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Basic mechanisms in the laser control of non-Markovian dynamics
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Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the
laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly
coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve
the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction
in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of
2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of
such fields on the central system populations and coherence are examined, putting the emphasis on the relation
between the increase of non-Markovianity and the slowing down of decoherence processes.
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I. INTRODUCTION

Nonunitary dynamics among quantum states of a subsystem
coupled to its environment involving a large number of degrees
of freedom, where dissipation and decoherence evolve simul-
taneously, is the basic concern of the theory of open quantum
systems (OQSs) [1–7]. Since no physical system can truly
be considered isolated, OQSs are actually very common, not
only in physics but also in chemistry and biology, where they
have recently attracted considerable attention in applications
ranging from quantum technologies in the condensed phase,
to electronic and proton transfers in flexible proteins [8]. But
even more important is to build quantum control strategies
to optimize physical observables [9,10] such as decoherence
rates or efficient and fast charge transfers over large molecular
structures, with final challenges as crucial as light harvesting
in photosynthetic organisms [11–13].

When aiming at controlling OQSs over a wide range of
time, energy, or temperature, the environmental bath response
to the central system can no longer be neglected. As a conse-
quence, this induces large memory effects with non-Markovian
evolution describing dissipation and decoherence that should
appropriately be taken into account [3,4]. In other words, any
control exerted on the central system would be limited in
time and robustness by the unavoidable dissipation towards
the bath [9,10,14–20]. The ultimate challenge should be to
take advantage of the backflow of information characterizing
non-Markovianity—to control the central system’s physical
observables [21,22]. Said differently, the question of the
extent to which appropriately controlling memory effects (i.e.,
non-Markovianity or entropy, for instance), fighting against
decoherence, would affect the robustness of the central system

characteristics, protecting them from dissipation, is of major
interest. Three strategies to reach this goal can be proposed:

(i) Acting on the central system alone, through a strong
static dc field, produces a Stark shift among the eigenenergies
of the two-level system. Enhanced non-Markovianity is ex-
pected from off-resonant excitation [23]. The present work is
precisely dedicated to the implementation and generalization
of such strategies to intense laser field controls. Moreover, we
are observing the consequences of increased non-Markovianity
on the central system populations and coherence.

(ii) Still acting on the central system alone, but now using
an optimal control scheme aiming at some protection against
decoherence of its physical characteristics (population revival
or robust exchange), we can observe the consequences in
terms of the bath non-Markovian response. This analysis
which goes beyond the scope of this paper will be published
elsewhere [24].

(iii) Using local control in an appropriate way to in-
crease some non-Markovianity witnesses (volume of acces-
sible states, entropy, or free energy), we relate this response
with its expected consequences, such as less dissipative central
system observables. This future prospect, i.e., taking advantage
of non-Markovianity for a robust control of the full system
dynamics, would presumably require, for its efficiency, acting
on both the central system and its environmental bath in a direct
way. This could be reached by referring to some collective
modes which guide the flow of information from the central
system to the bath in a reversible manner [3].

It is, however, to be noted that even if the control field is
assumed to explicitly have a dipole interaction with the central
system only, it still has an influence on the bath dynamics
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through a memory kernel involved in the master equation
driving the central system evolution [25–27].

Control referring to external fields has also been the purpose
of some recent works in the literature. Among others, we can
mention Ref. [22], where the authors show that a periodical
modulation of the driving field can enhance the non-Markovian
behavior of an open quantum system. In Ref. [28], the de-
gree of non-Markovianity for a driven system is investigated
for a finite-size environment. The interplay between driving
and non-Markovianity is also studied in Ref. [29] with a
quantum thermodynamic perspective. The validity of the
fixed-dissipator assumption for driven non-Markovian open
quantum systems is discussed in Ref. [30]. The role of initial
correlations between the system and the bath is shown in the
speedup of control processes in Ref. [31].

