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Pulse design for multilevel systems by utilizing Lie transforms
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We put forward a scheme to design pulses to manipulate multilevel systems with Lie transforms. A formula to
reverse construct a control Hamiltonian is given and is applied in pulse design in the three- and four-level systems
as examples. To demonstrate the validity of the scheme, we perform numerical simulations, which show the
population transfers for cascaded three-level and N -type four-level Rydberg atoms can be completed successfully
with high fidelities. Therefore, the scheme may benefit quantum information tasks based on multilevel systems.
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I. INTRODUCTION

Controlling quantum systems with electromagnetic pulses
is a critical element permeating through different research
fields in quantum information processing (QIP) [1–3]. Thus,
designing realizable pulses to achieve quantum information
tasks accurately and robustly has been a very hot topic in
recent decades. So far, many methods, such as composite pulse
sequences [4,5], adiabatic passages [6–10], quantum optimal
control [11–18], etc., have been presented to execute the
pulse design. Among these methods [4–18], adiabatic passage
[6–10] is attractive because of its robustness characteristic.
This robustness comes from the fact that the system will evolve
along the eigenstates of the Hamiltonian from an initial state
to a target state when the control parameters vary slowly.
Although it has the desirable advantage of robustness, adiabatic
passage also has the undesirable weakness of long evolution
time. To overcome this shortcoming, recently, a series of works
named shortcut to adiabaticity (STA) [19–52] has been put
forward. The aim of STA is to accelerate adiabatic passage and
provide us with ways to handle quantum information tasks in
a fast and robust manner. To date, STA has become even more
mature and has provided us many approaches to designing
pulses for fast and robust control of quantum systems.

To construct the STA well, it is beneficial to analyze the
dynamic symmetry of the system because by doing so, we
can easily find the parameters that control the evolution and
there is no need to modify the structure of the Hamiltonian of
the system. Moreover, useful results found by analyzing the
dynamic symmetry of a system can be generalized to many
other systems with similar structures through transformations
and parametric substitutions. Since many physical systems
can be depicted by a multilevel model, it is rather important
to analyze the dynamic symmetry of a multilevel structure.
For multilevel systems, Lie algebra and Lie transforms are
deemed very powerful tools to investigate dynamic symmetry
and construct the STA [50–52]. Previous schemes [50–52] have
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provided two different perspectives. One is to search for dy-
namics invariants within a Lie algebra where the Hamiltonian
of the system is the superposition of several generators [50,51].
The other is using Lie transforms to find a suitable evolution
path [52]. Their common feature is to describe the Hamiltonian
with generators of a Lie algebra.

In this paper, inspired by earlier schemes [50–52], we
propose an alternative scheme to design pulses to manipulate
multilevel systems via a sequence of Lie transforms. For
the sake of clarity, we show how to design pulses with Lie
transforms in three- and four-level systems. Moreover, we
numerically simulate population transfers of cascaded three-
level andN -type four-level Rydberg atoms to check the validity
of the scheme for the three- and four-level systems. The
results show the population transfers can be accomplished
with high accuracy. Furthermore, by suitably choosing the
function for the control parameters, the pulses designed by
the scheme can be smooth without any singularity. Since
the formula given in the scheme can be used to construct
a Hamiltonian for different multilevel systems, it may be a
choice for manipulating multilevel systems in different types
of quantum information processing.

II. PULSE DESIGN WITH LIE TRANSFORMS

Now, we introduce the method designing pulses with Lie
transforms. Assume the Hamiltonian of a system can be
written as

H (t) =
N∑

j=1

λj (t)Aj, (1)

with time-dependent parameters λj (t). In addition, {Aj } is a set
of Hermitian generators spanning a Lie algebra. Considering
{Aj } to be the basis for an N -dimensional Hilbert space A, the
Hamiltonian H (t) can be described by a vector in A as

H (t) =

⎡
⎢⎣

λ1(t)
λ2(t)
· · ·

λN (t)

⎤
⎥⎦. (2)
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Next, we define a set of Lie transforms {Lj }. The function
of Lj on an arbitrary vector A ∈ A can be calculated by

Lj (A) = eiθj (t)Aj Ae−iθj (t)Aj , (3)

with θj (t) being a designable time-dependent parameter. It is
obvious that Lj can be described by an N × N matrix inA. On
the other hand, we define a set of picture transforms {Pj } based
on Lie transforms {Lj }. The function of Pj on Hamiltonian
H (t) is

Pj (H ) = eiθj (t)Aj H (t)e−iθj (t)Aj − ieiθj (t)Aj
d

dt
(e−iθj (t)Aj )

= Lj (H ) − θ̇j (t)Aj . (4)

Now, we consider the compound picture transform

PN ◦ · · · ◦ P2 ◦ P1, (5)

where the symbol ◦ denotes the compound of two transforms;
we obtain the equation

PN ◦ · · · ◦ P2 ◦ P1(H )

= LN ◦ · · · ◦ L2 ◦ L1(H )

− θ̇1(t)LN ◦ · · · ◦ L3 ◦ L2(A1)

− θ̇2(t)LN ◦ · · · ◦ L4 ◦ L3(A2)

− · · ·
− θ̇N−2(t)LN ◦ LN−1(AN−2)

− θ̇N−1(t)LN (AN−1) − θ̇N (t)AN. (6)

