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Second sound in a two-dimensional Bose gas: From the weakly to the strongly interacting regime
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Using Landau’s theory of two-fluid hydrodynamics, we investigate first and second sounds propagating in
a two-dimensional (2D) Bose gas. We study the temperature and interaction dependence of both sound modes
and show that their behavior exhibits a deep qualitative change as the gas evolves from the weakly interacting
to the strongly interacting regime. Special emphasis is placed on the jump of both sounds at the Berezinskii-
Kosterlitz-Thouless transition, caused by the discontinuity of the superfluid density. We find that the excitation
of second sound through a density perturbation becomes weaker and weaker as the interaction strength increases
as a consequence of the decrease in the thermal expansion coefficient. Our results could be relevant for future
experiments on the propagation of sound on the Bose-Einstein condensate (BEC) side of the BCS-BEC crossover
of a 2D superfluid Fermi gas.
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I. INTRODUCTION

Superfluidity is one of the most remarkable manifestations
of quantum physics at the macroscopic level occurring in
diverse systems, from cold atomic gases [1–4] to neutron
stars [5]. Below the critical temperature Tc at which the phase
transition occurs, the system exhibits two-fluid behavior
[6,7], characterized by a mixture of a normal component,
behaving as a viscous fluid, and a superfluid component,
moving without friction. In these systems, the superfluid
density plays a key role in the understanding of related
phenomena, such as the frictionless flow of superfluid [8,9]
and the formation of quantized vortices [10–12]. In a weakly
interacting three-dimensional (3D) Bose gas the superfluid
density is directly related to the experimentally accessible
Bose-Einstein condensate (BEC) fraction. However, this
is no longer true for strongly interacting systems such as
4He or for the unitary Fermi gas, where one does not have
a straight correspondence between the superfluid and the
condensate densities. The situation is even more challenging
in two-dimensional (2D) systems, where Bose-Einstein
condensation is ruled out at finite temperature, as a direct
consequence of the Hohenberg-Mermin-Wagner theorem
[13,14]. For these systems, a promising way to investigate
superfluidity and to identify the value of the superfluid density
concerns the measurement of second sound [15,16]. This
phenomenon arises from the two-fluid nature of the system
and corresponds to a wave propagation of the normal and
superfluid components of opposite phase, with a speed of
sound directly related to the superfluid density. Experimentally,
the way to probe second sound depends in a crucial way on
the nature of the system. While in 4He or in the unitary
Fermi gas second sound is essentially an entropy oscillation,
and is conveniently excited through a thermal perturbation
[17–19], the situation drastically changes for a weakly
interacting Bose gas, where the coupling between entropy
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and density oscillations becomes important, because of the
large value of the thermal expansion coefficient, allowing for
the excitation of second sound through a density perturbation
[20,21]. Recently, second sound was observed in the
unitary Fermi gas, yielding information on the temperature
dependence of the superfluid density [22]. The first experiment
on the propagation of second sound in a weakly interacting
2D Bose gas has also become available recently [23].

In this paper, we study the nature and experimental accessi-
bility of first and second sounds in 2D Bose gases, exploring the
transition from the weakly interacting to the strongly interact-
ing regimes. The former case was investigated in [24], which
points out the occurrence of discontinuities of both sound
modes at the Berezinskii-Kosterlitz-Thouless (BKT) transition
[25,26], as a direct consequence of the jump of the superfluid
density. In the present work we extend the investigation to the
strongly interacting case, which corresponds experimentally
to a 2D Bose gas loaded in an optical lattice [27] or the
BEC regime of a 2D Fermi gas [28,29]. In particular, we
show that the discontinuity of the first sound velocity becomes
less and less pronounced in the strongly interacting regime,
while it remains sizable in the case of second sound. Since in
2D systems the thermodynamic quantities derivable from the
equation of state do not show any discontinuity at the phase
transition [30], the experimental measurement of second sound
would also provide a unique way to observe directly the BKT
phase transition. This is particularly interesting for 2D Fermi
gases, where the recent observation of the BKT jump, based
on the measurement of the pair momentum distribution [31],
stimulated a debate in the literature [32].

