + 167 Na|yo(r)|* + QL. Ju(r)
+ 87 Nayi*(ryu(r) = 0. (6b)

The mean-field energy of the four ground states is shown
together with their dynamical stability in Fig. 2. The most
prominent feature of these spectra is that most of them are even
functions of y. This is a consequence of their symmetry, which
can be seen as follows. A reflection of both coordinates x and
y obviously leaves the Gross-Pitaevskii equation (4) invariant
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FIG. 3. Wave functions marked in the spectra of the state v;
for 2 =0.91 and Na =1 shown in Fig. 2(d). The two states at
the bifurcations for negative (a) and positive (b) values of y are
shown above the respective bifurcation partners (c) and (d) taken at
y = 0. The particle density is shown as a color map, in which darker
regions correspond to higher densities, while the currents are depicted
by bright blue arrows. Their lengths are proportional to the current
strength.

if the wave function itself is invariant under this operation.
However, the reflection in the y direction inverts the imaginary
potential (5) and can be absorbed in the transformation y —
—y. Therefore, every state that is symmetric in the x direction
for y = 0 must have an eigenvalue spectrum that is symmetric
with respect to y = 0.

All ground states exist up or down to some critical value
y where they coalesce with excited states and vanish (inverse
tangent bifurcation). This is the typical behavior known from
PT-symmetric systems. However, due to the vortices, it is
not a priori clear what drives the necessary current, i.e., how
the necessary phase gradient is generated. To understand the
principles of this mechanism the case v; is studied in more
detail. Figure 2(d) clearly shows that there are two bifurcation
partners and two tangent bifurcations. The two states at the bi-
furcations and the bifurcation partners for y = 0, as marked in
Fig. 2(d), are shown in Fig. 3. For each state not only the square
modulus of the wave function is analyzed but also the particle
current density in the nonrotating frame is studied in detail to
understand how the currents around the vortices contribute to
the net current enforced by the particle gain and loss.

For negative values of y the net current in the wave function
(a) must run downward. This behavior is produced by shifting
all three vortex centers to the right while keeping the overall
particle density mostly intact. This results in a situation where
the current in downward direction on the left side of the wave
function is strongly enhanced due to the stronger density. The
exact opposite behavior can be found in the case of positive
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values of y, where all vortices shift to the left increasing the
net current upward (b).

This is, however, not the only mechanism that changes
the net current of these vortex states. A second mechanism
can be seen when analyzing, how the excited states shown in
Figs. 3(c) and 3(d) behave between y = 0 and the bifurcation
[Figs. 3(a) and 3(b)]. In complete contrast to the behavior of
the ground state, not all vortices are shifted equally strongly.
Instead, some vortices are shifted more strongly, completely
moving out of the condensate. This increases the current on
this side of their neighboring vortices producing an effective
current in the upward or downward direction.

For the sake of brevity, we omit a detailed discussion of the
other five configurations. A in-depth study shows that these
two effects capture almost every current production found in
the discussed ground states. In some cases, like the central
vortex state vy, the net current is produced by weakening the
undesired current by a new vortex. In other cases, such as the
configuration in Fig. 1(c) of two vortices lying on the symmetry
axis, both mechanisms are found nearly canceling each other
out. In this case the wave function must undergo a serious
transformation even though the net currents are very weak.
The bifurcation partners, analyzed at y = 0, cannot have only
adifferent number of vortices but may also be asymmetric with
respect to the reflection x — —x.

The results show some similarities to the results of Ref. [48],
where PT-symmetric bifurcation partners of highly excited
nonlinear vortex states are always states with one vortex more
or less. However, in contrast to that work and due to the rotation
contribution in our calculations, the vortex configurations are
much more stable, and vortices emerge only from the wave
functions border and not out of a nodal plane.

III. THREE-DIMENSIONAL SYSTEM

Until now, the current always ran perpendicular to the
vortex lines. This is a consequence of the restriction to two
dimensions. In this section, a net current in direction of the
vortices is considered. If the gain and loss of particles is
homogeneous in the x-y plane and varies only in the z direction,
the imaginary part of the potential does not even need to rotate.
To study a current in this direction the z dimension cannot be
neglected and the trapping potential cannot be as tight. We
therefore choose an isotropic harmonic oscillator:

V(r)= 1. (7)
The imaginary potential
Vi(z) = —iy sign(z) ®)

with positive values of y implements a gain of particles below
the x-y-plane and a loss of particles above. The imaginary part
of the potential is again constant in each of these regions to
ensure that an equal amount of particles is coupled in and out
of the system for any shape of the wave function, of which the
particle density is at least symmetric under the transformation
Z—> —2Z.