Equation (6) offers us N parameters {θ1,θ2, . . . ,θN }, which
also provides the possibility to reverse design N control param-
eters {λ1,λ2, . . . ,λN }. By setting PN ◦ · · · ◦ P2 ◦ P1(H ) =
0, it is not difficult to prove the function of the compound
picture transform in Eq. (5) is the same as the picture transform
defined by the evolution operator,

PU (H ) = U †(t)H (t)U (t) − iU †(t)U̇ (t) = 0, (7)

where the result H (t) = iU̇ (t)U †(t) is used. Thus, if the initial
time is ti = 0, the evolution operator of the system is

U (t) = e−iθ1(t)A1e−iθ2(t)A2 · · · e−iθN (t)AN

× eiθN (0)AN eiθN−1(0)AN−1 · · · eiθ1(0)A1 . (8)

In this case, we obtain

LN ◦ · · · ◦ L2 ◦ L1(H )

= θ̇1(t)LN ◦ · · · ◦ L3 ◦ L2(A1)

+ θ̇2(t)LN ◦ · · · ◦ L4 ◦ L3(A2) + · · ·
+ θ̇N−2(t)LN ◦ LN−1(AN−2)

+ θ̇N−1(t)LN (AN−1) + θ̇N (t)AN. (9)

Generally, when {λj (t)} are given, {θj (t)} can be solved
from the N linear differential equations in Eq. (9), thus
revealing the evolution operator of the system. However,
obtaining analytic solutions from the differential equations
in Eq. (9) is very difficult. Therefore, rather than solving
{θj (t)} from known {λj (t)}, we can exploit {θj (t)} as a control
parameter and reverse design {λj (t)}. We should notice that
some parameters in {λj (t)} are required to be zero according

to the Hamiltonian of the specific system we investigate. Thus,
the number of independent control parameters in {θj (t)} should
be less than N . In this case, we can obtain constraint relations
among {θj (t)} from Eq. (9).

III. APPLICATIONS IN MULTILEVEL SYSTEMS

To make the procedure of pulse design more clear, we
apply the scheme to three-level and four-level systems in the
following.

A. Three-level system

1. Resonant case

Considering a three-level system with the Hamiltonian

H3(t) =
⎡
⎣ 0 �̃1(t) 0

�̃1(t) 0 �̃2(t)
0 �̃2(t) 0

⎤
⎦, (10)

it can be rewritten as

H3(t) = �̃1(t)Ã1 + �̃2(t)Ã2 + 0Ã3, (11)

with

Ã1 =
⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦,

Ã2 =
⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦,

Ã3 =
⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦. (12)

The commutation relations between each pair of {Ã1,Ã2,Ã3}
are

[Ã1,Ã2] = iÃ3, [Ã2,Ã3] = iÃ1, [Ã3,Ã1] = iÃ2. (13)

{Ã1,Ã2,Ã3} span a three-dimensional Lie algebra. In the basis
{Ã1,Ã2,Ã3}, the matrices of Lie transforms {L̃k} defined by
{Ãk} (k = 1,2,3) are

L̃1 =
⎡
⎣1 0 0

0 cos θ̃1 sin θ̃1

0 − sin θ̃1 cos θ̃1

⎤
⎦,

L̃2 =
⎡
⎣cos θ̃2 0 − sin θ̃2

0 1 0
sin θ̃2 0 cos θ̃2

⎤
⎦, (14)

L̃3 =
⎡
⎣ cos θ̃3 sin θ̃3 0

− sin θ̃3 cos θ̃3 0
0 0 1

⎤
⎦,

and H3(t) can be described by

H3(t) =
⎡
⎣�̃1(t)

�̃2(t)
0

⎤
⎦. (15)

033407-2



PULSE DESIGN FOR MULTILEVEL SYSTEMS BY … PHYSICAL REVIEW A 97, 033407 (2018)

Here the matrix form of L̃k can be obtained using

L̃k =
3∑

j=1

T̃ [eiθ̃j (t)Ãj Ãj e
−iθ̃j (t)Aj ](T̃ Ãj )†, (16)

where T̃ is an operator that transforms Ãj to a vector,

T̃ Ãj = δj1

⎡
⎣1

0
0

⎤
⎦ + δj2

⎡
⎣0

1
0

⎤
⎦ + δj3

⎡
⎣0

0
1

⎤
⎦, (17)

with δjj ′ (j ′ = 1,2,3) being the Kronecker delta. By using Eq. (9), we obtain

L̃3 ◦ L̃2 ◦ L̃1(H3) = ˙̃θ1L̃3 ◦ L̃2(Ã1) + ˙̃θ2L̃3(Ã2) + ˙̃θ3Ã3 ⇒⎡
⎢⎣

�̃1 cos θ̃2 cos θ̃3 + �̃2(sin θ̃1 sin θ̃2 cos θ̃3 + cos θ̃1 sin θ̃3)

−�̃1 cos θ̃2 sin θ̃3 − �̃2(sin θ̃1 sin θ̃2 sin θ̃3 − cos θ̃1 cos θ̃3)

�̃1 sin θ̃2 − �̃2 sin θ̃1 cos θ̃2

⎤
⎥⎦ =

⎡
⎢⎢⎣

˙̃θ1 cos θ̃2 cos θ̃3 + ˙̃θ2 sin θ̃3

− ˙̃θ1 cos θ̃2 sin θ̃3 + ˙̃θ2 cos θ̃3

˙̃θ1 sin θ̃2 + ˙̃θ3

⎤
⎥⎥⎦. (18)

