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Pseudothermalization in driven-dissipative non-Markovian open quantum systems
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We investigate a pseudothermalization effect, where an open quantum system coupled to a nonequilibrated
environment consisting of several non-Markovian reservoirs presents an emergent thermal behavior. This thermal
behavior is visible at both static and dynamical levels and the system satisfies the fluctuation-dissipation theorem.
Our analysis is focused on the exactly solvable model of a weakly interacting driven-dissipative Bose gas in
presence of frequency-dependent particle pumping and losses, and is based on a quantum Langevin theory,
which we derive starting from a microscopical quantum optics model. For generic non-Markovian reservoirs,
we demonstrate that the emergence of thermal properties occurs in the range of frequencies corresponding to
low-energy excitations. For the specific case of non-Markovian baths verifying the Kennard-Stepanov relation,
we show that pseudothermalization can instead occur at all energy scales. The possible implications regarding
the interpretation of thermal laws in low-temperature exciton-polariton experiments are discussed. We finally
show that the presence of either a saturable pumping or a dispersive environment leads to a breakdown of the
pseudothermalization effect.
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I. INTRODUCTION

Our understanding of the conditions allowing for the emer-
gence of equilibrium features in driven-dissipative quantum
systems is still incomplete. The dynamics of open quantum
systems is often characterized by the presence of a complex
external environment, implementing a wide range of effects
such as single-particle and many-body losses, pump, dephasing
[1,2], or more exotic dissipative processes [3], which are usu-
ally modeled as a series of external reservoirs [4,5]. Because
of the presence of dissipation, in the generic situation an open
quantum system is expected to reach after a sufficiently long
evolution a steady state where observables no longer evolve
in time [6,7]. Although it is a widely accepted belief that
in the presence of a typical nonequilibrated environment the
system properties do not necessarily recover those predicted
by some thermal model, providing a quantitative estimation
of the deviations between the steady-state and equilibrium
predictions often reveals challenging.

Over the past decade, these problematics have become
particularly relevant at an experimental level also in the
quantum regime, as pioneering works in photonic devices
have opened a new research direction on the dynamics of
nonequilibrium quantum fluids. Signatures of Bose-Einstein
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distributions, such as the presence of power-law infrared
divergencies similar to the Rayleigh-Jeans distribution (nk ∝
k−2 for k → 0), and/or high-energy exponential tails of a
Boltzmann type (nk ∝ exp[−βEk] for k → ∞), have been
observed in several experiments involving photon and exciton-
polariton nonequilibrium gases [8–15]. In room-temperature
experiments [11–15], the appearance of thermal correlations
might be seen as something rather predictible since energy
exchange with the thermal environment is occurring much
more quicky than particle losses. Yet, in other classes of
low-temperature exciton-polaritons [8,9] and Vertical-Cavity
Surface-Emitting Laser (VCSEL) [10] experiments where
nonequilibrium effects are expected to be kinetically dominant,
the underlying mechanisms leading to the emergence of an
effective temperature differing from the one of the apparatus
are less clear and subject to controversy [16–18].

From a theoretical point of view, many studies have quan-
tified the distance from equilibrium for photonic systems
[16,19–23]. In Ref. [24], it was shown that the presence of
suitably designed 1/f noise in a generic open quantum system
could lead to critical properties analogous to an equilibrium
quantum phase transition. Works based on the renormaliza-
tion group (RG) [25–27] and diagrammatic expansions [28]
for nonequilibrium field theories have addressed the long-
range and low-energy properties of quantum fluids and the
critical properties across a driven-dissipative phase transi-
tion, and connections have been drawn between equilibrium
and symmetries of the Keldysh action [29,30]. In particular,
the important role played by the spatial dimensionality in
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determining whether a driven-dissipative quantum system
presents asymptotic thermal properties was pointed out in
many studies [26,31–33]. More recently, the necessity of
characterizing the dynamical properties was highlighted in
Ref. [34], where it was showed that a driven-dissipative
quantum system could present at steady-state equilibrium-like
static correlations without verifying the fluctuation-dissipation
theorem (FDT) [35] at a dynamical level.

Here we want to push this last statement one step further:
We argue that, under specific conditions, an open quantum
system can present all the attributes of an equilibrated system
both at a static and a dynamic level, verifying thus the FDT
theorem, even though its environment is highly nonthermal.
In a previous work [36], we unveiled a preliminary result in
this direction for a quantum optical model, where we showed
that apparent thermalization can be obtained by coupling the
system to several nonthermal and non-Markovian baths, which
effectively mimic the impact of a single thermal bath.

Thermal signatures have already been predicted to emerge
in sufficiently high dimensions in the long-range behavior
of generic interacting nonequilibrium systems [26,27] and
in Rydberg atoms in the presence of a suitably engineered
environment [37]. Furthermore, hints toward the validity of
some fluctuation-dissipation relations in driven-dissipative
quantum spin systems were recently found in Ref. [38]. Beyond
these works, we stress that the effective equilibrium predicted
in the present study relies on a different physical mechanism:
Whenever the Kennard-Stepanov (KS) relation [39,40] (i.e.,
a particular form of detailed balance relation) is verified
in our model, the system is not able to perceive that the
reservoirs are not equilibrated and its steady-state coincides
with a thermal state, with both temperature and chemical
potential being emergent quantities depending on the spectral
properties of the various baths. We choose to call this effect
pseudothermalization.

Following Ref. [36], the preliminary concept was deepened
in Ref. [41], which suggested to engineer more complex
reservoirs so to reproduce this mechanism over broader energy
scales and then obtain artificial and controllable temperatures
in view of optimizing the performance of quantum annealers.
Some hints suggest that the apparent emergence of thermal
static properties in low-T exciton-polariton [8,9] and VCSEL
[10] experiments might be related to pseudothermalization in
some experimental configurations. In a very recent work [42],
two of us suggested exploiting a closely related effect to stabi-
lize photonic Mott insulating states close to zero temperature.

In both works [36,41], the formalism was based on a quan-
tum master equation formalism, which allowed us to compute
the static properties of the steady state. However, because of the
absence of a regression theorem for non-Markovian problems
[6,43], such approach does not allow access to dynamical
physical quantities such as multiple time correlators and in
particular is not suited to verify the validity of the fluctuation-
dissipation theorem. Moreover, as all predictions were based
on very general theoretical arguments, a full validation on an
exactly solvable model still remains to provide.

In this paper, we investigate pseudothermalization effects
for the specific model of a weakly interacting Bose-Einstein
condensate (BEC) coupled to several non-Markovian reser-
voirs. In contrast with Refs. [36,41], we develop an alternative

analytical approach based on a quantum Langevin formalism
which keeps tracks of the bath dynamics and in particular
allows us to access both static and dynamical properties of the
steady state. In this way, we are able not only to demonstrate
the presence of thermal signatures at a static level but also to
show that the fluctuation-dissipation theorem is verified at a
dynamical level.

This paper is organized as follows: In Sec. II, we introduce
the general Langevin model and use a Bogoliubov approach
to linearize the theory around a mean-field solution, from
which we demonstrate numerically the dynamical stability. We
also derive a low-energy effective description, allowing us to
provide exact analytical expressions for the low-momentum
Bogoliubov spectrum. In Sec. III, we show that, for baths
with arbitrary spectral shape, this model presents low-energy
pseudothermalization both at a static and dynamical level: We
demonstrate that at low energies not only do static correlations
match with their thermal counterpart but also the FDT is
verified. Moreover, if the nonthermal baths are suitably chosen
to verify the Kennard-Stepanov (KS) relation at all energies,
then the system undergoes thermalization at all energies. In
Sec. IV, we provide a microscopic derivation of the quantum
Langevin model starting from a quantum optical model involv-
ing frequency-dependent losses and emitters with a nontrivial
distribution of transition frequencies. We also explain how
the Kennard-Stepanov relation could be engineered with this
model, and how it might be naturally reproduced in some
specific low-T exciton-polariton and VCSEL experiments.
In Sec.V, we give hints on how pseudothermalization can
be broken and the system be driven out of equilibrium by
adding saturation and/or nontrivial momentum dependence
to the dissipative processes responsible for particle pumping.
Conclusions are given in Sec. VI.

II. NON-MARKOVIAN QUANTUM LANGEVIN EQUATION

In this section, we introduce a theoretical model for the
dynamics of a driven-dissipative interacting Bose gas in contact
with non-Markovian reservoirs. A similar model had already
been addressed in a quantum optics context in Refs. [36,42] but
it was formulated in terms of a Redfield master equation instead
of the quantum Langevin formalism used here. Focusing on the
weakly interacting case, in the BEC regime we study the mean-
field solution of this model and use the Bogoliubov theory
to study the dynamics of fluctuations. After demonstrating
numerically the dynamical stability for a specific choice of
the pump and loss spectra, we develop a low-energy effective
theory so to access analytically the low-momentum collective
modes of the condensate.

A. Model for a driven condensate

Let us consider a bosonic gas in d spatial dimensions,
described by the annihilation and creation fields ψ̂(r) and
ψ̂†(r). The evolution in time of these operators is described
by the non-Markovian quantum Langevin equation

∂ψ̂

∂t
(r,t) = − i

[
ω0 − ∇2

2m
+ gψ̂†(r,t)ψ̂(r,t)

]
ψ̂(r,t)

+
∫

t ′
�(t ′)ψ̂(r,t − t ′) + ξ̂ (r,t), (2.1)
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where
∫ ′
t

≡ ∫ +∞
−∞ dt ′, while ω0 is the bare cavity frequency,

m is the bosonic mass, g > 0 is the strength of the repulsive
contact interaction, � is a memory kernel, and ξ̂ (r,t) is a
zero-mean Gaussian quantum noise operator. Equation (2.1)
resembles the Heisenberg equation for the motion of the
operator ψ̂ for an isolated interacting Bose gas. However, the
dynamics described by Eq. (2.1) does not conserve energy
and number of particles. Namely, the memory kernel �(t ′)
and quantum noise ξ̂ (t) terms model altogether the effect of
non-Markovian particle loss and incoherent pumping (i.e.,
injection) processes, whose respective strength is quantified
by the frequency-dependent power spectra Sl(ω) and Sp(ω).

Within the Langevin formalism, the correlations of the noise
operators ξ̂ (r,t), ξ̂ †(r,t) can be written as

〈ξ̂ (t)ξ̂ †(t ′)〉 =
∫

ω

Sl(ω) e−iω(t−t ′), (2.2a)

〈ξ̂ †(t)ξ̂ (t ′)〉 =
∫

ω

Sp(ω) eiω(t−t ′), (2.2b)

with
∫
ω

≡ ∫ +∞
−∞ dω/(2π ). Likewise, � is expressed as

�(t) = θ (t)
∫

ω

[Sp(ω) − Sl(ω)]e−iωt . (2.3)

The Heaviside function θ (t) in Eq. (2.3) is needed in order
to ensure causality: As a result, its presence implies the
Kramers-Kronig relations between the real and imaginary parts
of the Fourier transform �(ω) = ∫

t
eiωt�(t), which can thus be

written as

Re[�(ω)] = 1

2
[Sp(ω) − Sl(ω)], (2.4a)

Im[�(ω)] = P
∫

ω′

Sp(ω′) − Sl(ω′)
ω − ω′ . (2.4b)

The power spectra Sp(ω) and Sl(ω) are assumed to be
smooth functions of the frequency ω. In the following, we
will restrict our discussion to the case in which there exists a
range of frequencies ω1 < ω < ω2 such that Sp(ω) > Sl(ω)
(“amplifying” region), and that Sp(ω) < Sl(ω) outside this
interval (“lossy” region). Accordingly, losses are perfectly
balanced by pumping at the boundary of this interval, i.e.,
Sp(ω1,2) = Sl(ω1,2). We also define


diss = min(FHWM(Sl),FHWM(Sp)) (2.5)

as the minimum of the full width at half maximum of the
power spectra Sl(ω) and Sp(ω). It represents a characteristic
frequency scale over which these power spectra change value
and quantifies the non-Markovianity of the dynamics.

We stress that the loss and pump power spectra Sl(ω)
and Sp(ω) arise from the contact of the system with separate
reservoirs, i.e., a lossy medium and an amplifying medium
(these reservoirs are respectively composed of pure absorbers
and pure emitters): As a consequence, Sl(ω) and Sp(ω) are
assumed to be perfectly independent and completely tunable
physical quantities. A microscopic derivation based on a
quantum optical model of the quantum Langevin equation (2.1)
illustrating all these features is presented in Sec. IV.