To gain access to numerical results, the finite-element
method must be provided with initial values for its root
search. As long as one is interested in the ground state of the
system, excitations in the z direction can be excluded from

(b)

FIG. 4. The particle density of the four ground states in three
dimensions with one to four vortices is shown as a color map, in
which darker regions correspond to higher densities, and the currents
are depicted by bright blue-headed arrows. The vortex centers are
highlighted by white lines. For 2 = 0.85 (a) one central vortex exists,
while for Q = 0.87 (b), 2 = 0.9 (¢), and Q = 0.94 (d) all vortices
are located off center.

this search. A good approximation to the three-dimensional
wave function can therefore be found using a product state of
the two-dimensional solution in the x and y directions and a
Gaussian ground state in the z direction.

However, to reliably postulate initial values for the ground
state the two- and three-dimensional systems must be com-
parable to start with. Since the trapping potential in the z
direction is much weaker than in the two-dimensional case,
the modulus square of the mean-field wave function is smaller.
To counterbalance this effect the particle number is increased
to Na = 5. The Gross-Pitaevskii equation then reads

ppr(r) =[—A + 1r* — iy sgn(z)
+ 407 |y (r)]* — QL. [y (). 9)

We start by presenting the rotating ground states for four
different rotation frequencies in Fig. 4. As in Sec. II all wave
functions are shown in the nonrotating laboratory system at
time ¢ = 0. Therefore the figure reveals an overall circular
current of particles that is consistent with the rotation of the
wave function. The concrete path of a vortex core in the z
direction is defined by its nodal line. To permit a clear view
on this path, the nodal line is highlighted by white lines.
Special attention should be given to the state with three vortices
in Fig. 4(c). Around z = 0 the vortex lines are bent inward
towards the rotation center. This effect, even though most
distinct at (c), is present in all three wave functions with
vortices outside the rotation center. This can be understood
since the Magnus force, which keeps the vortices on their
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FIG. 5. Mean-field energy of the ground states with zero to four
vortices. The in- and out-coupling parameter y is increased until the
mean-field energy undergoes a tangent bifurcation, at which the states
vanish. The bifurcation partners are not shown and correspond to the
same states with an additional excitation in the z direction.

circular track during the rotation, is stronger for regions of
higher particle density, i.e., the density gradient and therefore
the Magnus force [58] is increased.

By increasing the parameter y, the in- and out-coupling
drives a new current in the system; particles now have to be
transported upward parallel to the vortices. In the case of
the unrotated ground state and the four states discussed in
Fig. 4 this leads to an increase of the mean-field energy, as
shown in Fig. 5. The first eye-catching result of this analysis
is that all these ground states behave qualitatively the same.
In fact, the bifurcation scenario resembles the behavior of
the double-well system or the harmonic oscillator studied
in previous investigations [44,45]. All states break the P7T
symmetry shortly after y = 0.5inatypical tangent bifurcation.
The solutions of the Bogoliubov—de Gennes equations (6) show
that they are stable up to this point.

Since the rotation, controlled by the parameter €2, changes
the wave function considerably, not only by increasing or
decreasing the number of vortices but also by broadening the
wave function, this similarity is quite surprising. It indicates
that the x-y plane and the z dimension are only weakly
coupled, even though the nonlinearity already provides a major
contribution to the planar solutions.

At the bifurcation point the wave functions support the
strongest possible current upward. Figure 6 shows these wave
functions for the same states as in Fig. 4. Two important
effects are visible in these wave functions with maximum
current: First, the number and position of the vortices in the x-y
plane are changing. This is easy to see in Fig. 6(d). Not only
have four new vortices entered the picture, but the original
vortices are pushed much tighter together. The new vortices
have also increased the size of the wave function. This effect
would be expected if either the rotation frequency is increased
or the interaction strengthened. Due to the P7T-symmetric
current in the z direction this component of the wave function
cannot be chosen exactly symmetric, i.e., it does not take the
shape of a Gaussian. Instead, an antisymmetric contribution is
needed, considerably reducing the modulus square at z = 0.