The paper is organized as follows. In Sec. II, a spin-boson
Hamiltonian [1,32] is worked out, referring to realistic pa-
rameters taken from a model heterojunction between fullerene
and oligothiophene molecules [33–35]. The dynamics of the
central system density matrix described by a non-Markovian
master equation is solved using the so-called hierarchical
equations of motion (HEOM) up to convergence [36–38].
Stark shift as a basic mechanism for non-Markovianity is
introduced through a qualitative Fano-type analogy and fully
implemented in a realistic laser control scheme. The time
evolution of the volume of accessible states illustrated on
an appropriate Bloch sphere is taken as a measure of non-
Markovianity [39]. We emphasize that several other recent
publications [40–42], although dealing with time-dependent
fields within the HEOM formalism, have actually not explicitly
addressed non-Markovianity enhancement, as is done in the
present work. Section III is dedicated to the presentation of the
results. The external control fields are chosen both as realistic
ultrashort-duration dc flashes, or terahertz single optical cycle
pulses with intensities less than 5×1012 W/cm2. The major
result is a spectacular enhancement of non-Markovianity that
could be achieved through a tunable Stark shift, which thus
turns out to be a basic control mechanism for such OQSs.
Finally, the response to such a control of the central system’s
physical observables (populations and coherence) is investi-
gated. Additionally, Supplemental Material is provided [43]
to illustrate a typical trajectory of a Bloch vector and the time
evolution of the volume in field-free and field-controlled cases.

II. MODEL AND THEORY

A. The spin-boson Hamiltonian

Having in mind a donor-acceptor type of charge-transfer
process, we consider a fullerene-oligothiophene heterojunc-
tion modeled by a molecular dimer within a two-level ap-
proximation making up the central system S [33–35]. More
precisely, a spinlike Hamiltonian HS describes two electronic
states |1〉 and |2〉 of a diabatic representation, radiatively
coupled through a dipole interaction. The 2×2 matrix repre-
sentation of HS (in atomic units [a.u.], where h̄ = 1) is given
by

HS(t) = δσz + Wσx − μE(t), (1)

where σx and σz are the corresponding Pauli matrices, 2δ

measures the diabatic energy gap between |1〉 and |2〉, and

W is the interstate potential electronic coupling. Their actual
values are those corresponding to the heterojunction with an
interfragment distance fixed at R = 2.5 Å, leading to 2δ =
0.517 eV and W = 0.2 eV. This amounts to an eigenenergy
gap of ω0 = 0.654 eV (that is, 0.024 a.u.) in the adiabatic
basis obtained by diagonalizing the field-free Hamiltonian,
with a corresponding Rabi period of 6.3 fs. As for the dipole
matrix μ, it is the only quantity entering the model that is
not yet calculated from quantum chemistry codes. For our
donor-acceptor system, we model it, in the diabatic basis, as a
diagonal matrix

μ = μ0σz = μ0

[
1 0
0 −1

]
, (2)

assuming a typical value μ0 = 1 a.u. Finally, the time-
dependent electric field amplitude is denoted E(t) and the
resulting time dependence of HS(t) occurs only through the ra-
diative coupling in the length gauge, −μE(t), with the addi-
tional assumption that the dipole vector is aligned with the
linearly polarized electric field [44]. It is worth noting that,
even if the experimental feasibility of such an alignment is
questionable, the ultrashort pulse durations we are referring to
are such that the molecular fragment rotational dynamics can
safely be assumed as frozen.

All nuclear degrees of freedom involved in the vibronic
description of the heterojunction are associated with a bosonic
bath. More precisely, this bath collects all normal modes
of the two oligothiophene-fullerene fragments. The bosonic
time-independent part of the Hamiltonian is written in terms
of (mass-weighted) nuclear coordinates qk and their associated
momenta pk , k labeling a given harmonic oscillator associated
to a normal mode:

Hboson = I
1

2

N∑
k=1

[
p2

k + ω2
k(qk ± dk/2)2

]
, (3)

where dk are the spatial shifts between equilibrium geometries
in the two electronic states. Actually, dk’s are responsible for
the central system-bath couplings (vibronic couplings) as it is
clearly shown when displaying Hboson in three terms:

Hboson = HB + HSB + Hren (4)

with

HB = I
1

2

N∑
k=1

[
p2

k + ω2
kq

2
k

]
, (5)

HSB = Bσz, B =
N∑

k=1

ckqk, (6)

and

Hren = I
N∑

k=1

(ck/
√

2ωk)2, (7)

where HB is the bath Hamiltonian, HSB is the system-bath
coupling, B is a collective bath coordinate with vibronic
coupling coefficients ck = ω2

kdk/2 involving dk , Hren is an
energy renormalization, and I is the unitary matrix in the
system space. In the following, N = 264 normal modes are
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TABLE I. Parameters for spectral density J (ω).

pk (a.u.) �k (a.u.) �k (a.u.)