Finally, we introduce the following quantity:

βeff ≡ 1

Teff
≡ S ′

l (ω2) − S ′
p(ω2)

Sp(ω2)
= d

dω
ln

[ Sl(ω)

Sp(ω)

]∣∣∣∣
ω=ω2

.

(2.6)

As we will see in Sec. III, this model presents pseudothermal-
ization properties at low energies for generic power spectra,
and Teff will play the role of an effective temperature. Teff also
scales like the linewidth 
diss of the power spectra defined in
Eq. (2.5) and quantifies the non-Markovianity of the dissipative
dynamics, but unlike 
diss it is more sensitive to the local
properties in frequency space around ω2. In the Markovian
limit, the power spectra are very flat and we have that
Teff,
diss → ∞. On the contrary, for very steep power spectra
(very coherent pump and/or loss processes), the dynamics is
highly non-Markovian and we have that Teff,
diss → 0.

In analogy with what was already discussed in Refs. [36,41],
here the physical origins of the pseudothermalization can be
understood intuitively at a qualitative level: At ω2 losses and
pump exactly compensate (Sp(ω2) = Sl(ω2)), so this frequency
will play the role of the condensate frequency for this model.
As we shall see below, a condensate at ω1 would instead be
unstable. Modes at frequencies close to ω2 will correspond to
low-energy excitations on top of the condensate.

In the vicinity of ω2, the pump and loss power spectra verify
the following condition [see Eq. (2.6)]:

Sp(ω2 + ω)

Sl(ω2 + ω)



ω→0
[1 − βeffω + O(ω/
diss)

2] ∼ e−βeffω,

(2.7)

so the Kennard-Stepanov relation [39,40] is asymptotically
verified at low frequencies. Thus, as we will demonstrate in
Sec. III, steady-state low-energy properties are expected to be
thermal.

Moreover, if we choose the pump and loss spectra to verify
exactly the Kennard-Stepanov relation

Sp(ω2 + ω)

Sl(ω2 + ω)
= e−βeffω, (2.8)

then the system should thermalize at all energies. Note that
this can be obtained without the various reservoirs being at
thermal equilibrium, as we can tune independently the power
spectra S(l/p) by changing the frequency distributions of the
excitations within the reservoirs respectively responsible for
particle losses and pumping. In Sec. IV, we will discuss a
few physical contexts where the Kennard-Stepanov may be
fulfilled.

While obtaining a full thermalization requires a fine-tuning
of the reservoirs’ power spectra in order to fully verify the
KS relation, all the results presented in the next sections
regarding low-energy properties are general in the sense that
they do not depend on the precise shape of the power spectra.
In order to make our discussion concrete, we performed
numerical simulations for a specific choice of S(l/p)(ω). For
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FIG. 1. Power spectra for Markovian losses and Lorentzian shape
pump in arbitrary units.

all the graphical representations, we will thus consider the
case of Markovian losses and a Lorentzian-shaped pump
(see Fig. 1):

Sgraph
l (ω) ≡ �l, (2.9a)

Sgraph
p (ω) ≡ �p

(
diss/2)2

(ω − ωp)2 + (
diss/2)2
. (2.9b)

where the use of the notation 
diss is consistent with the
previous definition. We also define the detuning δ ≡ ω0 − ωp

between the photonic and the pump frequency. Accordingly,
we need to have �l < �p in order to obtain an amplified range
of frequencies and generate a condensate, and ω1,2 are the two
solutions of

(
diss/2)2

(ω − ωp)2 + (
diss/2)2
= �l

�p
. (2.10)

This choice of loss and pump power spectrum is naturally
reproduced by our quantum optics proposal in Sec. IV B 1.
Since it does not verify exactly the Kennard-Stepanov relation,
we do not expect it will lead to complete thermalization;
however, it is well suited to investigate the effect of low-energy
pseudothermalization.

B. Noninteracting case

In this section, we consider the case of a noninteracting
Bose gas; i.e., we set the interaction strength g = 0. In this
case, the Langevin equation, Eq. (2.1), is linear and it can be
solved exactly for a given choice of �(ω). If a stationary state
exists independent of the initial conditions (see the discussion
further below), one may evaluate the corresponding solution
by introducing the Fourier transforms

ψ̂k(ω) =
∫

r,t
ψ̂(r,t)ei(k·r−ωt), (2.11a)

ψ̂
†
k(ω) =

∫
r,t

ψ̂†(r,t)e−i(k·r−ωt) = [ψ̂k(ω)]†, (2.11b)

ξ̂k(ω) =
∫

r,t
ξ̂ (r,t)ei(k·r−ωt), (2.11c)

ξ̂
†
k(ω) =

∫
r,t

ξ̃ †(r,t)e−i(k·r−ωt) = [ξ̂k(ω)]†, (2.11d)

and by replacing them into Eq. (2.1): One thus finds that the
value of ψ̂k(ω) is given by

ψ̂k(ω) = iξ̂k(ω)

ω − ω0 − εk − i�(ω)
, (2.12)

with εk = k2/2m. Note that as a consequence of the absence of
the nonlinearity, all the modes k are decoupled. When ψ̂k(ω) is
transformed back in real time, it results in a linear combination
of several modes ωk,n, corresponding to the poles of the
denominator in Eq. (2.12), weighted with different amplitudes.
For each value of k, several solutions ωk,n (labeled by the
index n) may exist: This gives rise to a branched spectrum of
eigenfrequencies. The number of these branches depends on
the peculiar choice of �(ω): These additional branches account
for the existence of external reservoir degrees of freedom
which were integrated out in order to provide the dynamical
description Eq. (2.1) of the bosonic field ψ̂ .

The imaginary part Im[ωk,n] corresponds to the inverse
lifetime of the given mode: In order to have a dynamically
stable mode, the condition Im[ωk,n] < 0 must be satisfied;
this also implies that a dynamically stable stationary solution
independent of the initial state exists, as any information on
the initial state will vanish exponentially fast in time. On the
contrary, if Im[ωk,n] � 0 for some values of k and n, the
corresponding mode grows indefinitely in time, or it remains
constant: In both cases, one cannot neglect the information
about the initial state, thus invalidating the assumption that
a stationary value independent of the initial state exists. For
Im[ωk,n] > 0, the field ψ̂ diverges exponentially in time, and
thus the solution is physically meaningless: Nonetheless, this
feature may signal a dynamical instability of the noninteracting
approximation of Eq. (2.1), and, as a result, the inclusion of
nonlinearity may be crucial.

For the choice of the power spectra discussed in Sec. II A,
which admits an amplifying region [ω1,ω2], one expects some
eigenmodes to present dynamical instabilities. Qualitatively,
if ω0 + εk falls into the amplifying region (which can be
shifted with respect to [ω1,ω2], due to the presence of the
imaginary part Im[�(ω)] which induces a Lamb shift of the
bare frequency), a dynamical instability is expected: While
in a standard laser, the instability would be controlled and
ultimately stopped by the presence of a saturated gain medium
[44,45], here the related nonlinear terms were not included
in our Langevin description. We will see below that the
inclusion of a nonvanishing interaction strength g �= 0 pro-
vides a nonstandard saturation mechanism which prevents the
unconstrained growth of dynamically unstable modes.

C. Interacting case: Mean-field solution

We consider now the interacting solution of Eq. (2.1) for the
interacting case g �= 0. As a first level of approximation, we
consider the classical limit of Eq. (2.1), which, in the absence
of a reservoir, corresponds to the well-known Gross-Pitaevskii
description of a condensate [46]. This can be accomplished by

033603-4



PSEUDOTHERMALIZATION IN DRIVEN-DISSIPATIVE … PHYSICAL REVIEW A 97, 033603 (2018)

replacing the quantum field ψ̂ with a classical complex field ψ

and by neglecting the quantum noise ξ̂ . The classical field ψ

can be thus interpreted as the wave function of a condensate.
The validity of this approximation relies on the fact that

the noncondensed fraction is assumed to be very small: This
would have to be checked a posteriori by studying the effect of
the fluctuations on the stability of the condensate solution (see
Sec. II D). While in lower dimensional geometries, fluctuations
are expected to be dominant [31,32,47] and thus preclude any
such description, we expect that for sufficiently high spatial
dimension d condensation is possible [26,27]. Thus, a weak in-
teraction coupling g (inducing a weak quantum depletion) and
a certain selectivity in frequency of the dissipation (limiting
the generation of excitations of high energy) should be suitable
conditions for the emergence of coherence in the system. The
classical field ψ(r,t) thus obeys the following equation:

∂ψ(r,t)
∂t

= − i

[
ω0 − ∇2

2m
+ g|ψ(r,t)|2

]
ψ(r,t)

+
∫

τ

�(τ )ψ(r,t − τ ), (2.13)

which has the form of a driven-dissipative Gross-Pitaevskii
equation with a memory kernel. We focus on spatially homo-
geneous solutions of the form

ψ(t) = ψ0 e−iωBECt , (2.14)

which describe a condensate with infinite lifetime, frequency
ωBEC, and density n0 = |ψ0|2.

The noncondensed case ψ0 = 0 is always a solution of
Eq. (2.13), whose stability may be studied by linearizing
Eq. (2.13) around it: This yields the linear equation studied
in Sec. II B. As a result, the noncondensed solution is stable
when the spectrum of the excitations lies outside the amplifying
region, i.e., ω0 + εk � ω2. We will now show that nontrivial,
condensed (ψ0 �= 0) solutions exist when the bare frequency
lies below the upper boundary of the amplifying region, i.e.,
ω0 � ω2. In this case, the interaction generates a blue-shift
∼gn0 of the bosonic bare frequency ω0, thus providing a
natural saturation mechanism as the condensate frequency is
spontaneously set at one of the boundaries of the amplifying
region. In fact, by inserting Eq. (2.14) into Eq. (2.13), one finds

ωBEC = ω0 + g|ψ0|2 + i�(ωBEC) (2.15)

from which, by taking the real and the imaginary parts and by
using Eq. (2.4), one finds the two following equations for ωBEC

and |ψ0|2:

Sp(ωBEC) = Sl(ωBEC) (2.16a)

ωBEC = ω0 + μ + δL(ωBEC), (2.16b)

where

μ ≡ g|ψ0|2 (2.17)

is the mean-field self-interaction energy and

δL(ω) = P
∫

ω′

1

ω − ω′ [Sl(ω
′) − Sp(ω′)] (2.18)

corresponds to a Lamb shift of the condensate frequency due to
the contact with the bath. From Eq. (2.16a), we deduce that the

only solutions for the condensate frequency are ωBEC = ω1,2.
However, the solution ω1 will be unstable, since the low-energy
excitations of the condensate will fall in the amplified region
[ω1,ω2] and undergo dynamical instability; thus we will not
take into account this solution and consider in all the next
sections the case ωBEC = ω2.

We finally remark that, unlike usual VCSEL [48], where
stability is induced by a saturation effect of the pump (emitters
are “two-level-like” nonlinear systems which need some time
to be repumped in the excited state), stability is expected
to be in our model a consequence of the interplay between
the frequency dependence of pumping and losses and the
progressive blue-shift g|ψ0|2 induced by interactions during
the condensate growth, until the condensate frequency reaches
ωBEC where pump and losses perfectly compensate for each
other.