(b)

FIG. 6. The four ground states with one to four vortices after
evolving to their maximum y . The particle density is shown as a color
map, in which darker regions correspond to higher densities, and the
currents are depicted by bright blue-headed arrows. The vortex centers
are highlighted by white lines. Additional vortices are added to the
ground state at 2 = 0.85 and y = 0.52 (a), 2 = 0.87,y = 0.5 (b),
and Q = 0.94, y = 0.54 (d). The three vortex state 2 =0.9,y =
0.51 (c) is mainly unchanged.

The particles are then forced to the top and bottom of the trap,
increasing the particle density and the effective strength of the
interaction at these areas.

Second, the previously discussed bending to the center
of the trap is not the only deformation of the vortex lines.
Following the direction of the P77 -symmetric current upward,
the vortex lines are screwed in clockwise direction, i.e., against
the direction of the frame’s rotation. To quantify this screwing,
each vortex must be parametrized by the coordinate z in
cylindrical coordinates r(z),¢(z). The vortex screwing is then
purely described by the function ¢(z), which is antisymmetric
with respect to the x-y plane; the differential d¢/dz|,—o
defines a screwing strength. This value is shown in Fig. 7 as
a function of y.

The shape of all these functions are very similar. In fact,
only the maximum reachable y and the overall slope differ.
The different maximum parameters y are an obvious conse-
quence of the different positions of the tangent bifurcations at
which the ground states vanish. The different slopes are best
visible for small parameters y. In this regime, two qualitative
dependencies are visible: First, the central vortex is not bent at
all. Second, in a stationary state with n noncenter vortices they
are screwed m /n times as strong as in the case of m vortices.

This fact indicates that the vortex screwing supports the
upward current in the system and each vortex makes an equal
contribution. The strongest screwed vortices are therefore
found in the two-vortex case. For stronger gain and loss new
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FIG. 7. The screwing strength given as d¢/dz|,—¢ of the
parametrized vortices, as a function of y and for different rotation
frequencies 2. The original vortices existing from y = 0 upward are
shown as lines, and the new vortices arising for larger parameters y
are depicted as different points. Note that all vortices of the same type
and from the same wave function are shifted equally.

noncenter vortices arise, depicted as crosses in Fig. 7. In the
case of the central vortex state, these new vortices are the only
screwed vortices in the wave function. However, in the other
two cases the additional vortices are screwed less than the
original ones.

IV. CONCLUSION

We studied a rotating Bose-Einstein condensate with a PT -
symmetric potential describing particle in- and out-coupling.
Initially, the particle transport through the ground state with
multiple vortices was studied for the two-dimensional case
where the net currents run perpendicular to the rotation axis,
i.e., the vortex lines. Not only do most of the states remain

stable, at least for weak currents, but the states producing such
currents exhibit interesting behavior. Either new vortices enter
the condensate from the border, weakening parts of the circular
currents around existing vortices, or the existing vortices move
through the nonhomogeneous particle distribution to modify
the effective currents.

Both effects obviously arise from the finite size of the
condensate, i.e., the drop of the density at its borders. There-
fore, it would be worthwhile to study whether the transport
phenomena described by P7 -symmetric in- and out-coupling
are indeed dominated by border currents and border effects of
the condensate. The next step would be the study of a larger
condensate with constant trapping potential and a bigger vortex
grid.

In the next part we added the third dimension to study
currents parallel to the rotation axis, i.e., in direction of the
vortex lines. In the two-dimensional study weak perpendicular
currents sufficed to modify the vortex structure substantially.
This changes drastically in the three-dimensional case, in
which even strong parallel currents do not break the PT-
symmetry. However, the trajectory of the vortex lines in the
stable ground states changes. Stronger particle in- and out-
coupling strengths lead to a screwing of the vortex lines against
the direction of the rotation.

There are various starting points for future studies. While
an additional analysis of the stationary system could provide
insight into the physical process that leads to the screwing,
dynamical calculations will allow us to study how the system
behaves when turning on the particle transport. Since the
screwed states are stable, the ground state without particle gain
and loss can be considered being a small perturbation to the
screwed case, and we expect that the current excites oscillations
of the vortex lines. For example, it should be possible to study
the process in the framework of the dynamics of single vortices
in superfluids [58—60] and discuss whether the screwing can
be understood as a result of the Magnus force.
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