With Eq. (18), �̃1(t) and �̃2(t) can be reverse solved as

�̃1(t) = ˙̃θ1 − ˙̃θ2 tan θ̃1 tan θ̃2,

�̃2(t) = ˙̃θ2/ cos θ̃1, (19)

with a constraint equation for θ̃3,

˙̃θ3 = − ˙̃θ2 tan θ̃1/ cos θ̃2. (20)

Moreover, the evolution operator can be derived from Eq. (8) as

U3(t) =

⎡
⎢⎣

cos θ̃1 cos θ̃3 − sin θ̃1 sin θ̃2 sin θ̃3 −i sin θ̃1 cos θ̃2 − cos θ̃1 sin θ̃3 − sin θ̃1 sin θ̃2 cos θ̃3

−i(sin θ̃1 cos θ̃3 + cos θ̃1 sin θ̃2 sin θ̃3) cos θ̃1 cos θ̃2 i(sin θ̃1 sin θ̃3 − cos θ̃1 sin θ̃2 cos θ̃3)

cos θ̃2 sin θ̃3 −i sin θ̃2 cos θ̃2 cos θ̃3

⎤
⎥⎦ (21)

if θ̃1(0) = θ̃2(0) = θ̃3(0) = 0.

2. Off-resonant case

In the above discussions, we considered the pulse design of a three-level system in the resonant case. Now, let us briefly
consider the pulse design of a three-level system in the off-resonant case. Consider a three-level system with the Hamiltonian

H̀3(t) =

⎡
⎢⎣

�1(t) �̀∗
1(t) 0

�̀1(t) �2(t) �̀2(t)

0 �̀∗
2(t) �3(t)

⎤
⎥⎦. (22)

H̀3(t) can be expanded by

H̀3(t) = �̀1r (t)À2 + �̀2r (t)À3 + �̀1i(t)À5 + �̀2i(t)À6 + δ1(t)À7 + δ2(t)À8 + δ3(t)I3, (23)

where I3 is the identity operator of the three-level system and �̀1r (t) and �̀1i(t) [�̀2r (t) and �̀2i(t)] are real part and imaginary
parts of �̀1(t) (�̀2(t)), respectively. The parameters δ1(t), δ2(t), and δ3(t) read

δ1(t) = [2�1(t) − �2(t) − �3(t)]/3,

δ2(t) = [−�1(t) + 2�2(t) − �3(t)]/3, (24)

δ3(t) = [�1(t) + �2(t) + �3(t)]/3,

respectively. Also, {Àj |j = 1,2, . . . ,8} are listed in Appendix A. By neglecting the global phase

�(t) = −
∫ t

0
δ3(t ′)dt ′, (25)
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we omit the term δ3(t)I3 in Eq. (23). With Eqs. (8) and (9), we can derive (see Appendix A for details)

�̀1r (t) = ˙̀θ5 sin θ̀1 + ˙̀θ6 cos θ̀1 sin θ̀5,

�̀1i(t) = 3 ˙̀θ7

4
sin θ̀1 sin 2θ̀5 +

˙̀θ7 + 2 ˙̀θ8

2
sin θ̀5(cos θ̀1 sin 2θ̀6 − sin θ̀1 cos θ̀5 cos 2θ̀6),

�̀2r (t) = 3 ˙̀θ7

4
cos θ̀1 sin 2θ̀5 −

˙̀θ7 + 2 ˙̀θ8

2
sin θ̀5(sin θ̀1 sin 2θ̀6 + cos θ̀1 cos θ̀5 cos 2θ̀6),

�̀2i(t) = − ˙̀θ5 cos θ̀1 + ˙̀θ6 sin θ̀1 sin θ̀5,

δ1(t) = −
˙̀θ7 + 2 ˙̀θ8

8
[4 sin 2θ̀1 cos θ̀5 sin 2θ̀6 + cos 2θ̀6(−2 sin2 θ̀1 cos 2θ̀5 + 3 cos 2θ̀1 + 1)]

−
˙̀θ7

8
(6 sin2 θ̀1 cos 2θ̀5 + 3 cos 2θ̀1 + 1),

δ2(t) =
˙̀θ7 + 2 ˙̀θ8

2
sin2 θ̀5 cos 2θ̀6 +

˙̀θ7

4
(1 + 3 cos 2θ̀5), (26)

and the constraint equations

˙̀θ1 = ˙̀θ6 cos θ̀5,

˙̀θ8 = − ˙̀θ7
χ (t) + 6 sin 2θ̀1 sin2 θ̀5

2χ (t)
, (27)

with

χ (t) = sin 2θ̀1(3 + cos 2θ̀5) cos 2θ̀6 − 4 cos 2θ̀1 cos θ̀5 sin 2θ̀6. (28)

Assuming θ̀j ′ (0) = 0 (j ′ = 1,5,6,7,8), according to Eq. (8), the evolution can be derived as

Ù3(t) =

⎡
⎢⎣

− sin θ̀1 sin θ̀5 cos θ̀1 sin θ̀6 − cos θ̀5 cos θ̀6 sin θ̀1 − cos θ̀1 cos θ̀6 + cos θ̀5 sin θ̀1 sin θ̀6

−i cos θ̀5 i cos θ̀6 sin θ̀5 i sin θ̀5 sin θ̀6

−i cos θ̀1 sin θ̀5 −i cos θ̀1 cos θ̀5 cos θ̀6 + sin θ̀1 sin θ̀6 i cos θ̀6 sin θ̀1 − cos θ̀1 cos θ̀5 sin θ̀6