D. Interacting case: Bogoliubov analysis of fluctuations

In order to study the stability of the condensate and to
characterize the properties of its excitations, we express the
bosonic field as

ψ̂(r,t) = [ψ0 + �̂(r,t)]e−iωBECt , (2.19)

where �̂(r,t) is an operator describing the fluctuations above
the condensate. Inserting this decomposition and the mean-
field solution obtained from Eq. (2.16) into Eq. (2.1), and
retaining terms up to the first order in the fields �̂(r), �̂†(r),
one obtains

∂�̂(r,t)
∂t

= −i[�̂(r,t),Hbog(t)]+
∫

τ

�̃(τ )�̂(r,t − τ )+ξ̃ (r,t),

(2.20)

where

Hbog =
∫

ddr

{
�̂†(r)

−∇2

2m
�̂(r) + μ

2
[2�̂†(r)�̂(r)

+ �̂(r)�̂(r) + �̂†(r)�̂†(r)]

}
(2.21)

is the Bogoliubov Hamiltonian, �̃ is defined as

�̃(t) = eiωBECt�(t) − δ(t)�(ωBEC), (2.22)

and ξ̃ (r,t) = eiωBECt ξ (r,t). After calculation of the commuta-
tor, Eq. (2.20) can be rewritten as

∂�̂(r,t)
∂t

= − i

{−∇2

2m
�̂(r,t) + μ[�̂(r,t) + �̂†(r,t)]

}
+

∫
τ

�̃(τ )�̂(r,t − τ ) + ξ̃ (r,t). (2.23)

The linear system (2.23) can be regarded as the driven-
dissipative non-Markovian counterpart of the Bogoliubov–
de Gennes equations. Similar to the equilibrium case, the
field �̂(r,t) and its Hermitian conjugate �̂†(r,t) are coupled
by the interaction energy μ: This coupling is mediated by
processes in which noncondensed particles are scattered into
the condensate, and vice versa. It is convenient to rewrite
Eq. (2.20) in momentum and frequency space: In order to do
this, we define the Fourier transform of the fields and noise
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operators as in Eq. (2.11). The correlations of the quantum
noise operators in the momentum and frequency space are
given by

〈ξ̃k(ω)ξ̃ †
k′(ω′)〉 = δk−k′ δω−ω′Sl(ωBEC + ω), (2.24a)

〈ξ̃ †
k(ω)ξ̂k′(ω′)〉 = łδk−k′ δω−ω′Sp(ωBEC + ω). (2.24b)

with δk ≡ (2π )dδ(d)(k), δω ≡ 2πδ(ω). After taking the Fourier
transform of Eq. (2.20), we obtain the following set of coupled
equations:

ω

(
�̂k(ω)

�̂
†
−k(−ω)

)
= Lk(ω)

(
�̂k(ω)

�̂
†
−k(−ω)

)
+ i

(
ξ̃k(ω)

ξ̃
†
−k(−ω)

)
,

(2.25)

where the matrix Lk(ω) is given by

Lk(ω) =
(

εk + μ + i�̃(ω) μ

−μ −εk − μ + i�̃∗(−ω)

)
,

(2.26)

where �̃(ω) is the Fourier transform of �̃(t) defined in
Eq. (2.22). It reads

�̃(ω) = �(ω + ωBEC) − �(ωBEC), (2.27)

and we used the notation �̃∗(ω) ≡ [�̃(ω)]∗. The complex
function �̃(ω) represents the frequency-dependent decay rate
(real part) and Lamb shift (imaginary part) of the fluctuations.
�̃(ω) vanishes for ω → 0, consistent with the fact that the
condensate has an infinite lifetime [see Eq. (2.15)].

For later convenience, we define the correlation matrix
Ck(ω)

δk−k′ δω−ω′ Ck(ω)

=
(

〈�̂k(ω)�̂†
k′(ω

′
)〉 〈�̂k(ω)�̂−k′(−ω′)〉

〈�̂†
−k(−ω)�̂†

k′(ω
′
)〉 〈�̂†

−k(−ω)�̂−k′ (−ω
′
)〉

)
, (2.28)

which can be calculated by inverting Eq. (2.25), multiplying
the solution by its Hermitian conjugate, and averaging over
the noise correlation using Eq. (2.24) (see Appendix A for the
details of the calculations).

E. Dynamical stability of excitations

In order to study the dynamical stability of the mean-field
solution, it is necessary to check that the elementary excitations
do not grow exponentially and have a finite lifetime. To this
end, we derive from Eq. (2.25) the excitations spectrum by
calculating frequencies ωk,n (with i some integer number used
to label the excitation) which cancel out the determinant of the
matrix ω − Lk(ω) with Lk(ω) defined in Eq. (2.26). This leads
us to the following condition on the frequency:

[ω − εk − μ − i�̃(ω)][ω + εk + μ − i�̃∗(−ω)] + μ2 = 0.

(2.29)

Solutions with negative imaginary parts correspond to de-
caying excitations, while in the presence of any instability,
some solutions present a positive imaginary part. Since we are
considering generic non-Markovian systems, �̃(ω) can be any

function verifying the Kramers-Kronig relations reported in
Eq. (2.4); thus, in general Eq. (2.29) may have a large number
of solutions, and it may be not possible to solve it analytically.

In the case of Markovian losses and a Lorentzian spectrum
[Eq. (2.9)], Eq. (2.29) becomes an algebraic equation which
admits four different solutions, thus giving rise to four different
branches by varying the momentum k which we computed
numerically. In Fig. 2, these solutions are plotted successively
for increased values of �(l/p), going at fixed ratio �l/�p = 0.3
from a weakly dissipative regime (upper panels) in which the
spectral power �(l/p) are weak with respect to the linewidth

diss, to a strongly dissipative regime (lower panels) in which
they become comparable or higher. All other parameters
(interaction g, mass m, detuning δ, linewidth 
diss) are left
unchanged.

As a first observation, all imaginary parts of the frequencies
are negative, so there is no instability (we checked this for
other choice of parameters). Second, in the weakly dissipative
regime [Figs. 2(a) and 2(f)] the mode structure is typical of
exciton-polariton driven-dissipative condensates [1,21,49,50]
and presents a sharp transition from purely damped modes
to propagating ones. Also, we observe two other branches of
imaginary part 
diss and real parts ±(ωBEC − ωp): These addi-
tional frequencies account for the oscillation of the reservoirs
degrees of freedom, which are hidden in the non-Markovianity
of the Langevin equation and are nearly unaffected by the
system dynamics because of the weak coupling. (In a photonic
language, for the Lorentzian pump spectrum the reservoir
degrees of freedom responsible for the photonic pumping may
be seen as two-level emitters of transition frequency ωp.)

However, for stronger dissipation (other panels), the system
and reservoir degrees of freedom are coupled and cannot be
treated separately, which can be seen in a clearest way by a
deformation of the various branches near the crossing point.
Remarkably, a sharp transition from weak to strong coupling
occurs between Figs. 2(c) and 2(h) and Figs. 2(d) and 2(i),
inducing a change in excitation spectrum structure, as one
moves from a situation of branch crossing to an avoided
crossing: In this regime, the collective modes associated with
the excitation spectrum couple the bosonic and the bath
degrees of freedom, giving birth to a mixed quasiexcitation.
In a photonic language, this suggests that some elementary
excitations are of a polaritonic nature.

F. Effective low-frequency Markovian dynamics

Here we show that it is possible to derive an effective
time-local equation describing the dynamics for frequencies
small enough with respect to 
diss: Indeed, for ω � 
diss,
the function �̃(ω) defined in Eq. (2.25) can be linearized and
approximated as �̃(ω) ≈ ω�̃′(0) = ω�′(ω BEC ). As a result,
the low-frequency limit of the Langevin equation Eq. (2.25)
becomes

ω�̂k(ω) = z{εk�̂k(ω) + μ[�̂k(ω) + �̂
†
−k(−ω)] + iξk(ω)},

(2.30)

with the coefficient z defined as

z = lim
ω→0

[
ω

ω − i�̃(ω)

]
= [1 − i�′(ω BEC )]−1, (2.31)
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FIG. 2. Excitation spectrum of the condensate in the case of a
Lorentzian pump spectrum and Markovian losses (model defined in
Sec. II A). Left (respectively, right) panel: real (resp., imaginary) part
of the frequency in units of 
diss in function of the momentum k in
units of kcross defined as |zR|Ekcross

= zIμ. In blue crosses, we plot
exact numerical values for the eigenfrequencies ωk,n of the full non-
Markovian theory [Eq. (2.25)], and in red solid lines the solutions ω±

k
given by the corresponding Markovian effective theory at low energies
[Eq. (2.33)]. Going from upper to lower panels, we investigate the
transition between weak dissipation to strong dissipation. Parameters:
m = 1, δ/
diss = 0, �l/�p = 0.3. From top to bottom: �0

p/
diss =
0.1, 0.55, 0.6, 0.65, 1.

and the new noise operators ξk(ω) and ξ
†
k(ω) are characterized

by the correlations

〈ξk(ω)ξ
†
k′(ω′)〉 = δk−k′ δω−ω′Sl(ωBEC), (2.32a)

〈ξ †
k(ω)ξk′(ω′)〉 = δk−k′ δω−ω′Sp(ωBEC). (2.32b)

Notice that the noise operators ξk(ω) and ξ
†
k(ω) correspond

to an effective classical noise, since their correlations do not
depend on the order of the operators, as a consequence of
Eq. (2.16a).

With respect to a purely Hamiltonian dynamics, all cou-
plings in the commutator have been multiplied by the complex
number z. The eigenmodes of Eq. (2.30) are given by

ω±
k = −izI (εk + μ) ±

√
z2
RE2

k − z2
Iμ

2, (2.33)

where z = zR − izI , zR and zI are both real numbers, and Ek =√
εk(εk + 2μ) is the equilibrium Bogoliubov energy for the

Hamiltonian Eq. (2.21). We can already verify the dynamical
instability of the mean-field solution for the choice of BEC
frequency ωBEC = ω1, as this leads to a negative zI [due to a
change of sign in the derivative of the real part of �(ω) involved
in Eq. (2.31)] and thus to a positive imaginary part in the low-
momentum excitation spectrum in Eq. (2.33). This justifies
definitively the choice ωBEC = ω2 (whose dynamical stability
was already checked in Sec. II E).

The frequencies ω±
k , shown in Fig. 2 in red solid lines,

closely resemble the spectrum of a polaritonic driven-
dissipative condensate [1,21,49,50]: They are are imaginary
for small momenta, which signals the purely diffusive nature
of low-energy excitations, while they acquire a finite real part
at higher momenta. In particular, for k → 0 the branch ω+

k

vanishes and therefore it can be identified with the (diffusive)
Goldstone mode associated with the spontaneous breaking of
the U (1) symmetry. As was already discussed in the previous
subsection, higher powers of ω present in Eq. (2.25) related
to the non-Markovianity can generate additional modes not
predicted by the effective low-energy theory Eq. (2.30), which
can be observed in Fig. 2.

The validity of Eq. (2.30) for the study of the long-range
physics has to be checked a posteriori, by requiring the
absolute value |ω±

k | to be small with respect to 
diss for small
k, so that it can be computed by mean of the low-energy
effective theory Eq. (2.30). On the one hand, this condition is
naturally satisfied for the Goldstone branch ω+

k for sufficiently
low momenta. On the other hand, the gapped branch ω−

k

verifies |ω−
k=0| = 2zIμ, and therefore the gapped mode is

correctly described by the Markovian low-frequency theory
only if 2zIμ � 
diss. According to Eq. (2.31), z scales as
Sl(ωBEC)/
diss, so the gapped mode is correctly described
by the Markovian low-frequency theory only if Sl(ωBEC)μ �

2

diss: This is the case for very small power spectra (weak
dissipation) or very small interaction energy μ. The validity of
this analysis is illustrated in Figs. 2(a) and 2(b), which feature
the case of a weak dissipation, and where we can see that
the theoretical prediction Eq. (2.33) for the Goldstone mode
and the gapped mode accurately fits with the exact numerical
predictions.

III. PSEUDOTHERMALIZATION

In this section, we give evidence for low-energy pseu-
dothermalization for generic power spectra, both at static and
dynamical levels, by showing that the low-energy static corre-
lations map on equilibrium ones and demonstrating the validity
of the FDT in the low-frequency regime. We also compute
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analytically the static correlations at all energies in the weakly
dissipative regime. Finally, in the specific choice of reservoirs
where the Kennard-Stepanov relation is exactly verified, we
demonstrate the validity of the FDT at all frequencies and
show that the steady state in the weakly dissipative regime
is in a Gibbs ensemble.

A. Static correlations

The steady-state properties of a system undergoing low-
energy pseudothermalization should look like those of a Gibbs
ensemble at low energies. In Sec. III A 1, we give the low-
energy analytical expression for static correlations, both in the
weakly and strongly dissipative regimes, while in Sec. III A 2
we give an exact analytical expression at all energies, only
valid in the weakly dissipative regime.