3.72×10−10 6.99×10−3 5.86×104

1.90×10−11 3.05×10−3 5.50×104

7.80×10−12 4.00×10−3 4.70×104

5.80×10−12 1.94×10−3 6.83×104

8.00×10−12 5.20×10−3 7.00×104

retained and their frequencies ωk are assumed to be the same
in both electronic states |1〉 and |2〉. It is shown that an alternate
way to fully characterize the spin-boson coupling is through a
spectral density written as a frequency comb [2]:

J (ω) = π

2

∑
k

c2
k

ωk

δ(ω − ωk). (8)

In our heterojunction case, the spectral density is given as a
continuous functional form [25,45]

J (ω) =
M∑

k=1

ωpk[
(ω − �k)2 + �2

k

][
(ω + �k)2 + �2

k

] , (9)

with all fit parameters (up to M = 5) provided in Table I.
In summary, apart from the dipole matrix, all parameters

entering the spin (energy gap and residual diabatic interstate
coupling) and bosonic (spectral density) parts are those of the
heterojunction characterized by its interfragment geometry.

B. The non-Markovian master equation

The key observable in OQS dissipative dynamics is the
reduced density matrix ρ which is given as the partial trace,
over bath degrees of freedom, of the full density matrix 	:

ρ(t) = TrB[	(t)]. (10)

Projection techniques used within the Nakajima-Zwanzig [2]
formalism lead to a non-Markovian master equation which
could be recast as

∂tρ(t) = Leff(t)ρ(t) +
∫ t

0
dt ′K(t,t ′)ρ(t ′), (11)

where the effective Liouvillian reads

Leff(t)ρ(t) = −i[(Hs(t) + Hren),ρ(t)] (12)

and K(t,t ′) is the already-mentioned memory kernel. The
solution of Eq. (11) requires an initial condition for which a
separability between the central system and the bath is assumed
at t = 0:

	(0) = ρ(0)ρeq, (13)

ρeq being the bath density matrix at thermal equilibrium. For
complex systems the most challenging part is the numerical
evaluation of the memory kernel. In this work we are using
a well-known strategy based on HEOM [36–38]. One of the
requirements of this method, referring to path-integral tech-
niques, is an exponential expansion of the correlation function
of the collective bath mode B defined in Eq. (6). Actually, the
fluctuation-dissipation theorem relates the correlation function

C to the bath spectral density J [2]:

C(t,t0) = 1

π

∫ +∞

−∞

e−iω(t−t0)

1 − e−βω
J (ω) dω, (14)

where the bath temperature T enters in β = 1/kBT , kB being
the Boltzmann factor. With the two-pole Lorentzian form of
J , referring to Cauchy’s residue theorem when evaluating the
integral in Eq. (14), the correlation function and its complex
conjugate are finally written as [46]

C(t) =
ncor∑
k=1

αke
iζk t (15)

and

C∗(t) =
ncor∑
k=1

α̃ke
iζk t . (16)

The solution of Eq. (11) turns out to be the first element of a
chain of auxiliary density matrices ρn(t) obeying a system of
coupled equations written as

ρ̇n(t) = −i[HS(t),ρn(t)] + i

ncor∑
k=1

nkζkρn(t)

− i

[
σz,

ncor∑
k=1

ρn+
k
(t)

]
− i

ncor∑
k=1

nk(αkσzρn−
k

− α̃kρn−
k
σz),

(17)

where nk = (n1, . . . ,ncor) is a vector giving the occupation
numbers in the ncor dissipative modes involved in the decompo-
sition of C(t) and n±

k = (n1, . . . ,nk ± 1, . . . ,ncor). The level L

of an auxiliary matrix in the hierarchy corresponds to the sum
L = ∑ncor

k=1 nk . The mathematical structure is such that each
density matrix of level L is coupled to matrices of level L ± 1,
and L = 0 leads to ρ(t) = ρ0 with all occupation numbers
zero. Equation (17) is solved at a given level of hierarchy L,
corresponding to a given approximation. It is worth noting
that the first moment of the collective mode B, given as
X1 = TrB[B	(t)], may help for a better understanding of
the correlated system-bath dynamics. The HEOM formalism
provides a direct evaluation of X1 in terms of the first-level
auxiliary matrices (with n such that