⎤
⎥⎦Ùt Ù0, (29)

with

Ù0 =
⎡
⎣ 0 i 0

0 0 i

−1 0 0

⎤
⎦, Ùt =

⎡
⎣e−iθ̀7 0 0

0 e−iθ̀8 0
0 0 ei(θ̀7+θ̀8)

⎤
⎦. (30)

B. Four-level system

Consider a four-level system with the Hamiltonian

H4(t) =

⎡
⎢⎢⎣

0 �1(t) 0 0
�1(t) 0 �2(t) 0

0 �2(t) 0 �3(t)
0 0 �3(t) 0

⎤
⎥⎥⎦. (31)

H4(t) can be expanded by

H4(t) = �1(t)A1 + �2(t)A2 + �3(t)A3 + 0(A4 + A5 + A6),

(32)

where Al (l = 0,1,2, . . . ,6) are shown in Appendix B. By using Eqs. (8) and (9), we can derive (see Appendix B for details)

�1(t) = θ̇1 + θ̇5 sin θ3 cos θ4 + θ̇6 cos θ3 sin θ4,

�2(t) = θ̇3 cos θ1 cos θ2 + θ̇4 sin θ1 sin θ2 − θ̇5(sin θ1 cos θ2 cos θ3 cos θ4 + cos θ1 sin θ2 sin θ3 sin θ4)

+ θ̇6(cos θ1 sin θ2 cos θ3 cos θ4 + sin θ1 cos θ2 sin θ3 sin θ4),

�3(t) = θ̇2 − θ̇5 cos θ3 sin θ4 − θ̇6 sin θ3 cos θ4, (33)
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and the constraint equations

θ̇4 = θ̇3 tan θ1 tan θ2,

θ̇5 = 2θ̇3(sin θ3 sin θ4 tan θ2 − cos θ3 cos θ4 tan θ1)

cos 2θ3 + cos 2θ4
, (34)

θ̇6 = 2θ̇3(cos θ3 cos θ4 tan θ2 − sin θ3 sin θ4 tan θ1)

cos 2θ3 + cos 2θ4
.

Further, when θ l(0) = 0 (l = 0,1,2, . . . ,6), the evolution operator reads

U4(t) =

⎡
⎢⎢⎣

cos θ1 cos θ4 cos θ5 − sin θ1 sin θ3 sin θ5 −i(cos θ3 cos θ6 sin θ1 + cos θ1 sin θ4 sin θ6)
−i(cos θ4 cos θ5 sin θ1 + cos θ1 sin θ3 sin θ5) cos θ1 cos θ3 cos θ6 − sin θ1 sin θ4 sin θ6

cos θ2 cos θ3 sin θ5 − cos θ5 sin θ2 sin θ4 −i(cos θ2 cos θ6 sin θ3 + cos θ4 sin θ2 sin θ6)
−i(cos θ2 cos θ5 sin θ4 + cos θ3 sin θ2 sin θ5) cos θ2 cos θ4 sin θ6 − cos θ6 sin θ2 sin θ3

− cos θ5 sin θ1 sin θ3 − cos θ1 cos θ4 sin θ5 −i(cos θ1 cos θ6 sin θ4 − cos θ3 sin θ1 sin θ6)
−i(cos θ1 cos θ5 sin θ3 − cos θ4 sin θ1 sin θ5) − cos θ6 sin θ1 sin θ4 − cos θ1 cos θ3 sin θ6

cos θ2 cos θ3 cos θ5 + sin θ2 sin θ4 sin θ5 −i(cos θ4 cos θ6 sin θ2 − cos θ2 sin θ3 sin θ6)
−i(cos θ3 cos θ5 sin θ2 − cos θ2 sin θ4 sin θ5) cos θ2 cos θ4 cos θ6 + sin θ2 sin θ3 sin θ6

⎤
⎥⎥⎦. (35)

IV. EXAMPLES: POPULATION TRANSFERS FOR
CASCADED THREE-LEVEL AND N-TYPE FOUR-LEVEL

RYDBERG ATOMS

In this section, we exploit the results shown in Sec. III to
realize population transfers of cascaded three-level and N -type
four-level Rydberg atoms, whose level structures are very
useful in the research field of Rydberg atoms [53–57].

A. Cascaded three-level Rydberg atom

1. Resonant case

As shown in Fig. 1, we consider a cascaded three-
level Rydberg atom with a ground state |g〉, an interme-
diate state |e〉, and a Rydberg state |r〉 [53]. In experi-
ments, the atomic structure can be obtained by using a 87Rb
atom with |g〉 = |5s1/2,F = 1,MF = 1〉, |e〉 = |5p1/2,F =
2,MF = 2〉, and |r〉 = |58d3/2,F = 3,MF = 3〉 [53,54]. In the
basis {|g〉,|e〉,|r〉}, the Hamiltonian of the Rydberg atom can
be described by the matrix shown in Eq. (10), with �̃1(t) and
�̃2(t) denoting the Rabi frequencies of laser pulses driving
transitions |g〉 ↔ |e〉 and |e〉 ↔ |r〉, respectively. Assume the
Rydberg atom is initially in the state |g〉, and we want to bump
it to the Rydberg state |r〉. According to the evolution operator

FIG. 1. The level configuration of a cascaded three-level Rydberg
atom.