1. Low energies

In this section, we focus on the low-energy regime Ek �

diss. By using the expressions derived in Appendix A for
the frequency-correlation matrix Ck(ω) defined in Eq. (2.28)
and by restricting ourselves to the low-frequency regime using
the procedure described in Sec. II F, we compute by Fourier
transform the steady-state values of the momentum distribution
nk = 〈�̂†

k�̂k〉 and the anomaleous average Ak = 〈�̂k�̂−k〉 at
leading order in Ek/
diss (see Appendix B for the details of
the calculation):

nk 
 Teff (εk + μ)

(Ek)2 , (3.1)

Ak 
 −Teff μ

(Ek)2 , (3.2)

where we remind that Teff is defined in Eq. (2.6). These static
correlations have to be compared to those obtained by doing a
Bogoliubov calculation for a Bose gas at thermal equilibrium
of temperature Teff and chemical potential μ = g|ψ0|2:

nth
k = 1

eβeffEk − 1
(|uk|2 + |vk|2) + |vk|2



(βeffEk)→0

Teff (εk + μ)

(Ek)2 , (3.3)

Ath
k = 2

(
1

eβeffEk − 1
+ 1

2

)
ukv

∗
k ,



(βeffEk)→0

−Teff μ

(Ek)2 , (3.4)

where uk and vk relate the annihilation operator �̂k to the
phonon annihilation (resp., creation) operator b̂k (resp., b̂

†
k)

through the Bogoliubov transformation:

�̂k = ukb̂k + v∗
k b̂

†
k, (3.5)

uk = 1

2

[√
εk

Ek

+
√

Ek

εk

]
, (3.6)

vk = 1

2

[√
εk

Ek

−
√

Ek

εk

]
. (3.7)

By comparing Eqs (3.1) and (3.2) and Eqs. (3.3) and (3.4),
we note that the low-energy limit βeffEk → 0 of the driven-
dissipative quantum Langevin model accurately reproduce a
thermal infrared behavior, leading to the so-called Rayleygh-
Jeans distribution. Strikingly the validity of this equilibrium
signature only depends on the condition Ek � 
diss ∝ Teff,
and in particular is not restricted to the range of Bogoliubov
energies Ek below the interaction energy μ: In the regime
Teff � μ, one expects thus the full phonon-particle crossover in
the elementary excitations to be well represented by an equilib-
rium theory. Correlations at higher energies Ek � 
diss ∝ Teff

are not expected although to be thermal: In particular, we do
not expect necessarily to see exponential tails.

The analytical arguments leading to the expressions
Eqs. (3.1) and (3.2) can be verified in Fig. 3 (resp., Fig. 4),
where we plot the static correlations obtained by numerical
resolution of the linearized Langevin equation (2.23) for
a Markovian loss spectrum and Lorentzian pump spectrum
[Eq. (2.9)], in the weakly dissipative regime (resp., strongly
dissipative regime), i.e., for �0

p, �l � 
diss (resp., �0
p, �l of the

order of 
diss), and compare those correlations to thermal ones.
We plotted the static correlations for two detunings δ of the bare
frequency ω0 with respect to the pump resonance ωp, inducing
different effective chemical potentials μ, which is a decreasing
function of δ. Indeed, looking at Eq. (2.16b) and neglecting as a
first step the Lamb shift, we see that increasing the frequency of
the pump ωp defined in Eq. (2.9), i.e., diminishing the detuning
δ = ω0 − ωp at fixed ω0, has for effect to increase ωBEC, and
thus to increase also the chemical potential μ.

The case of a weak (resp., strong) chemical potential with
respect to the effective temperature Teff is plotted in the left
(resp., right) panels. The upper panels correspond to the static
correlations (their logarithm is shown in inset to check for
any high-energy exponential tails), while in the lower panels
we plot the absolute error nk − nth

k between the solutions of
the Langevin equations with respect to thermal predictions.
Expectedly, static correlations given by the numerical simula-
tion of the Langevin equation (green squares) coincide with
the equilibrium results (red solid line with circles) at energies
lower than the temperature (since Teff scales as the spectra
linewidth 
diss and is of the same order of magnitude), both
in the weakly and strongly dissipative regimes. In particular,
they diverge as 1/k2 at low momenta, and looking at the
absolute errors we note that the corresponding corrections to
thermal equilibrium remain finite at low energies and thus
surprisingly do not present any subsingular divergencies ∝
1/k, so effective thermal equilibrium seems to be true also
at the next leading order at a static level for this particular
system.

However, as we expected, the pseudothermalization does
not extend for a generic choice of power spectra at higher
energy scales (see the logarithmic plot) as the Kennard-
Stepanov relation is not valid in this energy range: In par-
ticular, while one can see in the grand-canonical distribution
the presence of exponential tails of a Boltzmann type in
Fig. 3(a) (approximately for momenta verifying 2 � k2/k2

th �
25, the slower decay for higher momenta being related to the
dominant vacuum fluctuations), such behavior is not present
in the driven-dissipative steady state, which features instead
algebraic decay. This feature is specifically related to the
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FIG. 3. Static properties of the condensate at steady state in the
weakly dissipative regime (i.e., for the loss and pump power spectra �l

and �p much smaller than the reservoirs’ characteristic spectral width

diss) in the case of Lorentzian pump power spectrum and Markovian
losses (model defined in Sec. II A). The left (resp., right) panels
correspond to a detuning between the cavity and the atoms chosen
to induce a weak (resp., strong) chemical potential μ with respect
to the effective temperature Teff. Upper panels: static correlations
nk = 〈�†

k�k〉 in function of the momentum k in units of kth defined
by E(kth) = Teff, and in inset, their logarithm in function of the square
momentum k2 in units of k2

th. In green squares, we plot the steady-
state properties given by numerical calculations of the linearized
Langevin equation [Eq. (2.25)] in the weakly dissipative regime,
in red lines with circles the results given by the grand-canonical
ensemble [Eq. (3.3)], and in solid blue lines the analytical results
given by the secular approximation [Eq. (3.8)]. Lower panels: the
absolute error nk − nth

k in green squares lines (resp., nSec
k − nth

k in solid
blue lines) between the numerical solution of the Langevin equation
(resp., the analytical solution given by the secular approximation)
and the thermal case, in function of the momentum k in units of kth.
Parameters: for all panels, m = 1, �l/�0

p = 0.3, �p/
diss = 10−2.
Deduced quantity Teff/
diss = 0.55. For the left (resp., right) panels:
δ/
diss = 0.72 (resp., −10). Deduced quantity μ/
diss = 4.6 × 10−2

(resp., 10.8 × 100).

Lorentzian shape for the pump spectrum Eq. (2.9) chosen
for numerical simulations. In the case of a big chemical
potential μ > Teff [see Fig. 3(c)], the thermal distribution does
not present exponential tails because the vacuum fluctuations
which decay algebraically are dominant with respect to thermal
fluctuation in the energy range Ek � Teff .

2. Analytical expressions for the static correlations at all energies
in the weakly dissipative regime

When the dissipation strengthS(l/p)(ω) is much weaker than
the linewidth of the power spectra 
diss, it is possible to provide
exact analytical predictions for the static correlations at all
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FIG. 4. Static properties of the condensate at steady state in the
strongly dissipative regime (i.e., for the loss and pump power spectra
�l and �p comparable to the reservoirs characteristic spectral width

diss) in the case of Lorentzian pump spectrum and Markovian losses
(model defined in Sec. II A). The left (resp., right) panels correspond
to a detuning between the cavity and the atoms chosen to induce a
weak (resp., strong) chemical potential μ with respect to the effective
temperature Teff. Upper panels: static correlations nk = 〈�†

k�k〉 in
function of the momentum k in units of kth defined by E(kth) = Teff,
and in inset, their logarithm in function of the square momentum k2

in units of k2
th. With green squares, we plot the steady-state properties

given by numerical calculations of the linearized Langevin equation
[Eq. (2.25)] in the strongly dissipative regime, with the red line with
circles we show the results given by the grand-canonical ensemble
[Eq. (3.3)], and with solid blue lines we mark the analytical results
given by the secular approximation [Eq. (3.8)]. Lower panels: the
absolute error nk − nth

k in green squares lines (resp., nSec
k − nth

k in solid
blue lines) between the numerical solution of the Langevin equation
(resp., the analytical solution given by the secular approximation)
and the thermal case, in function of the momentum k in units of
kth. Parameters: for all panels, m = 1, �l/�p = 0.3, �0

p/
diss = 1.
Deduced quantity Teff/
diss = 0.55. For the left (resp., right) panels:
δ/
diss = 0.92 (resp. −10). Deduced quantity μ/
diss = 7.3 × 10−2

(resp., 11.0 × 100).

momenta:

nSec
k = 1

K(Ek) − 1
(|uk|2 + |vk|2) + |vk|2, (3.8)

ASec
k = 2

(
1

K(Ek) − 1
+ 1

2

)
ukv

∗
k . (3.9)

Comparing these expressions to Eqs. (3.3) and (3.4), we see
that the vacuum properties are left unchanged with respect
to equilibrium statistics, while the Boltzmann factor eβEk

of the Bose-Einstein distribution for phononic excitations
in the grand-canonical ensemble has been replaced by the
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nonequilibrium factor:

K(Ek) = Sl(ωBEC + Ek)|uk|2 + Sp(ωBEC − Ek)|vk|2
Sp(ωBEC + Ek)|uk|2 + Sl(ωBEC − Ek)|vk|2 ,

(3.10)

giving thus rise to the modified Bose-Einstein phonon distri-
bution 1/[K(Ek) − 1].

The factor K(Ek) can be interpreted as the ratio between the
annihilation and creation rates (both induced by pumping and
losses dissipative processes) of a single phononic excitation
at the Bogoliubov energy Ek , and is calculated using the
secular approximation (valid in the weakly dissipative regime).
The phonon distribution and average occupation number are a
consequence of an emerging detailed balance between states
with Nk and Nk − 1 phonons of momentum k.

We note that if the pumping and loss rates verify the
Kennard-Stepanov condition Eq. (2.8), one recovers the equi-
librium Boltzmann factor K(Ek) = eβEk : As expected, the
system is fully thermal at all energies, and its density matrix
at steady state is a grand-canonical ensemble. In the general
case, by using Eqs. (2.6) and (2.7) we note that K(Ek) = 1 +
βeffEk + O(Ek/
diss)2 ∼ eβEk for Ek/
diss → 0: This pro-
vides us another confirmation that low-energy static properties
should be thermal.

The static correlations computed under the secular ap-
proximation expressed in Eqs. (3.8) and (3.9) are shown in
solid blue lines in the upper panels of Fig. 3 (resp., Fig. 4)
and compared with the exact numerical results obtained from
the linearized Langevin equation (2.23) in the weakly (resp.,
strongly) dissipative regime. In the lower panels, we plot
the absolute error nSec

k − nth
k between the solution given by the

secular approximation and the thermal distribution. In the
weakly dissipative regime, we note absolutely no difference
between the exact numerical solution and nSec

k . Expectedly,
in the strongly dissipative regime, they coincide only at low
momenta (Ek � Teff) (up to a finite error, which is small with
respect to the divergency in 1/k2), and do not provide exact
results at higher momenta. The accuracy at low energies of
Eqs. (3.8) and (3.9) also in the strongly dissipative regime
stems from the fact that low-energy pseudothermalization is
true in both the weakly and strongly dissipative regimes, as
shown in the previous subsection.

We now justify the expressions in Eqs. (3.8) and (3.9)
for the static correlations in the weakly dissipative regime
Sp,Sl � 
diss: In such a secular regime, dissipation can be
considered as a “classical” stochastic process inducing transi-
tions in the system S between the eigenstates of the Bogoliubov
Hamiltonian Hbog defined in Eq. (2.21). These eigenstates are
labeled by the phononic occupancy number, ⊗k|Nk〉. Here k
is the momentum and Nk is the occupation number of the
phonon of momentum k. The phonon annihilation and creation
operators b̂k and b̂

†
k are related to the particle annihilation and

creation operators �̂k and �̂
†
k by the Bogoliubov transforma-

tion Eq. (3.5).
Phonon annihilation rate. Let us calculate as a first step

the phononic annihilation rate. Starting from a state with Nk
phonons of momentum k and Bogoliubov energy energy Ek ,
one can remove one phonon through two processes:

(1) First, one can remove a phonon by losing a particle
of momentum k. The total energy removed to the system is
ωBEC + Ek . This leads to the partial rate

T (l)(Nk → Nk − 1) = Sl(ωBEC + Ek)|〈Nk − 1|�̂k|Nk〉|2
= Sl(ωBEC + Ek)Nk|uk|2. (3.11)

Starting from a wave-function calculation, this expression
could have been alternatively recovered by mean of the Fermi’s
golden rule [51].