∑ncor
k nk = 1) [35]:

X1(t) = −
∑

n

ρn(t). (18)

In particular, the importance of memory effects in Eq. (11) can
directly be probed through this first moment upon recasting it
in the master equation, leading finally to [47]

ρ̇(t) = −i[HS(t),ρ(t)] + i[σz,X
1(t)]. (19)

C. Basic mechanism for control

The spectral density J (ω) is displayed in Fig. 1(a) and its
corresponding correlation function C(t) at room temperature in
Fig. 1(b). In the absence of an external field, the two adiabatic
eigenlevels of the central system are only indirectly coupled
through their environmental bath. J (ω) can be viewed as
a frequency representation of an energy-dependent discrete-
continuum coupling scheme appropriately averaged over the
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FIG. 1. (a) The spectral density J (ω), (b) the square modulus
of the corresponding correlation function |C(t)| in a.u. at T = 300 K,
and (c) the volume of accessible states V (t) (dimensionless, calibrated
to 1 at t = 0). The gap between the two levels, ω0 = 0.024 a.u., is
indicated by the blue vertical arrow in (a).

density of levels of the discretized quasicontinuum. In that
respect, the spin-boson model could be put in analogy with
a standard Fano resonance representation of two discrete
states (central system) facing and interacting [48,49] [through
J (ω)] with a discretized quasicontinuum (set of bath harmonic
oscillators). A highly structured J (ω), such as the one in
Fig. 1 with two well-peaked Lorentzians, is expected to lead
to important memory effects. Such narrow peaks could be
attributed to some long-lived Feshbach resonances that are
locally modifying the density of states. They are supporting
bath collective modes and due to their long enough lifetimes
could temporarily trap the system-bath dynamics, or efficiently
mediate it, ultimately leading to enhanced non-Markovianity.
Even more important for the control purpose is the central
system transition frequency ω0 which can be progressively
tuned through the variation of the external field amplitude
E(t). As has previously been discussed, two extreme situations
can be considered: the on-resonant case, when ω0 matches
one of the two maxima of J (ω), and the off-resonant case
otherwise [50]. The latter is expected to produce the most
important memory effects. However, it should be emphasized
that the different cases we are dealing with in this work turn
out to be basically off-resonant situations. Consequently, the
Fano-inspired model to rationalize them has to be accordingly
refined. Actually for the off-resonant case the central system
is only weakly coupled to the bath (low values of the spectral
density corresponding to ω0). The backflow of information
from the bath to the central system is organized along two
strategies in competition: either (i) on the energy shell, i.e., at
the same frequency as ω0 but with a low system-bath coupling,
or (ii) off the energy shell, i.e., at frequencies corresponding
to local maxima of the spectral density with large system-
bath couplings. The latter strategy requires absorption of
additional photons or excitation of phonons and proceeds from
longer times, leading to non-Markovianity. The availability of
adequate phonon frequencies of bath normal modes for the
internal transitions to occur has also to be taken into account.
The specific peaked structure of the spectral density offers thus
a rather large control flexibility by tuning ω0. As has been
previously suggested, this is expected to be achieved through
an external field producing a fully controlled Stark shift among

the levels of the central system via their transition dipole
[23]. The strategy followed hereafter is precisely based on this
adaptable Stark shift, taken as a basic mechanism. However,
the control field indirectly affects the bath dynamics and does
not completely disentangle the action over the central system
from the bath.

D. Non-Markovian evolution of the volume

Several witnesses of non-Markovianity have recently been
discussed in the literature [3,50,51], among which are the
volume of accessible states [52], the associated decoherence
rate of a time-dependent Lindblad-type evolution [53,54],
and the von Neumann entropy [55]. More precisely, the time
evolution of the central system density matrix can be written
through a quantum dynamical map F (t) by expanding the
density matrix in a (2×2) basis set of Hermitian operators and
an initial condition [52]

ρ̃(t) = F (t)ρ̃(0), for t � 0. (20)

Assuming nonsingularity of F (t) at time t , differentiating
Eq. (20), one gets a time-local matrix equation:

˙̃ρ(t) = L(t)ρ̃(t) = ḞF−1ρ̃(t). (21)

The non-Markovian character is associated with the relaxation
rate of the generator L. The volume of accessible states, V (t),
is obtained by mapping the density matrix to its corresponding
Bloch sphere using the complete orthogonal basis set of Pauli
matrices together with the identity. The time evolution of the
volume of this Bloch ball,V (t), is then given by the determinant
of F (t), a quantity independent of any initial condition:

V (t) = det[F (t)]. (22)

It can also be shown that the total decoherence rate �(t) of L
is related to the volume through [53]

V (t) = V (0) exp

[
−d

∫ t

0
�(t ′)dt ′

]
, (23)

where d is the dimension of the space (here d = 2). Finally,
the dynamics is said to be non-Markovian if

dV (t)

dt
� 0 (24)

or, equivalently, if �(t) < 0, as opposite to a situation where the
total decay rate is always positive. A backflow of information
from the bath to the central system can be observed for values
of �(t) temporarily negative. Then the time evolution of the
volume departs from pure exponential decay and may even
show some bumps which turn out to be clear signatures of
non-Markovianity [39].

III. RESULTS AND DISCUSSION

The numerical results are presented in three sections dis-
cussing the following aspects: (i) determination of generic field
parameters and convergence of the associated dynamical evo-
lution calculations with respect to successive orders of HEOM,
(ii) evolution of the volume and of the total decoherence rate
as resulting from specific control fields, and (iii) consequences
of the control of non-Markovianity on the time evolution of
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0 20 40 60 80 100
t

10−3

FIG. 2. Relative error in V (t) calculated for successive 2L orders
of HEOM. Dashed red curve is the error in V (t) between orders 10
and 12, while the solid blue curve is the same for orders 12 and 14.

physical observables such as populations of the initial state,
coherence, and bath collective modes.

A. HEOM convergence

Figure 1 illustrates, together with the spectral density
and the corresponding evolution of the correlation function,
the time-dependent volume of accessible states, in field-free
conditions. A typical time scale for the overall decay process
could be estimated as about 60 fs, after which the correlation
function has decayed to almost one-third of its initial value and
the volume to almost zero. Our first purpose is to check the
numerical convergence when solving Eq. (17) as a function
of increasing level L of hierarchy which corresponds to
perturbation order 2L. This is done, in a field-free situation,
by evaluating the relative error affecting the volume, that
is, [V (2L + 2) − V (2L)]/V (2L), when increasing 2L. The
results are displayed in Fig. 2 as a function of time up to
100 fs. For the perturbation order 2L = 10 the relative error
remains less than 2×10−3 for the overall dynamics with
some oscillations occurring at about 25 and 45 fs, roughly
corresponding to times leading to a plateau behavior of the
correlation function. When increasing the level of hierarchy,
at perturbation order 2L = 12, the relative error is clearly
attenuated and no longer exceeds 0.5×10−3, which seems to
be acceptable for an overall characterization of the volume.
To avoid highly time-consuming calculations we fix 2L =
12 for the convergence criterion. The required perturbation
order in HEOM basically depends on the importance of the
central system-bath coupling, given by the spectral density.
The inclusion of a control field, even a strong one, within the
central system would only indirectly affect these couplings.
The relevance of the convergence criterion set for the field-
free case has successfully been checked for the field-driven
dynamics.

Finally, it is also interesting to note that the volume is
not decaying monotonously but shows two bumps of modest
amplitude at about 25 and 40 fs. These are signatures of non-
Markovianity presumably due to an off-resonant configuration

0 30 60 90 120 150
−1

−0.5

0

0.5

1

t (fs)

E
(a

rb
.

un
it

s)

FIG. 3. Typical profiles of the electric fields used in the calcula-
tions, in arbitrary units. The dashed blue curve indicates the dc flash
and the solid red curve indicates the ac sine pulse.

and specific spectral density of our model heterojunction. Ac-
tually, the transition frequency ω0 is larger than the frequency
corresponding to the maximum amplitude of J (ω), ωmax =
0.007 a.u. Our control goal is to enhance non-Markovian
signatures (amplitude of the bumps) by positively or negatively
Stark shifting the energy levels of the central system, tuning
the already off-resonant ω0, through the application of control
fields.

B. Control fields

Two types of generic fields for achieving control based on
the Stark shift mechanism are displayed in Fig. 3: a static dc
field with positive or negative amplitudes, and a corresponding
single optical cycle laser pulse with the same period satisfying
the Maxwell equations requirement of a zero time-integrated
area [56]. The half period is taken as 60 fs, basically in
relation with typical decaying behaviors of the correlation
function and the volume, which display a monotonic decrease
at times later that 60 fs with almost negligible values. The
positive or negative amplitudes of the dc field are used to
produce sudden negative or positive Stark shifts. As for the
sine function describing the laser pulse, it is expected to provide
an adiabatically switched time-dependent excitation producing
progressively the Stark shift which is sought.