given in Eq. (21), the evolution of the Rydberg atom can be
described by

|ψ3(t)〉 = U3(t)|g〉
= (cos θ̃1 cos θ̃3 − sin θ̃1 sin θ̃2 sin θ̃3)|g〉

− i(sin θ̃1 cos θ̃3 + cos θ̃1 sin θ̃2 sin θ̃3)|e〉
+ cos θ̃2 sin θ̃3|r〉. (36)

Therefore, we can choose the boundary conditions

θ̃1(T ) = 0, θ̃2(T ) = 0, θ̃3(T ) = π/2, (37)

where T is the final time. According to Eq. (37), parameters
θ̃1(t) and θ̃2(t) can be chosen to be

θ̃1(t) = −ϒ1 sin

(
2πt

T

)
sin

(
πt

T

)
,

(38)

θ̃2(t) = ϒ2

2

[
1 − cos

(
2πt

T

)]
,

where ϒ1 and ϒ2 are two time-independent parameters con-
trolling the maximal values of |θ̃1(t)| and |θ̃2(t)|, respectively.
According to Eqs. (20) and (37), ϒ1 and ϒ2 should be chosen
to fulfill the condition

θ̃3(T ) = −
∫ T

0

˙̃θ2(t) tan[θ̃1(t)]

cos[θ̃2(t)]
dt = π/2. (39)

Considering that Eq. (39) has a singularity when θ̃1 = π/2
or θ̃2 = π/2, it is better to restrict ourselves to ϒ1 ∈ [0,π/2]
and ϒ2 ∈ [0,π/2]. By numerically calculating Eq. (39), the
relation between ϒ1 and ϒ2 can be shown by Fig. 2. When
ϒ1 < 0.5, ϒ2 should be very close to π/2. Therefore, in Fig. 2,
the range of ϒ1 is set to [0.5,1.5]. As an example, we consider
ϒ1 = 1.2 and ϒ2 = 0.8281. The populations of |g〉, |e〉, and |r〉
versus t/T are plotted in Fig. 3(a). In addition, �̃1(t) and �̃2(t)
versus t/T are plotted in Fig. 3(b). According to Fig. 3(a), the
population transfer can be achieved at t = T . This shows the
calculation processes of the resonant case in Sec. III A are
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FIG. 2. The dependency relationship between ϒ1 and ϒ2.

valid. In addition, according to Fig. 3(b), we have �̃max =
max0�t�T {|�̃1(t)|,|�̃2(t)|} = 7.54/T .

To show the feasibility of the population transfer of the
cascaded three-level Rydberg atom, we further investigate
(i) curve fitting for designed pulses using pulses with an
experimentally available wave shape, (ii) the performance of
the population transfer when the transitions |g〉 ↔ |e〉 and
|e〉 ↔ |r〉 are not perfectly resonantly driven by �̃1(t) and
�̃2(t), respectively, (iii) the influence of some types of noise
acting on the population transfer, and (iv) the evolution of the
cascaded three-level Rydberg atom governed by the master
equation when considering decoherence.

(i) In experiments, pulses with complex wave shapes are
usually more difficult to obtain compared with those with sim-
ple wave shapes, such as Gaussian functions, sine functions,
etc. Thus, if one can use a series of pulses with simple wave
shapes to replace pulses with complex wave shapes to obtain
similar outcomes, the operations may become more feasible.
Here curve fitting is applied to the designed pulses �̃1(t) and
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FIG. 3. (a) Populations of |g〉, |e〉, and |r〉 versus t/T . (b) �̃1(t)
and �̃2(t) versus t/T .

TABLE I. The results of −i[Al,Al′ ].

p ζp μp σp

1 4.126 0.2875 0.1285
2 1.144 0.1214 0.0905
3 −4.126 0.7125 0.1285
4 −1.144 0.8786 0.0905
q ξq αq βq

1 −4.529 11.28 0
2 7.755 6.632 −1.745
3 4.529 11.28 1.2864

�̃2(t), so that they can be replaced by a series of pulses with
Gaussian and sine wave shapes. The replaced pulses �̃′

1(t) and
�̃′

2(t) for �̃1(t) and �̃2(t) can be respectively written as

�̃′
1(t) =

4∑
p=1

Gp(t),

�̃′
2(t) =

3∑
q=1

ηq(t)Sq(t),

(40)
Gp(t) = ζp

T
e
−(

t/T −μp

σp
)2

,

Sq(t) = ξq

T
sin(αqt/T + βq),

where parameters ζp, μp σp, ξq, αq , and βq are given in
Table I.

The function ηq(t) reads

ηq(t) =
{

1, t ∈ [τq1,τq2],
0, otherwise, (41)

with

τ11 = 0, τ12 = 0.2785T , τ21 = 0.2631T ,
(42)

τ22 = 0.7368T , τ31 = 0.7215T , τ32 = T .

Noticing Sq(τq1) = Sq(τq2) = 0, ηq(t) lets us exploit only
half a period of the sine function Sq(t). To make each of
the pulses {Gp(t),Sq(t)} clear, we plot Gp(t) (p = 1,2,3,4)
and Sq(t) (q = 1,2,3) in Figs. 4(a) and 4(b), respectively.
Moreover, 1 − Pr (t) versus t/T is plotted in Fig. 4(c), where
Pr (t) = |〈ψ3(t)|r〉|2 is the population of the Rydberg state |r〉.
Figure 4(c) shows that by using the replaced pulses �̃′

1(t)
and �̃′

2(t), we still have 1 − Pr (t) < 10−5, which means the
population transfer is nearly perfect.