(2) However, due to the presence of counter-rotating terms
in the Bogoliubov theory, it is also possible to remove a phonon
by pumping a particle of momentum −k. The total energy
added to the system in that case is ωBEC − Ek , i.e., the mean-
field energy of a single photon, minus the energy of the phonon
excitation. Thus the corresponding rate is

T (p)(Nk → Nk − 1) = Sp(ωBEC − Ek)

×|〈Nk − 1|�̂†
k|Nk〉|2

= Sp(ωBEC − Ek)Nk|vk|2. (3.12)

The total phonon loss rate is thus

T (tot)(Nk → Nk − 1) = Sl(ωBEC + Ek)Nk|uk|2
+Sp(ωBEC − Ek)Nk|vk|2. (3.13)

Phonon creation rate. One can calculate similarly the
phonon total creation rate. Starting from a state with Nk − 1
phonons of momentum k and Bogoliubov energy energy Ek ,
one can add one phonon by pumping a new particle (the
total energy added to the system is thus ωBEC + Ek) or by
losing a particle (the total energy lost is ωBEC − Ek). After a
calculation very similar to the previous paragraph, one obtains
the following expression:

T (tot)(Nk − 1 → Nk) = Sp(ωBEC + Ek)Nk|uk|2

+Sl(ωBEC − Ek)Nk|vk|2. (3.14)

Phonon probability distribution. The ratio between the
phonon annihilation and creation rates is given by

K(Ek) = T (tot)(Nk → Nk − 1)

T (tot)(Nk − 1 → Nk)

= Sl(ωBEC + Ek)|uk|2 + Sp(ωBEC − Ek)|vk|2
Sp(ωBEC + Ek)|uk|2 + Sl(ωBEC − Ek)|vk|2 . (3.15)

Because dissipative processes can remove or add only one
phonon of momentum k at a time and cannot affect simultane-
ously the phononic occupancy at other momenta, one deduces
that at steady state the probabilities π (...,Nk − 1,...) and
π (...,Nk,...) of having Nk − 1 and Nk phonons of momentum
k verify the following detailed balance relation:

π (Nk − 1) = K(Ek)π (Nk). (3.16)

One deduces that the probability distribution is

π (Nk) = 1

1 − K(Ek)−1
K(Ek)−n, (3.17)

and that the average phonon occupation number is

n
Sec,phon
k = 1

K(Ek) − 1
. (3.18)
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Doing a Bogoliubov transformation Eq. (3.5), one obtains
the static momentum distribution and anomalous averages
Eqs. (3.8) and (3.9).

B. Effective temperature from the FDT

A remarkable consequence of equilibrium involving dy-
namical quantities is the so-called fluctuation-dissipation the-
orem [35], which provides a relationship between the linear
response of a system to an external perturbation and the
correlation of thermal fluctuations.

Let us define the symmetrized correlation (C) and response
(R) functions for two arbitrary operators Â and B̂ as

iC(t − t ′) = 〈{Â(t),B̂(t ′)}〉, (3.19a)

iR(t − t ′) = θ (t − t ′)〈[Â(t),B̂(t ′)]〉, (3.19b)

where the time dependence of Â(t) and B̂(t) is determined
in the Heisenberg picture, while the average 〈· · · 〉 is taken
over an equilibrium state at temperature T . As a consequence
of equilibrium, C and R depend only on the time difference
t − t ′ and therefore we can define their Fourier transforms
C(ω)/R(ω) = ∫

t
eiωtC(t)/R(t). The explicit form of the FDT

then reads

C(ω) = 2 coth (βω/2)Im[R(ω)], (3.20)

with β = T −1. An alternative, fully equivalent formulation
of the FDT is the so-called Kubo-Martin-Schwinger (KMS)
[52,53] condition,

SAB(−ω) = e−βωSBA(ω), (3.21)

where SAB(t) = 〈Â(t)B̂〉 and SBA(t) = 〈B̂(t)Â〉.
The FDT and KMS condition have often been used as

a tool to probe the actual thermalization in classical and
quantum systems and to characterize the eventual departure
from equilibrium [34,54,55]. In particular, from Eqs. (3.20)
and (3.21) one can define an effective frequency-dependent
temperature TA,B,eff(ω) such that the FDT or KMS conditions
are satisfied: If the system is really at equilibrium, then
TA,B,eff(ω) has a constant value T which corresponds to the
thermodynamic temperature. On the other hand, if the system
is out of equilibrium it will generically develop a nontrivial
dependence on A, B, and ω.

In the following, we discuss the effective temperatures
obtained from the linearized equation Eq. (2.20): In this
respect, we will consider the following ratios:

〈�̂k(ω)�̂†
k〉

〈�̂†
k(ω)�̂k〉

= Sl(ωBEC + ω) + Sp(ωBEC − ω)Ak(ω)

Sp(ωBEC + ω) + Sl(ωBEC − ω)Ak(ω)
,

(3.22)

〈�̂k(ω)�̂−k〉
〈�̂k(−ω)�̂−k〉

= Sl(ωBEC + ω) + Sp(ωBEC − ω)Bk(ω)

Sp(ωBEC + ω) + Sl(ωBEC − ω)Bk(ω)
,

(3.23)

where the functions Ak(ω) and Bk(ω) are explicitly reported
in Appendix A. At thermal equilibrium, the value of the ratios
(3.22) and (3.23) is fixed by Eq. (3.21) while, in the present

case, they have a nontrivial dependence on ω and k, since the
system is out of equilibrium.

We then define the effective (inverse) temperatures

β1(k,ω) = d

dω
ln

[
〈�̂k(ω)�̂†

k〉
〈�̂†

k(ω)�̂k〉

]
, (3.24)

β2(k,ω) = d

dω
ln

[ 〈�̂k(ω)�̂−k〉
〈�̂k(−ω)�̂−k〉

]
, (3.25)

which are generic functions of k and ω and can be evaluated by
using Eqs. (3.22) and (3.23). However, inserting the functional
forms Eqs. (3.22) and (3.23) into Eqs. (3.24) and (3.25) we see
that for ω → 0, both β1(k,ω) and β2(k,ω) tend toward the same
k-independent value βeff defined in Eq. (2.6), indicating that
the KMS condition and the FDT are asymptotically verified at
low frequencies.

Remarkably, if the system satisfies the Kennard-Stepanov
relation

Sp(ωBEC + ω) = Sl(ωBEC + ω)e−βω, (3.26)

then β1(k,ω) = β2(k,ω) = β for every value of ω and k,
i.e., the system is at full thermal equilibrium, even if the
environment is highly non-thermal (see Secs. IV B 2 and
IV C for examples of physical systems made of nonthermal
reservoirs verifying artificially the KS relation).

In the upper (resp., lower) panels of Fig. 5, we plot the
effective temperature β1(k,ω) (resp., β2(k,ω)) as a function

−1

0

1

β 1(ω
)/

β ef
f

−0.2 0 0.2
0.8

1

1.2

−2 0 2

−1

0

1

ω/Δ
diss

β 2(ω
)/

β ef
f

−2 0 2
ω/Δ

diss

(a)

(b)

(c)

(d)

FIG. 5. Test of the FDT-KMS relations for various sets of param-
eters. Upper (resp., lower) panels: plot of the frequency dependent
effective temperature β1(k,ω) (resp., β2(k,ω)) defined in Eq. (2.6) for
a Lorentzian pump and Markovian losses, in function of the frequency
ω in units of 
diss, and for various momenta k. Panels (a) and (b) [resp.,
(c) and (d)] use the same parameters as Figs. 3(a) and 3(b) [resp.,
Figs. 3(c) and 3(d)]. For each panel, the various curves correspond to
increasing values of the momentum k, chosen in such a way that the
corresponding Bogoliubov energies span a wide energy range across
the effective temperature Teff = 0.54
diss: k/kth = 0.18 for the green
solid line, k/kth = 3.65, for the orange dashed line, k/kth = 9.1 for
the red dotted line, and k/kth = 54.7 for the blue dash-dotted line

033603-11



LEBREUILLY, CHIOCCHETTA, AND CARUSOTTO PHYSICAL REVIEW A 97, 033603 (2018)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

k/k
th

Δ
k
th/Δ

diss

|Re(ω
k
)|/Δ

diss

Δth
0_

Δ
diss

FIG. 6. Test of the efficiency of thermalization in function of the
momentum k in units of kth. By the green solid line, one shows 
th

k
(in units of 
diss), defined as the maximum frequency such that both
conditions |β1(k,ω) − βeff |/βeff � 0.05 and |β2(k,ω) − βeff |/βeff �
0.05 are verified for all ω contained in the interval |ω − ωBEC| � 
th

k .
In dashed blue lines, one shows in absolute value the real part |Re(ωi

k)|
(in units of 
diss) of the dissipative Bogoliubov spectrum for the same
parameters, computed by exact numerical calculation of the solutions
of Eq. (2.29) (the other branches are not visible here since they are
located at higher energies). Same parameters as in Figs. 5(a) and 5(b).

of ω in units of 
diss, for various values of the momentum k.
The left and right panels respectively feature the same choice
of parameters of Figs. 3 and 4. On one hand, in the region
ω � 
diss, these effective temperatures converge to the same
value βeff. This demonstrates the low-frequency validity of the
FDT and confirms that the system is effectively thermalized
in that frequency range. Even though these plots focus on the
weakly dissipative regime, the same behavior was also found
in the strongly dissipative regime, which displays identical
features. On the other hand, away from the low-frequency
region the effective temperatures have a nontrivial, frequency-
momentum-dependent behavior, so the system is globally not
at equilibrium.

In order to conclude from these plots that the Bogoliubov
modes are actually thermalized, one should check that the low-
energy limit value of βeff is already (approximately) attained
by β1,2(k,ω) at the frequency ωk,n of the mode. In other terms,
one needs to verify that the strong modulations that one sees in
Fig. 5 are located at energies above the mode frequency. To put
this reasoning on quantitative grounds, we can define an energy
cutoff 
th

k as the maximum frequency such that the conditions
|β1,2(k,ω) − βeff |/βeff � ε are verified for all ω contained in
the interval |ω − ωBEC| � 
th

k . This sets a quantitative criterion
for thermalization, which of course depends on the value of
the small parameter ε. In practice, we shall adopt ε = 0.05.
The most constraining condition is the one on β2(ω) in the
k → 0 limit that sets 
th

0 
 0.051 × 
diss 
 0.1 × Teff : We
have checked that for no value of k the peaks of β2(ω) can
get any closer to ω = 0. Note that the peaks are not actual

singularities for a finite dissipation but they get sharper in the
limit of a weak dissipation.

By comparing the green and black lines in Fig. 6, one
sees that all the low-energy elementary excitations of the
condensate have their resonances located in the thermalized
frequency window [−
th

0 ,
th
0 ] and will verify the FDT at a

very good level of approximation. This is strong evidence of
their effective thermalization. Remarkably, for this simulation
the energy cutoff 
th

0 is slightly bigger than the effective
chemical potential μ 
 0.045 × 
diss, meaning that not only
is the phononic region of the spectrum efficiently thermalized
but also part of the crossover to the single-particle regime.

IV. DERIVATION OF THE LANGEVIN EQUATION FROM A
QUANTUM OPTICS MICROSCOPIC MODEL

In this section, we proceed to the derivation of the Langevin
equation (2.1) in an lattice geometry, starting from the micro-
scopic quantum optics model introduced in Ref. [36]. Namely,
we consider a photonic driven-dissipative Bose-Hubbard lat-
tice made of L nonlinear cavities coupled by tunneling. Each
cavity possesses a natural frequency ω0 and is assumed to
contain a χ (3) Kerr nonlinear medium, which induces effective
repulsive interactions between photons lying in the same
cavity. Dissipative phenomena due to finite mirror transparency
and absorption by the cavity material are responsible for
(possibly non-Markovian) loss processes.

We assume that a large number Nat of two-level atoms are
embedded in each cavity and that their transition frequencies
ω

(n)
at are distributed according to the distribution D(ω). Each

atom is coupled to the cavity with a Rabi frequency �R and
is incoherently pumped into its excited state at a fast rate �at

p
so that spontaneous decay can be neglected. The small value
of the individual Rabi coupling �R is compensated by the
large number of atoms, which allows for a non-negligible and
controllable collective coupling to the photonic cavity modes,
whereas having �at

p � �R guarantees that each atom spends
most of its time in its excited state.