Inspired by and analogous with the Fano model, we provide
a numerical proof of the Stark shift mechanism on the non-
Markovian control of the bath response by calculating the
volume of accessible states for a collection of increasing
dc field amplitudes ranging from E = 1.43×10−5 to E =
9.97×10−5 a.u. (leading to intensities ranging from 5×1011

up to 3.5×1012 W/cm2). Such fields produce transition-
frequency gaps in the two-level system ranging from 0.015
to 0.042 a.u.. When comparing with the field-free transition
frequency ω0 = 0.024 a.u., both lower and higher shifts are
observed (i.e., positive or negative contributions of the control
fields). But, most importantly, all situations which are depicted
are nonresonant with respect to ωmax = 0.007 a.u. It has
to be emphasized that the Fano-type model interpretation
can favor either positive or negative Stark shifts mediating
off-the-energy-shell processes that are in competition in such
nonresonant cases, putting the system transition frequency far-
ther from or closer to the maximum spectral density frequency.
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FIG. 4. Time evolution of the volume V of accessible states in
the Bloch sphere for different intensities of ultrashort dc flash. V

calibrated to 1 at t = 0 is dimensionless.

The results of the corresponding time evolution of the volume
are gathered in Fig. 4. Several points are in order:

(i) For times t � 60 fs a noticeable enhancement of non-
Markovianity is observed for intensities of the order of 1×1012

W/cm2, both with respect to the slowing down of the overall
decaying behavior and especially for the increasing amplitude
of the bumps.

(ii) Such signatures are very much enhanced with stronger
fields resulting in bumps with spectacular amplitudes reaching
about 20% of the initial value, and an overall decay which does
not exceed 40% at time t = 60 fs, as compared with a value of
about 10% for the field-free case. The bump periodicity (about
15 fs) is less than that of the field-free case (about 20 fs). This
could be related to two effects, namely, the variation of the
Rabi transition period of the central system and the indirect
action of the control field on the bath.

(iii) For times exceeding 60 fs, when the Stark shift
becomes negative, still in conformity with the Fano-model
analogy, all previous dynamical behaviors are reversed, with a
rather sudden decay much faster than the field-free case.

In summary, an efficient control of non-Markovianity re-
ferring to strong dc fields seems thus achievable. However,
the experimental feasibility of such intense electric fields is
questionable, despite their ultrashort duration (60 fs), which
makes them dc flashes rather than static dc fields. This is why
we now address midinfrared or terahertz laser fields with the
same periodicity (8 THz, 36 μm wavelength) and comparable
intensities, as illustrated in Fig. 3 with the expectation that they
will also provide efficient enough control tools.

C. Laser control of non-Markovianity

With typical control parameters already fixed for ultrashort
dc flashes, we now proceed to more realistic laser control by
referring to single optical cycle terahertz laser pulses of 12 μm
wavelength and intensity of 3.5×1012 W/cm2. Two phases
are considered, leading to electric field amplitudes starting
either with positive or negative values. Figure 5 gathers the
results for HEOM converged time evolution of the volume
V (t) [Eq. (22)] and the total decoherence rate �(t) [Eq. (23)].
We again observe the markedly different behaviors induced
by positive or negative amplitudes rationalized by the off-
resonant Fano-model analogy. In the present case, positive
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FIG. 5. (a), (b) Time evolution of the electric field amplitudes
for a peak intensity of 3.5×1012 W/cm2. (c), (d) Time evolution
of the volume of accessible states (V calibrated to 1 at t = 0 is
dimensionless). (e), (f) Time evolution of the sum of canonical
rates in atomic units. The dotted green curve is for the field free
case. The solid red and blue curves respectively indicate the positive
and negative initial values of the field amplitude. The bottom panel
displays three-dimensional illustrations of the Bloch ball evolution
(volume of accessible states) at specific times corresponding to the
dots of (c) and (d).