(ii) In the discussions above in this section, we consider
transitions |g〉 ↔ |e〉 and |e〉 ↔ |r〉 to be resonantly driven
by �̃1(t) and �̃2(t), respectively, while for a real experiment,
there may exist some small detunings due to imperfect control
of pulse frequencies. Here detuning �g (�r ) for transitions
|g〉 ↔ |e〉 (|e〉 ↔ |r〉) is considered; that is, terms�g|g〉〈g| and
�r |r〉〈r| are added to the Hamiltonian of the cascaded three-
level Rydberg atom. By considering small detunings |�g| �
�̃max/10 and |�r | � �̃max/10, we plot the final population
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FIG. 4. (a) Gp(t) (p = 1,2,3,4) versus t/T . (b) Sq (t) (q = 1,2,3)
versus t/T . (c) 1 − Pr (t) versus t/T .

Pr (T ) = |〈ψ3(T )|r〉|2 of the Rydberg state |r〉 versus �g/�̃max

and �r/�̃max in Fig. 5.
According to Fig. 5, when �g and �r are both positive

or both negative, the population transfer still maintains good
performance. By taking �g/�̃max = �r/�̃max = ±0.1, we
have Pr (T ) = 0.9931. However, if �g and �r have different
signs, Pr (T ) falls more than in the case when they have the
same sign. The worst performance appears at �g/�̃max =
−�r/�̃max = ±0.1, which gives Pr (T ) = 0.9045. Thus, when
|�g| � �̃max/10 and |�r | � �̃max/10, Pr (T ) falls less than
0.1 from 1. This shows that the population transfer remains
robust against small detunings of transitions.

(iii) When using pulses to drive the transitions of an atom,
there may exist a noisy component in each pulse, which
disturbs the intended dynamics. Here two typical noises, the
random noise of pulse amplitudes and additive white Gaussian
noise (AWGN), are investigated. First, we consider the random
noise of pulse amplitudes. In this case, pulses under the

FIG. 5. Final population Pr (T ) of Rydberg state |r〉 versus
�g/�̃max and �r/�̃max.

influence of noise can be described by

�̌1(t) = [1 + R1(t,�1)]�̃1(t),
(43)

�̌2(t) = [1 + R2(t,�2)]�̃2(t),

where R1(t) and R2(t) denote two random functions. �1 (�2) is
the amplitude of R1(t) [R2(t)]. We plot �̌1(t) and �̌2(t) versus
t/T with �1 = �2 = 0.1, �1 = �2 = 0.5, and �1 = �2 = 1 in
Figs. 6(a)–6(c), respectively. Also, 1 − Pr (t) versus t/T with
�1 = �2 = 0.1, �1 = �2 = 0.5, and �1 = �2 = 1 are plotted

(b)

(c)

(a) (d)
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(f)
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FIG. 6. �̌1(t) and �̌2(t) versus t/T with (a) �1 = �2 = 0.1, (b)
�1 = �2 = 0.5, and (c) �1 = �2 = 1. Also shown is 1 − Pr (t) versus
t/T with (d) �1 = �2 = 0.1, (e) �1 = �2 = 0.5, and (f) �1 = �2 = 1.
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FIG. 7. �

1(t) and �


2(t) versus t/T with (a) RSN1 = RSN2 = 10,
(b) RSN1 = RSN2 = 5, and (c) RSN1 = RSN2 = 1. Also shown is 1 −
Pr (t) versus t/T with (d) RSN1 = RSN2 = 10, (e) RSN1 = RSN2 = 5,
and (f) RSN1 = RSN2 = 1.

in Figs. 6(d)–6(f), respectively. Figures 6(d)–6(f) show that
we have 1 − Pr (t) < 10−5 for �1 = �2 = 0.1 and 1 − Pr (t) <

10−3 for both �1 = �2 = 0.5 and �1 = �2 = 1. The results
show that the population transfer is still effective when the
random noise of the pulse amplitudes has a scale similar to
that of the original pulses. Generally, the scale of noise is
much smaller than the scale of the original pulses. Thus, the
influences of the random noise of pulse amplitudes can be
neglected for the population transfer.

Then, let us study the AWGN. In this case, pulses under the
influence of noise can be described by

�

1(t) = �̃1(t) + awgn(�̃1(t),RSN1),

(44)
�


2(t) = �̃2(t) + awgn(�̃2(t),RSN2),

where awgn is the function generating AWGN with signal-
to-noise ratio RSN1 (RSN2) for pulses �̃1(t) [�̃2(t)]. We plot
�


1(t) and �

2(t) versus t/T with RSN1 = RSN2 = 10, RSN1 =

RSN2 = 5, and RSN1 = RSN2 = 1 in Figs. 7(a)–7(c), respec-
tively. Moreover, 1 − Pr (t) versus t/T with RSN1 = RSN2 =
10, RSN1 = RSN2 = 5, and RSN1 = RSN2 = 1 are plotted in
Figs. 7(d)–7(f), respectively. According to Figs. 7(d)–7(f),
1 − Pr (T ) < 10−3 can be obtained with RSN1 = RSN2 = 10,
RSN1 = RSN2 = 5, and RSN1 = RSN2 = 1. Interestingly, in the
case of RSN1 = RSN2 = 1, where AWGN has a scale similar
to that of the original pulses, the population transfer is still
effective. These results indicate that the population transfer is
also robust against AWGN.