The whole system dynamics can be described by a Hamil-
tonian involving the photonic and atomic degrees of freedom
plus an external environment (modeled as a series of baths of
harmonic oscillators):

H = Hph + Hat + HI + Hbath + HI,bath. (4.1)

The Hamiltonian for the isolated photonic system has the usual
Bose-Hubbard form

Hph =
L∑

i=1

[
ω0a

†
i ai + U

2
a
†
i a

†
i aiai

]
−

∑
〈i,j〉

[h̄J a
†
i aj + H.c.],

(4.2)

where we assumed that the Kerr nonlinearity of the cavity
medium induces an onsite interaction term U . The free evolu-
tion of the atoms and their coupling to the photonic degrees of
freedoms are described by the following terms:

Hat =
L∑

i=1

Nat∑
n=1

ω
(n)
at σ

(n)+
i σ

(n)−
i (4.3)
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and

HI = �R

∑
i,n

[
a
†
i σ

−(n)
i + H.c.

]
, (4.4)

where the indices i and n account respectively for the lattice
sites and the atoms in each site.

Likewise, the external environment and its coupling to the
photonic and atomic degrees of freedom are represented by the
following Hamiltonian contributions:

Hbath =
L∑

i=1

∑
m

[
ωmb

(m)†
i b

(m)
i −

Nat∑
n=1

ω̃mc
(n,m)†
i c

(n,m)
i

]
, (4.5)

and

HI,bath =
∑
i,m

gm

[
a
†
i b

(m)
i + H.c.

]
+

∑
i,n,m

g̃m

[
σ

+(n)
i c

†(n,m)
i + H.c.

]
, (4.6)

where the indices m account for the various bath excitations.
Remarkably, while the photonic field a

(m)
i is coupled to

the bath by mean of a creation operator b
(m)†
i with a positive

frequency ωn in order to account for loss processes such as
radiative losses, the atomic raising operator σ

+(n)
i is coupled in

an antirotating way to a creation operator c
†(n,m)
i with a negative

frequency −ω̃m so to reproduce the effect of an irreversible
atomic pumping leading to an inversion of population. In
different terms, this process can be seen as the result of
a negative temperature, as the atomic environment is more
likely to induce an increase in energy than to have a cooling
impact. Physically, such dissipative amplification effect can
be reproduced in analogy with the lasing operation [44] by
coherently coupling the atomic ground state to an additional
third atomic level with a strong decay toward the first excited
state.

We assume both baths to be in the vacuum state at the initial
time 〈

b
(m)†
i b

(m)
i

〉
(0) = 〈

c
(n,m)†
i c

(n,m)
i

〉
(0) = 0, (4.7)

meaning that the bath b
(m)
i (resp., c(n,m)

i ) can only induce photon
losses (resp., atomic excitation). The various baths are also
assumed to have a broad spectral function

∑
m

|gm|2e−iωmτ =
∫

ω

Sl(ω)e−iωτ , (4.8)∑
m

|g̃m|2e−iω̃mτ = �at
p δ(τ ), (4.9)

where Sl(ω) is the loss power spectra of a single cavity and the
atomic pumping processes are described as Markovian.

A consequence of being in the regime �p � �R is that
a single atom will have a very weak probability of being in
the ground state and that the effect of atomic saturation on
photonic emission process will be strongly suppressed. We
can thus model atoms as linear degrees of freedom and replace
the spin matrix of each atomic two-level system by an inverse
harmonic oscillator whose vacuum state (resp., whose state

with a single excitation) corresponds to the atomic excited state
(resp., to the atomic ground state): σ

(n)+
i ⇒ a

(n)
at,i . States of the

harmonic oscillator with more than one excitation will be so
rarely occupied that they will not contribute to the photonic
dynamics.

We obtain thus the modified (although physically equiva-
lent) Hamiltonian contributions involving atomic degrees of
freedom:

Hat =
Ncav∑
i=1

Nat∑
n=1

( − ω
(n)
at

)
a

(n),†
at,i a

(n)
at,i + E0, (4.10)

where E0 is a constant,

HI = �R

∑
i,n

[
a
†
i a

(n),†
at,i + H.c.

]
, (4.11)

and

HI,bath =
∑
i,m

gm

[
aib

(m)†
i + H.c.

]
+

∑
i,n,m

g̃m

[
c

(n,m)†
i a

(n)
at,i + H.c.

]
. (4.12)

Within this linearized form for the atomic dynamics, it is pos-
sible to derive an exact non-Markovian Langevin equation for
the photonic quantum field, by re-expressing the Hamiltonian
dynamics into the form of Heisenberg equations of motion for
the various operators:

∂tai(t) = − i[ai(t),Hph(t)],

− i
∑
m

g∗
mb̂

(m)
i (t) − i�R

∑
n

a
(n)†
at,i (t), (4.13)

∂ta
(n)†
at,i (t) = − iωata

(n)†
at,i (t) + i

∑
m

c
(n,m)†
i (t),

+ i�Rai(t) (4.14)

∂tb
(m)
i (t) = −iωmb

(m)
i (t) − igmai(t), (4.15)

∂tc
(n,m)†
i (t) = −iω̃mc

(m)†
i (t) − ig̃ma

(n)†
at,i (t). (4.16)

Injecting the integrated equation (4.16) for the bath oscilla-
tors into the equation (4.14) for the atomic degrees of freedom,
we obtain a Markovian quantum Langevin equation for the
atomic field coupled to the photonic field,

∂ta
(n)†
at,i (t) =

(
−iω

(n)
at − �at

p

2

)
a

(n)†
at,i (t) + i�Rai(t) + ξ̂

(n)
at,i(t),

(4.17)

with a Markovian quantum noise contribution related to atomic
pumping,

〈
ξ̂

(n)†
at,i (t + τ )ξ̂ (n′)

at,i (t)
〉 = δi,j δn,n′�at

p δ(τ ), (4.18)〈
ξ̂

(n)
at,i(t + τ )ξ̂ (n′)†

at,i (t)
〉 = 0. (4.19)
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Then, by integrating Eqs. (4.17) and (4.15) and injecting them
in Eq. (4.13), we get for the photonic dynamics

∂tai(t) = − i[ai(t),Hph(t)] −
∫

t ′
�l(t

′)ai(t − t ′) + ξ̂l,i(t)

+
∫ t

0
ds

(∑
n

�2
Re(−iω

(n)
at − �at

p
2 )(t−s)ai(s)

)

− i�R

∫ t

0
ds

∑
n

e(−iω
(n)
at − �at

p
2 )(t−s)ξ̂

(n)
at,i(s)

− i�Re(−iω̃m− �at
p
2 )t

∑
n

a
(n),†
at,i (0), (4.20)

where the expressions for the loss memory kernel and noise
autocorrelations are described below.

A. Langevin equation: General form

At long times with respect to 1/�at
p , the time-dependent

contribution ∝ e(−iω̃m−�at
p /2)t ∑

n a
(n)†
at,i (0) in Eq. (4.20) (which

represents a memory of the initial conditions) vanishes, and
we can also replace the boundaries in the various integrals by
0 and +∞. We obtain then the final form for the photonic
non-Markovian Langevin equation of Eq. (2.1):

∂t âi(t) = − i[âi(t),Hph(t)] +
∫ ∞

−∞
dτ [�p(τ ) − �l(τ )]

× âi(t − τ ) + ξ̂p,i(t) + ξ̂l,i(t), (4.21)

where

ξ̂p,i(t) = −i�R

∫ t

−∞
ds

∑
n

e(−iω
(n)
at − �at

p
2 )(t−s)ξ̂

(n)
at,i(s). (4.22)

The nonzero contributions for the two-point quantum noise
autocorrelations can be summarized as

〈ξ̂l,i(t + τ )ξ̂ †
l,j (t)〉 = δi,j

∫
ω

Sl(ω)e−iωτ ,

(4.23)
〈ξ̂ †

p,i(t + τ )ξ̂p,j (t)〉 = δi,j

∫
ω

Sp(ω)e+iωτ ,

where �l(τ ) = θ (τ )
∫
ω
Sl(ω)e−iωτ and �p(τ ) = θ (τ )

∫
ω
Sp

(ω)e−iωτ . While the loss power spectrum Sl(ω) is provided
in Eq. (4.8), the photonic pump power spectrum has the
expression

Sp(ω) = �(1)
p

∫
dω′D(ω′)

(
�at

p

/
2
)2(

ω − ω′)2 + (�at
p

/
2
)2 , (4.24)

where �(1)
p = 4�2

R/�at
p is the maximum photonic pumping

rate for a single atom and is obtained at resonance: As
in Refs. [36,42], each atom is responsible for a Lorentzian
contribution to the photonic pumping, and the continuous sum
of the various contributions then provides the full spectrum
Sp(ω).

B. Some examples of realizable power spectra

1. First example: Markovian losses and Lorentzian
pump power spectra

As a first example, we set ourselves in the configuration in
which losses are Markovian processes, i.e., Sl(ω) = �l, and all
atomic transitions are equal to ωp, in such a way that D(ω) =
Natδ(ω − ωp). In that case, we obtain for the photonic pump
power spectrum the Lorenzian form:

Sp(ω) = Nat�
(1)
p

(
diss/2)2

(ω − ωp)2 + (
diss/2)2
, (4.25)

where we have set the value �at
p = 
diss for the atomic pumping

rate. This configuration leads to the specific model Eq. (2.9)
introduced in Sec. II that we have chosen in order to perform
numerical simulations.

2. Second example: Artificial Kennard-Stepanov relation

Another option would be to engineer nontrivial distributions
D(ω) (which we could imagine to do, e.g., by tuning all atoms
to different frequencies, or by using several atomic species) of
the atomic transition frequencies in such a way to simulate
a Kennard-Stepanov relation. More specifically, we choose
losses to be also MarkovianSl(ω) = �l, and the particular form

D(ω) = D0e
−βeffω (4.26)

for the distribution of atomic transition frequencies. In that
case, the pump power spectrum becomes

Sp(ω) = D0�
(1)
p

∫
dω′e−βeffω

′
(
�at

p

/
2
)2

(ω − ω′)2 + (
�at

p

/
2
)2 . (4.27)

In the limit of a very weak atomic pumping rate �at
p � Teff =

1/βeff, we recover the exponential-shaped spectrum:

Sp(ω) = �pe
−βeffω, (4.28)

where �p = π
2 D0
diss�

at
p . The Kennard-Stepanov relation

Eq. (2.8) is thus reproduced artificially even though the pho-
tonic environment is highly out of equilibrium. Theoretically,
this spectral shape (initially proposed in Ref. [41]) can be
reproduced for an arbitrary temperature: If necessary, one can
lower simultaneously the pumping rates �at

p and �R, while
increasing the number of atoms in order to stay within the
previously described conditions of validity of the quantum
Langevin equation (4.21). Concretely, for very low Teff the
engineering procedure might be become more complex as it
requires an high number of emitters with a fine control on
transition frequencies.

C. Pseudothermalization in exciton-polaritons
and VSCSEL experiments

The artificial Kennard-Stepanov configuration mentioned
in Sec. IV B 2 might also be naturally reproduced in low-T
exciton-polaritons experiments [8,9].

While most theoretical works in the early literature [16,17]
have stressed on the impact of exciton-exciton scattering pro-
cesses in the relaxation of polaritons into the bottleneck region
of lower branch, recent works [18] have raised the possibility
that high-energy longitudinal optical (LO) phonons might play
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an important role in the polariton relaxation dynamics in
some regimes. We discuss here what the implications might
be regarding the nature of thermalization in such physical
situation.

Since the excitons (located in a higher energy with respect
to the bottom of the polaritonic band) usually undergo fast
collisions and energy exchanges processes and also possess a
much longer lifetime than polaritons, the exciton reservoir is
rather well thermalized (while polaritons might not be able
to thermalize among them) and can thus be described by
a classical Boltzmann distribution nX(εX

k ) ∝ e−βεX
k (excitons

being very massive particles, their degree of degeneracy is
usually very weak in those experiments).

On one hand, since the LO phonons dispersion law is
typically very flat and strongly located around the frequency
ωLO (in stark contrast with acoustic phonons whose disper-
sion presents a light-cone structure), the LO phonon-assisted
scattering process of excitons→polaritons maintains the full
information on the excitonic energy distribution and transfers
it into the frequency dependence of the polariton injection
rate (up to an energy shift h̄ωLO): In the hypothesis that
LO phonon-assisted scattering processes are dominant, the
polaritonic injection rate should thus present an exponential
frequency dependence (Sp(ω) 
 �P

p e−βeff ω) at a good degree
of approximation.