II. LANDAU’S TWO-FLUID EQUATIONS

Throughout this paper we consider a 2D gas, where the
third direction is assumed to be frozen. In practice this
condition is well satisfied in experiments [33–39]. We also
set h̄ = kB = 1 for simplicity. We start our investigation
from Landau’s two-fluid hydrodynamic equations, describing
the finite-temperature dynamics of a uniform system in the
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superfluid phase. The equations assume local thermodynamic
equilibrium, ensured by collisions. In the limit of low-
amplitude oscillations, the linearized Landau equations take
the form

∂2n

∂t2
= ∇2P, (1)

∂2s̄

∂t2
= ns s̄

2

nn

∇2T , (2)

where n = nn + ns is the total atom density, given by the sum
of the normal density nn and the superfluid density ns . P is
the pressure, and s̄ and T are the entropy at constant volume
per particle and the temperature, respectively. By looking
for plane-wave solutions and using general thermodynamic
relations, Eqs. (1) and (2) give rise to the quartic equation,

c4 −
[

1

mnκs

+ nsT s̄2

mnnc̄v

]
c2 + nsT s̄2

mnnc̄v

1

mnκT

= 0, (3)

for the sound velocity, where m is the mass of the atom, c̄v is
the specific heat at constant volume per particle, and κs and κT

are the adiabatic and thermal compressibilities, respectively.
Below the critical temperature Eq. (3) possesses two positive
solutions, corresponding to first and second sounds.

In this work, all the thermodynamic quantities are calculated
using the universal relations (URs) for a weakly interacting 2D
Bose gas derived in [34,35,40–42]. The theory provides dimen-
sionless universal functions fn(x,g) and fP (x,g) depending
on the variable x = μ/T , with μ the chemical potential, and
on the dimensionless coupling constant g. These functions are
related to the density and to the pressure of the gas according to

fn(x,g) = λ2
T n, fP (x,g) = λ2

T

T
P, (4)

where λT = √
2π/mT is the thermal de Broglie wavelength,

and are related to each other by the thermodynamic relation
fn = ∂fP /∂x. Starting from these functions one can then
derive expressions for all the quantities appearing in Eq. (3)
[24], namely,

s̄ = 2
fP

fn

− x, κT = 1

nT

f ′
n

fn

, κs = 1

nT

fn

2fP (5)
c̄v = 2

fP

fn

− fn

f ′
n

, c̄p =
(

2
fP

fn

− fn

f ′
n

)
2
fpf ′

n

f 2
n

,

where f ′
n = ∂fn/∂x, and c̄p is the specific heat at constant

pressure, per particle. Universal relations further provide
another dimensionless function, fs(x,g) = λ2

T ns , from which
one can evaluate the superfluid density. In our work, we use
the analytical expression for the dimensionless functions
provided in [41]. We note that Ref. [41] also provides Monte
Carlo values for fn and fP and we have verified that both
approaches give practically the same results.

Figure 1(a) shows the ratio of thermal and adiabatic com-
pressibilities as a function of the temperature, for different
values of the coupling constant. The figure shows that this
ratio, which also fixes the value of the thermal expansion
coefficient [see Eq. (6) below], decreases as the repulsive
interaction between bosons becomes stronger. However, from
thermodynamic principles, the ratio κT /κs cannot be lower
than 1, and Fig. 1(a) shows a clear failure of the predictions
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FIG. 1. (a) Ratio of isothermal and adiabatic compressibilities
κT /κs for different values of g. From top to bottom, g = 0.1 (solid
line), g = 0.5 (dashed line), g = 1 (dotted line), and g = 1.5 (dashed-
dotted line). (b) Superfluid density fraction ns/n for different values
of g. The values of g are the same as in (a). The unphysical kinks
observed at T � 0.6Tc in the superfluid density are due to the
analytical treatment of the dimensionless functions in the universal
relations approach [43]. The solid black line is a guide for the eye:
(a) κT /κs = 1 and (b) ns/n = 1.

based on the UR for g � 1. In Fig. 1(b) we show the superfluid
density fraction ns/n for the same values of the coupling
constant. Again, we see another failure of the universal relation,
which predicts a value for the ratio ns/n higher than 1 at low
temperatures if the coupling constant g is large enough. This
failure is the consequence of the fact that the URs correctly
describe only the fluctuating region near the critical point
[40,41,43]. As the interaction increases this region around
Tc shrinks, reducing the region of applicability of the URs
approach, although it allows for a good estimate of Tc also for
large values of g, as confirmed by the comparison with ab initio
quantum Monte Carlo calculations [44]. For the above reasons
in the following we limit our theoretical analysis, based on the
predictions of the URs approach, to values of g � 1. We briefly
note that g � 0.1 is a typical value of the coupling constant for
a dilute 2D Bose gas [36], and values of g � 2 correspond to
a strongly interacting Bose gas [27] or the BEC regime of a
2D Fermi gas [37,38], where the system is expected to behave
physically like a gas of bosonic dimers [45].
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FIG. 2. First and second sound as a function of temperature for different values of g. The upper blue and lower red solid lines correspond
to first and second sound calculated from Eq. (3), respectively. The upper blue and lower red dashed lines are the approximated forms of the
first and second sound for a small thermal expansion coefficient, given by Eq. (7). The unphysical kinks observed at T � 0.6Tc in the sound
velocities originate from the superfluid density (see Fig. 1).