(iv) Decoherence is ineluctable in real experiments. Thus,
it is worth discussing the population transfer against deco-

FIG. 8. Final population Pr (T ) of Rydberg state |r〉 versus
γ /�̃max.

herence. In experiments, as the Rydberg state |r〉 is much
more stable than the intermediate state |e〉 [53,55], the main
decoherence factor for the cascaded three-level Rydberg atom
is the atomic spontaneous emission from the intermediate state
|e〉 to the ground state |g〉. We consider the master equation

ρ̇3(t) = i[ρ3(t),H3(t)] + γ
{
Segρ3(t)S†

eg

− 1
2 [S†

egSegρ3(t) + ρ3(t)S†
egSeg]

}
, (45)

where ρ3(t) is the density operator of the cascaded three-
level Rydberg atom, γ is the spontaneous emissions rate
of the decay path |e〉 → |g〉, and Seg denotes |g〉〈e|. The
final population Pr (T ) = 〈r|ρ3(T )|r〉 of the Rydberg state
|r〉 versus γ /�̃max is plotted in Fig. 8. According to Fig. 8,
Pr (T ) decreases nearly linearly from 1 to 0.9784 when κ

increases from 0 to 0.05�̃max. Consider a set of experimental
parameters [53,57] �̃max = 2π × 60 MHz, γ = 2π × 3 MHz,
where we have the ratio γ /�̃max = 0.05; the final population
Pr (T ) of the Rydberg state |r〉 is 0.9784. The results given
above show the population transfer of the cascaded three-level
Rydberg atom with the pulses designed by the current scheme
remains robust against atomic spontaneous emission from |e〉
to |g〉.

2. Off-resonant case

Now, let us briefly discuss the population transfer |g〉 → |r〉
of the cascaded three-level Rydberg atom in the off-resonant
case. We assume the detunings of transitions |g〉 ↔ |e〉 and
|e〉 ↔ |r〉 are �1(t) and �3(t), respectively. According to
Eq. (24), we have

�1(t) = δ1(t) + δ3(t),

�3(t) = δ3(t) − δ1(t) − δ2(t), (46)

δ3(t) = −δ2(t).

When considering the boundary conditions

θ̀5(0) = θ̀5(T ) = π/2,
(47)

θ̀1(0) = π/2, θ̀1(T ) = 0,
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FIG. 9. The dependency relationship between ϒ̀1 and ϒ̀2.

the Rydberg atom will evolve along

|ψ̀3(t)〉 = Ù3(t)|g〉
= eiθ7 (sin θ̀1 sin θ̀5|g〉 + i cos θ̀5|e〉

+ i cos θ̀1 sin θ̀5|r〉), (48)

from |g〉 to |r〉 up to a global phase. Thus, according to Eqs. (27)
and (47), we set

θ̀5 = π

2
+ ϒ̀1

2

[
1 + cos

(
2πt

T

)]
,

θ̀6 = ϒ̀2

π

[
1 − cos

(
πt

T

)]
,

(49)
˙̀θ7 = − ϒ̀3

T
sin

(
πt

T

)
χ (t),

˙̀θ8 = ϒ̀3

2T
sin

(
πt

T

)
[χ (t) + 6 sin 2θ̀1 sin2 θ̀5],

where ϒ̀1, ϒ̀2, and ϒ̀3 are three time-independent parameters
controlling the maximal values of θ̀5, θ̀6, and θ̀7(8), respectively.
Moreover, we should select ϒ̀1 and ϒ̀2 to satisfy

θ̀1(T ) = π

2
+

∫ T

0

˙̀θ6 cos θ̀5dt = 0. (50)

By numerically calculating Eq. (50), we plot the dependency
relationship between ϒ̀1 and ϒ̀2 in Fig. 9. As an example,
we consider ϒ̀1 = 0.4 and ϒ̀2 = 2.987π according to Fig. 9.
Furthermore, as θ̀7 influences only the global phase, we select
ϒ̀3 = 1.5 as an example. With the parameters selected, we plot
the populations of |g〉, |e〉, and |r〉 versus t/T in Fig. 10(a). In
addition, �̀1r (t), �̀1i(t), and �1(t) versus t/T are plotted in
Fig. 10(b). Moreover, �̀2r (t), �̀2i(t), and �3(t) versus t/T are
plotted in Fig. 10(c). According to Fig. 10(a), we can achieve
the population transfer |g〉 → |r〉 at t = T . This shows the
calculation processes of the off-resonant case in Sec. III A are
valid.

B. N-type four-level Rydberg atom

In this part, we briefly discuss the population transfer
for an N -type four-level Rydberg atom. As shown in
Fig. 11, we consider an N -type four-level Rydberg
atom with a ground state |g′〉, an excited state |e′〉, a
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FIG. 10. (a) Populations of |g〉, |e〉, and |r〉 versus t/T .
(b) �̀1r (t), �̀1i(t) and �1(t) versus t/T . (c) �̀2r (t), �̀2i(t), and �3(t).

metastable state |m′〉, and a Rydberg state |r ′〉 [57]. In
experiments, we can establish the atomic structure by
using a 87Rb atom with |g′〉 = |5s1/2,F = 1,MF = 0〉,
|e′〉 = |5p3/2,F = 2,MF = 0〉, |m′〉 = |5s1/2,F = 2,MF =
0〉, and |r ′〉 = |97d5/2,MJ = 5/2〉 [57–59]. In the basis
{|g′〉,|e′〉,|m′〉,|r ′〉}, the Hamiltonian of the Rydberg atom can
be described by the matrix shown in Eq. (31), with �1(t),
�2(t), and �3(t) denoting the Rabi frequencies of laser pulses
driving transitions |g′〉 ↔ |e′〉, |e′〉 ↔ |m′〉, and |m′〉 ↔ |r ′〉,
respectively. Assume the Rydberg atom is initially in state |g〉
and the target is the Rydberg state |r ′〉. According to Eq. (35),