On the other hand, in that same picture, polariton→exciton
recombination processes are strongly inhibited as they would
involve the absorption of a phonon from the LO phononic
reservoir, which can be approximated as being close to the
vacuum state [LO phonons possess a significantly higher
energy (
5 meV) than the typical temperatures (
0.5 meV) in
exciton-polaritons). As a consequence, polaritonic losses are
by far dominated by mirror transparency effects and can be well
represented by Markovian processes Sl(ω) 
 �P

l = xph�ph,
where xph is the photonic fraction in the bottom of the lower
polaritonic branch and �ph is the photonic loss rate. One
concludes that the Kennard-Stepanov relation Sp(ω)/Sl(ω) 

�P

p /�P
l e−βeff ω might be artificially verified in that context (at

least in a broad frequency region) and polaritons might be
subject to pseudothermalization.

Even more important, a similar phenomenology may be
invoked to explain the peculiar features observed in the
VCSEL device of Ref. [10]: As the excitonic-polaritonic
strong coupling is broken by the high density of excitations
present in the active medium, scattering between bare photons
is expected to be very inefficient. The observed thermal
distribution of photons can therefore be hardly explained
in terms of standard collisional thermalization within the
gas of photons, but must be inherited by energy exchange
processes with the external environment, which can be well
represented by the combination of an amplifying reservoir
formed of thermalized free carriers and a dissipative reser-
voir due transparency of the cavity mirrors. Here again, the
Kennard-Stepanov relation might be artificially verified in
specific configurations where the processes of absorption by
free carriers are inhibited and thus weak with respect to
the rate of particle losses, leading to an apparent photonic
thermalization.

Based on these arguments, the measurement of thermal
signatures in the polaritonic (resp., photonic) observables in

exciton-polariton (resp., VCSEL) experiments has to be inter-
preted carefully. On one hand, one should first experimentally
investigate whether the thermal-like momentum distribution is
associated to a satisfied FDT using, e.g., the protocol proposed
in Ref. [34]. Then, before drawing any conclusion regarding a
true thermalization or a pseudothermalization, one should also
verify that polaritons (resp., photons) are indeed equilibrated
with their environment of excitons (resp., free carriers), and
phonons: For this purpose, one way to proceed would be to
check the validity of the FDT associated to a pair of operators
Â(t) and B̂(t) (with the notations of Sec. III B) associated
respectively to polariton and the reservoirs degrees of free-
doms, by measuring the corresponding frequency-dependent
effective temperature.

V. HOW TO BREAK PSEUDOTHERMALIZATION

Expectedly, the low-energy pseudothermalization effect
described in Sec. III is not a fully general properties
of driven-dissipative quantum systems, since a wide class
of models cannot be cast into the form of the quantum
Langevin Eq. (2.1), which only implements non-Markovian
loss and pump processes, and does not include many other
possible effects such as the saturation of the emitters or
dephasing.

In this section, we discuss a simple extension of Eq. (2.1),
which allows us to break the emergent equilibrium presented
in Sec. III. More specifically, we introduce a generalized
Bogoliubov–de Gennes model at low energies and low mo-
menta, with a complex kinetic energy and a complex chemical
potential:

−iω�̂k(ω) = − i[zεk�̂k(ω) + z̃μ(�̂k(ω) + �̂
†
−k(−ω))]

+ ξ̂neq,k(ω). (5.1)

The noise autocorrelation is

〈ξ̂neq,k(ω)ξ̂ †
neq,k′ (ω′)〉 = 〈ξ̂ †

neq,k(ω)ξ̂neq,k(ω′)〉
= δk−k′ δω−ω′Sl(ωBEC), (5.2)

and complex couplings are written in phase-modulus represen-
tation as z = ρe−iθ , z̃ = ρ̃e−iθ̃ . This model is very similar to
the low-energy model Eq. (2.30) derived in a previous section,
except that the kinetic energy εk and the chemical potential μ

have respectively been multiplied by two different complex
numbers z and z̃ (while they were multiplied by the same
complex in the low-energy theory, Eq. (2.30). In Secs. V A
and V B we will show that in case of alignment in the complex
plane of these couplings (i.e., θ = θ̃ ), we obtain an effective
equilibrium theory, while in the case of a misalignment,
the steady state presents nonequilibrium features. Finally in
Sec. V C, we will describe a few ways to implement those
modified complex couplings.

A. Static correlations

Analyzing Eqs. (5.1) and (5.2), we obtain the following ex-
pression for the static momentum distribution n

neq
k = 〈�̂†

k�̂k〉
and the anomalous average Aneq

k = 〈�̂k�̂−k〉 (the derivation
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is very similar to the one made in Appendix B):

n
neq
k = |zεk + z̃μ|2Sl(ωBEC)/2

[ρsin(θ )εk + ρ̃sin(θ̃)μ]ρεk[ρεk + 2cos(θ − θ̃ )ρ̃μ]
,

(5.3)

Aneq
k = −(z∗εk + z̃∗μ)z̃μSl(ωBEC)/2

[ρsin(θ )εk + ρ̃sin(θ̃ )μ]ρεk[ρεk + 2cos(θ − θ̃ )ρ̃μ]
.

(5.4)

In the general case, it is not possible to further simplify those
expressions, and the steady-state properties differ from the
equilibrium statistics, as static correlations cannot be cast in the
form of a Rayleigh-Jeans thermal law (e.g., for the momentum
distribution nk = Teff (εk + μ)/E2

k ). However, considering the
particular case in which the complex couplings z and z̃ are
aligned in the complex plane, i.e., θ = θ̃ , one obtains

n
aligned
k = T̃eff(ρεk + ρ̃μ)

ρεk(ρεk + 2ρ̃μ)
, (5.5)

Aaligned
k = −T̃effρ̃μ

ρεk(ρεk + 2ρ̃μ)
, (5.6)

which compared to Eqs. (3.3) and (3.4) corresponds to a low-
energy effective equilibrium statistics with

T̃eff = Sl(ωBEC)

2sin(θ )
(5.7)

and renormalized couplings εk → ρεk , μ → ρ̃μ. This is not
surprising since in that case, the generalized Bogoliubov–de
Gennes model given by Eq. (5.1) coincides with the low-
frequency limit Eq. (2.30) of the non-Markovian Langevin
equation studied in this paper. We conclude that the alignment
configuration of the couplings z and z̃ of Eq. (2.30) corresponds
to an effective equilibrium situation, while the general case
of nonalignment drives the system out of equilibrium, as
thoroughly discussed in Refs. [26,27,31].

Although Eqs. (5.3) and (5.4) present deviations from
the Rayleigh-Jeans law for Ek → 0, for a generic choice of
misalignment of z and z̃ the low-momentum correlations still
present a 1/k2 equilibrium-like infrared divergence and we
do not expect any particular loss of coherence by driving
the system out of equilibrium, at least in three or higher
dimensions. This is generically valid except for the specific
pathological configuration in which we set the phase θ to 0 and
the phase θ̃ to π/2. In this case, which can be obtained by using
Markovian baths, by canceling the photon-photon interactions
and adding saturation to the pump (see Sec. V C 2), we indeed
obtain a very different behavior:

n
pathological
k = Sl(ωBEC)

[
ε2
k + (ρ̃μ)2

]
2ρ̃με2

k

, (5.8)

Apathological
k = iSl(ωBEC)(εk + iρ̃μ)ρ̃μ

2ρ̃με2
k

. (5.9)

We see that the momentum distribution changes behavior at
long range: n(k) 
 1/k4. Such a feature has already been
predicted in Ref. [21].

Because of these increased low-momenta fluctuations, we
might be tempted to conclude that in three dimensions, a

nonequilibrium free Bose gas in the presence of a pump and
saturation, i.e., a three-dimensional (3D) VCSEL [48] cannot
Bose condense (while the equilibrium free Bose gas is known
to condense). However, in this case the Bogoliubov approach is
inconsistent and cannot be applied in a straightforward manner
since the nonlinear corrections are very large for small k modes
and cannot be neglected.

Instead, accessing the long-range properties in this regime
requires applying the renormalization group methods to this
nonequilibrium system while keeping all relevant nonlineari-
ties (including those providing from saturation effects): Our
understanding is that during the RG flow [26,27], a small
photon-photon interaction should be generated and the true
correlations should be thus in n(k) 
 1/k2, saving thus the
convergence. Such effect was verified numerically in Ref. [56]
by simulating the Kardar-Parisi-Zhang equation [however, in
that case the simulations were done in a one-dimensional (1D)
configuration].

B. Momentum-dependent effective temperatures from the FDT

It is also interesting to check whether a misalignment of the
couplings affects the validity of the FDT. To do so, we will
use an exact model providing a quantum Langevin equation
valid at all frequencies which leads at low frequencies and
low momenta to the effective description, Eq. (5.1), with
nonaligned couplings z and z̃: This model is defined in the
next section in Eqs. (5.11) and (5.10). We computed the
corresponding effective temperatures β1(k,ω) and β2(k,ω) by
means of the definitions in Eqs. (3.24).

In Fig. 7, we show β1(k,ω) (resp., β2(k,ω)) in the upper
panel (resp., lower panel) in function ω in units of 
diss

for various momenta k: We notice that in the region |ω| �

diss, these effective temperatures do not take identical values,
but indeed tend toward a momentum-dependent value. We
conclude that pseudothermalization is broken not only at a
static level (in the sense that it does not respect perfectly the
Rayleigh-Jeans law obtained for a weakly interacting isolated
Bose gas) in the case of misalignement, but also at a dynamical
level, as the FDT is not verified at low frequencies.

C. Examples of modified quantum optics models driving the
system out of equilibrium

In this section, we discuss various physical ways to obtain
the modified Bogogliubov–de Gennes system, Eq. (5.1), with
misalignment of the complex couplings, by mean of simple
modifications with respect to the quantum optics model intro-
duced in Sec. IV.

1. Emitters with dispersion

The first model we introduce is very similar to the one
presented in Sec. II, except that we add a momentum de-
pendence to the photonic pump power spectrum Sp,k(ω). In
the quantum optics model presented in Sec. IV, this can be
obtained by taking into account the recoil of the mobile and
massive two-level atoms, which leads to the expression

Sp,k(ω) = �p
(
diss/2)2(

ω + ε
p
k − ωp

)2 + (
diss/2)2
(5.10)
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FIG. 7. Test of the FDT-KMS relation in the presence of disper-
sion of the emitters. Panel (a) [resp., panel (b)]: frequency-dependent
effective temperature β1(k,ω) (resp., β2(k,ω)) defined in Eq. (2.6)
for a Lorentzian pump, mobile and massive emitters, and Markovian
losses (model defined in Sec.V C 1), as a function of the frequency ω

in units of 
diss and for various momenta k. Parameters: Mp/m = 3,
�l/�0

p = 0.3, �p/
diss = 0.01, and δ/
diss = −2. For each panel,
the various curves correspond to increasing values of the momen-
tum k, chosen in such a way that the corresponding Bogoliubov
energies span a wide energy range across the effective temperature
T

disp
eff ≡ 1/β

disp
eff = 0.54
diss: k/kth = 3 × 10−2 for the green solid

line, k/kth = 1.83, for the orange dashed line, k/kth = 2.43 for the
red dotted line, k/kth = 3.66 for the dash-dotted blue line. Here kth is
also defined by E(kth) = T

disp
eff .

with ε
p
k = k2/2Mp defined as the recoil energy for the emission

of a photon of a wave vector k. If the mass Mp of the emitters is
small enough, this effect can be physically relevant. We obtain
thus the following Langevin equation:

∂

∂t
ψ̂k(t) = − i[ψ̂k(t),Hph(t)] +

∫ ∞

−∞
dτ [�p,k(τ )

− �l(τ )]ψ̂k(t − τ ) + ξ̂disp,k(t), (5.11)

with the non-Markovian momentum-dependent dissipative
kernel for pumping,

�p,k(τ ) = �(τ )
∫

ω

Sp,k(ω)e−iωτ , (5.12)

and noise correlations in momentum-frequency space,

〈ξ̂disp,k(ω)ξ̂ †
disp,k′ (ω′)〉 = δk−k′ δω−ω′Sl(ωBEC + ω), (5.13a)

〈ξ̂ †
disp,k(ω)ξ̂disp,k′ (ω′)〉 = δk−k′ δω−ω′Sp,k(ωBEC + ω).

(5.13b)

We used the theory Eq. (5.11) and applied the Bogoliubov
methods in order to compute analytically the correlation
functions in momentum-frequency space. In order to test the
FDT, we define for this specific model the physical quantity

βeff ≡= d

dω
ln

[ Sl(ω)

Sem,k(ω)

]∣∣∣∣
ω=ωBEC,k=0

, (5.14)

which we plotted in dashed horizontal lines in Figs. 7(a) and
7(b) and compared to the momentum-frequency-dependent
inverse temperatures β1(k,ω) and β2(k,ω) of Eq. (3.24).