amplitudes (inducing negative Stark shifts) produce reduced
transition frequencies increasing non-Markovianity, whereas
negative ones (inducing positive Stark shifts) lead to very fast
and more monotonous memory decay processes. But, more
importantly, terahertz laser pulses inducing a dynamical Stark
shift of comparable amplitude with the ultrashort dc flash,
at least close to its maximum time, are actually shown to
provide very efficient non-Markovianity control. This is clearly
proved by the spectacular enhancement of the first bump in
the volume at about 20 fs. As compared with the field-free
case the volume almost exhibits a twofold enhancement which
could be considered a very promising control achievement,
solely and simply based on a comprehensive mechanism.
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3.5×1012 W/cm2. The dotted green curve indicates the field-free case,
the solid red curve indicates the positive values and the dashed blue
curve indicates the negative values of the field amplitude.

It is worth noting that such efficiency goes much beyond
our expectations from the simple consideration of the basic
mechanism as described in Ref. [23] (see Figs. 3 and 4),
displaying rather modest non-Markovian behaviors. Moreover,
robustness is also an important issue, proven by the control
scheme which remains efficient when going from a static field
to a few-cycle terahertz pulse. In the lower panel of Fig. 5, it
is interesting to notice that the time-dependent behavior of the
total decoherence rate �(t) is quite close for the two dc or ac
fields during the increasing amplitude period of the sine pulse,
with temporary negative values around 15 fs responsible for the
most important bump in the volume. Clearly visible differences
appear, however, for the decreasing amplitude part of the sine
pulse.

Figure 5 also displays the time evolution of the Bloch-sphere
representation of the volume of accessible sates, with the
following mapping of the density matrix ρ on the position
vector �r(x,y,z):

x = 2Re(ρ12), y = 2Im(ρ12), z = ρ22 − ρ11. (25)

These are given at some specific times and help show the
different axes along which the volume decreases or tem-
porarily increases, building up the bumps we are referring to
as signatures of non-Markovianity. In particular, the Bloch
vector evolves through trajectories with much better norm
conservation (i.e., longer lasting coherence) when controlled
by the external field. Such trajectories and a complete dynamics
of the ellipsoidal volume evolving inside the Bloch sphere are
illustrated in the Supplemental Material in terms of animated
figures (see Figs. S2 and S3 [43]).
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FIG. 7. (a), (b) Adiabatic ground-state population, (c), (d)
Re(ρad

12), and (e), (f) Im(ρad
12) for the heterojunction excited with dc

(left column) or ac (right column) fields. The dotted green curve
is the field-free case, the solid red curve indicates the positive and
the dashed blue curve the negative values of the field amplitude. All
parameters are the same as in Fig. 6.

In addition, we also try to get a better understanding of the
control field dependence of the first moment of the collective
mode in each electronic state given by the diagonal elements
of the X1(t) matrix [Eq. (18)], emphasized as signatures of
the field-induced correlated system-bath dynamics. Figure 6
displays the results for the collective mode in each state (1 and
2) as a function of time using the ultrashort dc flashes and the
laser sine pulses of the upper panel of Fig. 5, together with their
field-free behaviors. Expectation values of the collective mode
in states 1 and 2 are enhanced by factors exceeding 2 close to
the laser pulse maximum (t = 10 fs) with respectively negative
(for mode 1) or positive (for mode 2) field strengths. Ultrashort
dc flashes produce similar effects on their full duration (60 fs).
This shows, in particular, how the strong laser interaction can
modify the central system-bath couplings, efficiently building
some collective modes in the bath.

D. Consequence of the control on the system
characteristic observables

Referring to the Stark shift in the central system transition
frequency as a basic mechanism and controlling it through the
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peak intensity of a terahertz laser pulse, we have proceeded to
an efficient control of the non-Markovian response of the bath.
We wish now to analyze the consequences of such a control on
the system’s initial-state-dependent physical observables. The
initial population in the diabatic representation is (ρ11 = 1,

ρ22 = 0). The time evolution of the population in the ground
eigenstate (adiabatic state) together with the off-diagonal
element of the density matrix in this representation, ρad

12, as
a signature of coherence, are displayed in Fig. 7. Positive
dc fields rapidly increase ρad

11 and induce typical population
oscillations around 1/2. But more interestingly, the amplitude
of oscillations in the coherence terms ρad

12 (both real and
imaginary parts) are much increased. Similar observations are
valid for laser sine pulses, at least for times up to 20 fs (i.e.,
half-cycle period), even though being much more moderate.
Such slowing down of decoherence can be connected with the
bumps of the volume evolution and its ellipsoidal shape along
the (x,y) axis of Fig. 5.