III. SOUND PROPAGATION IN A 2D BOSE GAS

Figure 2 shows the first and second sounds obtained by
solving Eq. (3) (solid line), for different values of g (the results
for g = 0.1 are reported in [24]). The velocities are calculated
for a fixed value of the total density and are expressed in
units of the zero-temperature Bogoliubov sound velocity c0 =√

gn/m. As one can see, both sound velocities show a jump
at the transition temperature. This behavior, originating from
the BKT universal jump of the superfluid density, is studied
in detail in the following. In order to understand the evolution
of the sound modes with the coupling constant one notes that
if the thermal expansion coefficient α = − 1

n
∂n
∂T

|P satisfies the
condition

αT =
(

κT

κs

− 1

)
� 1, (6)

the two solutions of Eqs. (1) and (2) take the form of wave
equations for the density and for the entropy, respectively, the

corresponding sound velocities being given by

c2
10 = 1

mnκs

, c2
20 = nsT s̄2

mnnc̄p

. (7)

Figures 2(a) and 2(b) show that the calculated velocities
strongly deviate from Eq. (7) (shown as the dashed line), re-
vealing the strong coupling between the density and the entropy
modes in the highly compressible regime where the condi-
tion αT � 1 is violated. Figure 3 shows that as the coupling
constant increases, the gas evolves from weakly interacting
to strongly interacting behavior, becoming less compressible.
As a consequence, Eq. (7) becomes more and more accurate,
as shown in Figs. 3(c) and 3(d). The transition between the
weakly interacting and the strongly interacting regimes is then
expected to take place for values of the 2D coupling constant
corresponding to g ∼ 0.5. This regime can be reached in a
2D Bose gas with Feshbach resonance [27] or in the BEC
side of the BEC-BCS crossover in 2D superfluid Fermi gases
[38]. It is noteworthy that the already mentioned unphysical

033604-3



MIKI OTA AND SANDRO STRINGARI PHYSICAL REVIEW A 97, 033604 (2018)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

g
FIG. 3. Thermal expansion coefficient αT at T = 0.8Tc as a

function of the 2D coupling constant g.

violation of the thermodynamic relation κT /κs � 1 predicted
by the use of URs for large values of the coupling constant

has little effect on the sound speeds, while violation of the
condition ns � n has dramatic unphysical consequences due
to the resulting negativity of the normal density. The proper
estimate of the sound velocities in the strongly interacting
regime should then be based on more realistic estimates of
the superfluid density. Accurate calculations of the superfluid
density as well as of the relevant thermodynamic functions of
2D Fermi gases, based on quantum Monte Carlo simulations
[44,47] or many-body theories [48–50], would, in particular,
allow for a safer evaluation of the sound velocities along the
whole BCS-BEC crossover.

In the case of very dilute Bose gases, an accurate ap-
proximated solution of Eq. (3) is obtained by replacing all
the relevant thermodynamic quantities, except the isothermal
compressibility and the superfluid density, with the values
predicted by the ideal Bose gas [15]. Then Eq. (3) gives

c2
1,WI = nT s̄2

nnmc̄v

, c2
2,WI = ns

n

1

mnκT

. (8)

Figure 4 shows, again, the sound velocities for the same values
of the coupling constant but compared, this time, to Eq. (8)
(dotted lines). As expected, the approximation successfully
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FIG. 4. First and second sounds as a function of the temperature for different values of g. Solid lines are the same as in Fig. 2. The upper
blue and lower red dotted lines are the approximated forms of the first and second sounds for a weakly interacting Bose gas, given by Eq. (8).
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FIG. 5. BKT jump in sound velocities c−

BKT − c+
BKT as a function

of g. The velocity jumps for first sound (lower, solid blue line)
and second sound (upper, solid red line) obtained from Eq. (3) are
compared to the approximated expression, Eq. (9) (dashed blue and
red lines for first and second sounds, respectively).

describes the exact sound speeds for small g and becomes less
and less accurate as one increases the value of g.

While in the 3D case the sound velocities near Tc can
be estimated by putting ns → 0, leading to Eq. (7), this
assumption cannot be used in two dimensions because of the
presence of the gap. One can, however, derive a first-order
correction to the values of c10 and c20 resulting from the
solution of Eq. (3), by assuming αT c2

20/c
2
10 � 1. One finds

c2
1,BKT = c2

10

(
1 + αT

c2
20

c2
10

)
, c2

2,BKT = c2
20

(
1 − αT

c2
20

c2
10

)
.