Still in the Bogoliubov regime, from Eq. (5.11) we can
derive a low-energy and low-momentum effective theory by
applying a procedure similar to that in Sec. II F:

−iω�̂k(ω) = − i{zdispεk�̂k(ω) + z̃dispμ[�̂k(ω)

+ �̂
†
−k(−ω)]} + ξ̄disp,k(ω). (5.15)

The noise correlations are

〈ξ̄disp,k(ω)ξ̄ †
disp,k′(ω′)〉 = δk−k′ δω−ω′Sl(ωBEC), (5.16a)

〈ξ̄ †
disp,k(ω)ξ̄disp,k′(ω′)〉 = δk−k′ δω−ω′Sp,0(ωBEC), (5.16b)

where Sp,0(ωBEC) = Sl(ωBEC) and the complex couplings
are

zdisp = (1 + δ̃ − i�̃)
(
1 + i2Mp ∂2

k �p |k=0,ω=ωBEC︸ ︷︷ ︸
<0

)
, (5.17)

z̃disp = (1 + δ̃ − i�̃). (5.18)

We obtain some effective complex kinetic energy and chemical
potential for the photonic dynamic. However, as predicted,
because of the dispersion of the emitters an additional mul-
tiplicative contribution has been added to the complex kinetic
energy, inducing thus a phase misalignment between the
complex terms zdisp and z̃disp.

2. Saturation of the pump or two-body losses

In the second model, we propose to add saturation to
the pump or two-body losses. Based on the photonic case
presented in Sec. IV, some saturation can stem from the
fact that the emitters are two-level atoms and thus are not
perfectly linear systems. In this case, at a qualitative level the
Langevin equation for the quantum fluctuations becomes at
low frequency

−iω�̂k(ω) = − i{zsatεk�̂k(ω) + z̃satμ[�̂k(ω) + �̂
†
−k(−ω)]}

+ ξ̄sat,k(ω). (5.19)
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and the complex couplings are

zsat = (1 + δ̃ − i�̃), (5.20)

z̃sat = (1 + δ̃ − i�̃)(1 − iγsat). (5.21)

γsat is a dimensionless coupling quantifying the saturation ef-
fect, i.e., an increase of the dissipation strength with the density
�̂

†
k�̂k, which linearized gives in the Bogoliubov approach a

complex contribution proportional to �̂k + �̂
†
−k. Here again,

because of saturation which multiplies the chemical potential
by some complex, we also observe a misalignment between
zsat and z̃sat.

For the sake of simplicity, we assumed autocorrelations to
be Gaussian at a first level of description:

〈ξ̄sat,k(ω)ξ̄ †
sat,k′ (ω′)〉 = δk−k′ δω−ω′Sl(ωBEC), (5.22a)

〈ξ̄ †
sat,k(ω)ξ̄sat,k′ (ω′)〉 = łδk−k′ δω−ω′Sl(ωBEC). (5.22b)

Yet, it is worth highlighting that, in the presence of satu-
ration, the noise should present nontrivial nonlinear autocor-
relations depending on the quantum field �̂k. Studying the
effect of these corrections to Gaussianity in the context of
pseudothermalization will be the subject of a future work. The
identity between both right-hand sides in Eq. (5.22), which
leads to an effective classical noise, is a consequence of the
restriction to the regime of low momenta and low frequencies,
where a large average occupancy of each momentum state is
expected above the BEC threshold, and nonclassical effects
related to the discrete nature of particles are rather weak
corrections.

VI. CONCLUSION AND PERSPECTIVES

In this work, we have analyzed the pseudothermalization
effect, where an open quantum system coupled to several non-
thermal and non-Markovian reservoirs presents an emergent
thermal behavior in spite of the highly nonthermal nature of its
environment. Our approach was based on a quantum Langevin
formalism which allows us to overcome the inherent issues
related to the quantum master equation formalism and the
quantum regression theorem in a non-Markovian context and
then to compute arbitrary multiple time correlators. The focus
was set on the exactly solvable case of a driven-dissipative
weakly interacting Bose-Einstein condensate.

In particular, we have shown that pseudothermalization
not only occurs at the static level but is also accompanied
by the satisfaction of the fluctuation-dissipation theorem at
the dynamical level. According to the spectral properties of
the chosen reservoirs, equilibrium signatures can be observed
either only at low energies or globally. In the latter situation,
which might relevant in some exciton-polariton and VCSEL

experiments, the steady-state properties of the system alone are
completely undistinguishable from the ones of an equilibrium
system. Finally, several modifications of the initial model
allowing us to break this pseudothermalization effect have been
discussed, with a particular stress on the role played by the
dispersion and the saturation of the emitters.

The results of this work challenge the common idea that
only open quantum systems in contact with an equilibrated
environment can behave completely thermally. It implies
in particular that, before concluding to an equilibration, an
experimentalist should check the thermal character not only
of the system correlations but also of the crossed correlations
involving altogether the degrees of freedom of the system and
the various reservoirs.

While this pseudothermalization effect is expected to be
robust and universal with respect to the many-body dynamics
of the considered physical system in the case where the
Kennard-Stepanov relation is verified globally, it is unclear
whether low-energy pseudothermalization should apply for
any choice of system Hamiltonian in the generic case where the
Kennard-Stepanov relation is only valid locally in frequency
space: Future studies will be dedicated in particular to the
interplay between low-energy pseudothermalization and the
departure of the Bogoliubov regime.
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APPENDIX A: QUANTUM CORRELATIONS IN
FREQUENCY AND THE FDT

In this appendix, we compute the correlation matrix in
momentum frequency space Ck(ω) defined in Eq. (2.28). We
then move to the calculation of the momentum-frequency-
dependent effective inverse temperatures involved in the test
of the validity of the FDT, and defined in Eqs. (3.24) and
(3.25). By inverting the Langevin equation in frequency space
Eq. (2.25), we get(

�̂k(ω)

�̂
†
−k(−ω)

)
= i

ω − Lk(ω)

(
ξ̃k(ω)

−ξ̃
†
−k(−ω)

)
. (A1)

After calculation, this gives us

(
�̂k(ω)

�̂
†
−k(−ω)

)
= i

{ω − [εk + μ + i�̃(ω)]}[ω + εk + μ − i�̃∗(−ω)] + μ2

{
[ω + εk + μ − i�̃∗(−ω)]ξ̃k(ω) − μξ̃

†
−k(−ω)

−μξ̃k(ω) + [−ω + εk + μ + i�̃(ω)]ξ̃ †
−k(−ω)

}
,

(A2)
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and, taking the Hermitian conjugate,(
�̂

†
k(ω)

�̂−k(−ω)

)
= −i

{ω − [εk + μ − i�̃∗(ω)]}[ω + εk + μ + i�̃(−ω)] + μ2

{
[ω + εk + μ + i�̃(−ω)]ξ̃ †

k(ω) − μξ̃−k(−ω)

−μξ̃
†
k(ω) + [−ω + εk + μ − i�̃∗(ω)]ξ̃−k(−ω)

}
.

(A3)

We get, after tracing over the various baths, the expression for
the correlation matrix:

Ck(ω) = 1

Nk(ω)N−k(−ω)

(
M

(11)
k (ω) M

(12)
k (ω)

M
(21)
k (ω) M

(22)
k (ω)

)
︸ ︷︷ ︸

≡M(ω)

, (A4)

where

Nk(ω) = {ω − [εk + μ + i�̃(ω)]}
×[ω + εk + μ − i�̃∗(−ω)] + μ2, (A5a)

M
(11)
k (ω) = Sl(ωBEC + ω)|ω + εk + μ + i�̃(−ω)|2

+Sp(ωBEC − ω)μ2, (A5b)

M
(21)
k (ω) = −Sl(ωBEC + ω)[ω + εk + μ + i�̃(−ω)]μ

+ Sp(ωBEC − ω){ω − [εk + μ + i�̃(ω)]}μ,

(A5c)

M
(12)
k (ω) = − Sl(ωBEC + ω) × [ω + εk + μ − i�̃∗(−ω)]μ

+ Sp(ωBEC − ω){ω − [εk + μ − i�̃∗(ω)]}μ,

(A5d)

M
(22)
k (ω) = Sl(ωBEC + ω)μ2 + Sp(ωBEC − ω)

×|ω − [εk + μ + i�̃(ω)]|2. (A5e)

To test the FDT, it is also useful to calculate the ratios
〈�̂k(ω)�̂†

k〉
〈�̂†

k(ω)�̂k〉 and 〈�̂k(ω)�̂−k〉
〈�̂k(−ω)�̂−k〉 . We obtain the following expressions:

〈�̂k(ω)�̂†
k〉

〈�̂†
k(ω)�̂k〉

= Sl(ωBEC + ω) + Sp(ωBEC − ω)Ak(ω)

Sp(ωBEC + ω) + Sl(ωBEC − ω)Ak(ω)
, (A6)

〈�̂k(ω)�̂−k〉
〈�̂k(−ω)�̂−k〉

= Sl(ωBEC + ω) + Sp(ωBEC − ω)Bk(ω)

Sp(ωBEC + ω) + Sl(ωBEC − ω)Bk(ω)
,

(A7)

with

Ak(ω) = μ2

|ω + εk + μ + i�̃(−ω)|2 , (A8)

Bk(ω) = −ω + εk + μ − i�̃∗(ω)

ω + εk + μ − i�̃∗(−ω)
. (A9)

APPENDIX B: STATIC CORRELATIONS AT LOW ENERGY

In this appendix, we calculate the static correlations at
steady state in the low-energy regime Ek � 
diss. In this
regime, using the definition Eq. (2.31) as well as the fact
that Sl(ωBEC) = Sp(ωBEC), we can approximate the expression

Eq. (A4) of the correlation matrix calculated in the previous
appendix as

Nk(ω) 
 = 1

|z|2 {[ω − z(εk + μ)][ω + z∗(εk + μ)]+|z|2μ2}

= 1

|z|2 (ω − ω+
k )(ω − ω−

k ), (B1a)

M
(11)
k (ω) 
 Sl(ωBEC)

|z|2 [|ω + z(εk + μ)|2 + |z|2μ2], (B1b)

M
(21)
k (ω) 
 −2Sl(ωBEC)(εk + μ)μ, (B1c)

M
(12)
k (ω) 
 −2Sl(ωBEC)(εk + μ)μ, (B1d)

M
(22)
k (ω) 
 Sl(ωBEC)

|z|2 [|ω − z(εk + μ)|2 + |z|2μ2], (B1e)

where ω±
k are the complex low-energy mode frequencies of

the condensate given by Eq. (2.33). From these expressions,
we can calculate the dynamic structure factor Sk(t), which is
defined as

Sk(t) =
(

〈�̂k(t)�̂†
k(0)〉 〈�̂k(t)�̂−k(0)〉

〈�̂†
−k(t)�̂†

k(0)〉 〈�̂†
−k(t)�̂−k(0)〉

)
, (B2)

and is related to the correlation matrix Ck(ω) as
∫
t
Sk(t)e−iωt =

Ck(ω). Using a pole integration in the complex plane, we obtain

Sk(t) = −i|z|2
2(ω+

k − ω−
k )(ω+

k + ω−
k )

×
[
M(ω+

k )e−iω+
k t

2ω+
k

− M(ω−
k )e−iω−

k t

ω−
k

]
, (B3)

where M(ω) has been defined in Eq. (A4). Setting t = 0, we
find the static correlation matrix

Sk(0) = −i|z|2
2(ω+

k − ω−
k )(ω+

k + ω−
k )

[M(ω+
k )

2ω+
k

− M(ω−
k )

ω−
k

]
.

(B4)

By injecting the expressions given by Eqs. (B1) as well as the
explicit expressions for the condensate frequencies Eq. (2.33),
we find

Sk(0) = Sl(ωBEC)|z|2
2zIE

2
k

(
εk + μ −μ

−μ εk + μ

)
. (B5)

From Eqs. (2.31) and (2.6), we have that zI

|z|2 = Im(z−1) =
− dRe(�̃(ω))

dω
|
ω=0

= βeffSl(ωBEC)
2 , from which we deduce the final

expression:

Sk(0) = Teff

E2
k

(
εk + μ −μ

−μ εk + μ

)
. (B6)
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