A last observable is the time evolution of the von Neumann
entropy of the central system given by [55]

S(t) = −Tr[ρ(t) log2 ρ(t)], (26)

which is displayed in Fig. 8. For ultrashort dc flashes (both
negative and positive amplitudes), as expected, the entropy is
less than the one obtained without the control field all along

the dynamics. The differences, temporarily more than a factor
of 2, could be qualified as spectacular. For sine pulses shaped
following the dc ones (of period 40 fs as in Fig. 5) an entropy
decrease, although much more moderate, is still temporarily
observed, for times around t = 17−23 fs. It should be noted
that these times precisely correspond to bump occurrence in
the evolution of the volume of accessible states [Fig. 5(d)]
as a signature of non-Markovianity. Later on, apart from low-
amplitude oscillations, the evolution of the entropy is no longer
affected by the control field. More unexpected is the short time
evolution (t � 10 fs) of the field-controlled entropy showing
an important increase and leading to values even higher than
the ones of the field-free case. To rationalize such a behavior
two points could be emphasized: (i) This short time dynamics is
to be related with a fast decay of the volume, where the control
field is not efficiently acting on the coherence (as is shown
in the Supplemental Material [43]), and (ii) more important
is the fast decay of entropy between t = 10 fs and t = 17 fs
(the negative slope of the red curve in Fig. 8), which turns out
to be the observable that actually has to be considered as a
consequence of non-Markovianity increase.

IV. CONCLUSION

In summary, we are aiming at developing theoretical tools
for the laser control of OQSs described by a spin-boson
Hamiltonian and solving the Nakajima-Zwanzig master equa-
tion referring to a numerical method, involving HEOM at a
converged level of the hierarchy. Two steps are followed for
this goal: (i) address as a measure of non-Markovianity the
nonmonotonous decay of the volume of accessible states and,
in particular, the occurrence and amplitude of bumps in its
time evolution (i.e., negative total decay rates at particular
times) [39] and (ii) identify, in a comprehensive way, a
basic laser-induced mechanism to enhance the non-Markovian
bath response. Such a response being generically obtained
through an appropriate laser pulse, we proceed to the time
evolution of the system physical observables and in particular
their coherence characteristics. This is done by keeping in
mind the following question: How much does enhancing non-
Markovianity slow down the decoherence in the density matrix
decay, or increase the dynamical entropy?

The illustrative system is the well-documented hetero-
junction between fullerene and oligothiophene molecules at
a fixed interfragment distance. All parameters entering the
model, with the exception of the transition dipole taken in a
reasonable typical range of magnitude, are the ones provided
by previous works. The basic mechanism we are looking for is
inferred from a Fano-type model analogy of two discrete levels
facing a quasicontinuum with a structured density of levels.
This qualitatively gives rise to some comprehensive view of
the non-Markovianity increase, at least when the interstate
transition frequency is off resonant with respect to the spectral
density function peak frequency. A static dc field of appropriate
intensity can obviously produce the Stark shift which is sought
[23]. This being taken as a possible basic control mechanism,
we implement it in a control strategy by adequately shaping a
few-cycle terahertz laser pulse. As a consequence, positive or
negative time-adapted dynamical Stark shifts are produced,
leading to non-Markovianity enhancement. This ultimately
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proves the expected efficiency of the basic mechanism we
referred to in Ref. [23].

As the most remarkable result of this paper, in a robust
and experimentally achievable way, we are increasing by more
than a factor of 2 the amplitude of the bumps during the
short time evolution of the volume of accessible states, thus
considerably enhancing non-Markovianity. The analysis of
the consequences on the two-level subsystem reduced density
matrix and entropy or bath collective modes shows, although
at a rather modest level, a slowing down of decoherence
signatures which are promising for future attempts concerned
with more sophisticated optimal control tools [9,24]. Actually
this is the aim of our future project, that is, referring to control
theory for shaping a laser pulse so as to optimally slow down
the decoherence dynamics of the central system populations

(protection or rebirth of the initial state, or efficient interstate
switching) and/or the increase of its dynamical entropy, to
observe the consequences on non-Markovianity signatures,
and to show how the two control issues are closely related.
We are actively pursuing our research in this direction.
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