(9)
Results of (9) are expected to be valid near Tc, and in

particular, they correctly describe the jump c(T −
c ) − c(T +

c )
of the first and second sound velocities when one crosses
the critical temperature for a wide range of values of the
coupling constant, as explicitly shown in Fig. 5. According
to Eq. (9), the deviation of the sound velocities from c10 and
c20 near Tc is characterized by the factor αT c2

20/c
2
10, revealing

the crucial role played by the difference between the thermal
and the adiabatic compressibilities. This is explicitly shown in
Fig. 2(d), where, for large values of g, the jump of the first
sound disappears due to the vanishingly small value of the
thermal expansion coefficient α.

IV. EXCITATION OF SECOND SOUND IN A 2D BOSE GAS

As briefly mentioned in the introductory part, it is of great
interest to understand whether second sound can be excited
using a density probe. Experimentally, this can be achieved
using a sudden laser perturbation applied to the center of
the trap, or through a sudden modification of the confining
potential in the case of a box potential [51,52]. By assuming
that the perturbation acts on macroscopic length scales, in the
linear approximation the induced density fluctuations are deter-
mined by the static polarizability, fixed by the compressibility
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FIG. 6. Ratio of compressibility sum-rule contribution W2/W1 at

T = 0.8Tc. W1 (W2) is the relative contribution of the first (second)
sound mode to the compressibility sum rule, Eq. (11).

sum rule [1]

lim
q→0

∫ ∞

−∞
dω

1

ω
S(q,ω) = 1

2
nκT , (10)

where S(q,ω) is the dynamical structure factor with wave
vector q and frequency ω. On the other hand, the energy-
weighted momentum also satisfies the energy-weighted sum
rule

∫ ∞
−∞ dωωS(q,ω) = q2/(2m). Since in the macroscopic

limit of small q one expects that the two sum rules are
exhausted by the two sound modes, one can express the relative
contribution of each sound mode to the compressibility sum
rule, Eq. (10), in the form [53]

W1 = 1 − mnκT c2
2

2m
(
c2

1 − c2
2

) , W2 = mnκT c2
1 − 1

2m
(
c2

1 − c2
2

) , (11)

where we have naturally chosen c1 > c2. If the ratio W2/W1

is not too low, second sound can be excited through a density
perturbation. We also note that, under the assumption c1 � c10,
the thermal expansion coefficient sets the lower bound

W2

W1
� αT . (12)

Figure 6 shows the ratio of the relative contributions of second
and first sounds to the compressibility sum rule, Eq. (11), cal-
culated by solving the Landau equation, (3). From comparison
with Fig. 3 we can see that, as expected from Eq. (12), the ratio
W2/W1 follows the same evolution as αT . This observation
explicitly reveals that the excitation of second sound via a
density probe becomes more and more difficult as one increases
the value of the coupling constant.

Since the BEC regime of a 2D Fermi gas can be described
in terms of an interacting molecular Bose gas, our results
provide valuable information for the description of this system
in a useful range of, hopefully, experimentally accessible
parameters. From this point of view, the most interesting region
to explore experimentally would be around g � 0.5, where the
ratio W2/W1 � 2 is still high to allow for the excitation of
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second sound via a density probe. Such experiments would
provide unique information on the value of the superfluid
density and on the applicability of the universal relations for
2D Bose gases beyond the weakly interacting regime.

V. SUMMARY

In conclusion, we have provided a systematic investigation
of the behavior of second sound in a 2D interacting Bose
gas, exploring the transition between the weakly interacting
limit and the regime characterized by larger values of the
2D coupling constant g. Second sound is sensitive to the
behavior of the superfluid density and its measurement can
then provide unique information on the effects of superfluidity,
a phenomenon of great interest, especially in two dimen-
sions, where the system is characterized by the Berezinskii-
Kosterlitz-Thouless transition. We have shown that the nature
of second sound exhibits a great change as a function of the
coupling constant. For small values of g second sound can be
identified as a density wave, of easy experimental detection.
For larger values of g, second sound loses its density character
and takes the form of a temperature, or entropy wave, in
analogy with the behavior exhibited by superfluid helium and
by the 3D Fermi gas at unitarity.

A challenging open question is to understand whether the
collisional regime, required to apply the Landau two-fluid
hydrodynamic approach, is guaranteed under the experimen-
tally available conditions. A recent experiment [23] on the
propagation of sound in a weakly interacting Bose gas confined
in a 2D box potential has shown that, differently from the
predictions of two fluid hydrodynamic equations, a density
wave can propagate at low velocity even above the critical
temperature, thereby suggesting that the collisional regime is
not guaranteed in this experiment. Due to the finite size L of the
box, the frequency of the lowest mode, of order v/L, where
v is the velocity of sound, may not in fact be low enough
compared to the collisional frequency, thereby violating the
hydrodynamic condition. More theoretical work is then needed
to better understand whether sound can propagate in a 2D Bose
gas in the absence of collisions.
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