FIG. 11. The level configuration of an N -type four-level Rydberg
atom.
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FIG. 12. The dependency relationship between �1 and �3.

the evolution of the Rydberg atom can be described by

|ψ4(t)〉 = U4(t)|g′〉
= (cos θ1 cos θ4 cos θ5 − sin θ1 sin θ3 sin θ5)|g′〉

− i(sin θ1 cos θ4 cos θ5 + cos θ1 sin θ3 sin θ5)|e′〉
+ (cos θ2 cos θ3 sin θ5 − sin θ2 sin θ4 cos θ5)|m′〉
− i(cos θ2 sin θ4 cos θ5 + sin θ2 cos θ3 sin θ5)|r ′〉.

(51)

Thus, the boundary conditions can be set as

θ2(T ) = π/2, θ3(T ) = 0, θ5(T ) = −π/2. (52)

Therefore, parameters θ1(t), θ2(t), and θ3(t) can be chosen
to be

θ1(t) = �1 sin

(
2πt

T

)
sin

(
πt

T

)
,

θ2(t) = π

4

[
1 − cos

(
πt

T

)]
, (53)

θ3(t) = �3 sin4

(
πt

T

)
,

where �1 and �3 are two time-independent parameters con-
trolling the maximal values of |θ1| and |θ3|, respectively.
According to Eq. (34), �1 and �3 should be chosen to satisfy

θ5(T ) =
∫ T

0

θ̇3(cos θ3 cos θ4 tan θ1 − sin θ3 sin θ4 tan θ2)

sin2 θ3 sin2 θ4 + cos2 θ3 cos2 θ4
dt

= −π/2. (54)

Given that Eq. (54) has a singularity when θ1 = π/2, we
consider �1 in the range [0,π/2]. In addition, we set �3 ∈
[0,π/2] to avoid many oscillations of pulses. By numerically
calculating the integral in Eq. (54), we can find the relation
between �1 and �3, which is shown in Fig. 12. Here we
consider parameters �1 = 0.4 and �2 = 1.0782. The popu-
lations of |g′〉, |e′〉, |m′〉, and |r ′〉 versus t/T are plotted in
Fig. 13(a). In addition, �1(t),�2(t), and �3(t) versus t/T are
plotted in Fig. 13(b). As shown by Fig. 13, the population
transfer succeeds at t = T , which confirms the results given
in Sec. III B.
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FIG. 13. (a) Populations of |g′〉, |e′〉, |m′〉, and |r ′〉 versus t/T .
(b) �1(t), �2(t), and �3(t) versus t/T .

V. CONCLUSION

In conclusion, we proposed a scheme for pulse design in
multilevel systems. By analyzing the dynamic symmetry of a
multilevel system in a Lie algebra, we gave a general formula
to reverse construct a control Hamiltonian via a sequence of
Lie transforms. Then, with that method, we studied the pulse
design for three- and four-level systems. To show the feasibility
of the scheme in a real physical system, as an example, we
used the designed pulses to perform the population transfers
of cascaded three-level and N -type four-level Rydberg atoms.
Numerical simulations showed both of the population transfers
can be achieved perfectly, which proved the validity of the
scheme. Furthermore, we notice that the optimal control
theory [11–18] provides many effective means to optimize
the pulse shapes, which can help us make a good trade-off
between energy cost and the robustness against the noise and
decoherence. Thus, combined use of the optimal control theory
and the current scheme to design pulses may be interesting and
deserves further investigation. Since we discussed only the
applications of the scheme in three- and four-level systems,
generalizing the scheme to a more complex quantum system is
also an interesting open question. Generally, the dynamics of a
multilevel quantum system should be discussed in a Lie algebra
with many generators when the system is very complex. But
as long as the Hamiltonian of the system can still be described
by generators of a Lie algebra, the scheme can still be applied
to design pulses to drive the system. But there should be a
positive correlation between the amount of calculation and the
number of generators of the Lie algebra being investigated.
More specifically, the number of independent parameters and
constraint equations increases with the number of generators.
Thus, studying a more complex multilevel system requires
a more complex calculation when directly using the current
scheme. To simplify or reduce calculations and make the
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pulse design easy to realize in a complex system, a good
choice may be combining the use of other approaches, such as
quantum Zeno dynamics [60,61], perturbation theory [62,63],
etc. Finally, although we discuss only the state-to-state transfer,
the scheme can also be used to generate unitary propagators
according to the unitary evolution operators shown in Eqs. (21),
(29), and (35). Therefore, one may also apply the scheme to
design pulses to implement quantum logic gates in a multilevel
system.
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APPENDIX A: THE DERIVATION OF RABI FREQUENCIES
OF A THREE-LEVEL SYSTEM IN THE

OFF-RESONANCE CASE

Generators Àj (j = 1,2, . . . ,8) shown in Sec. III A 2 can
be written as

À1 =
⎡
⎣0 0 1

0 0 0
1 0 0

⎤
⎦,

À2 =
⎡
⎣0 1 0

1 0 0
0 0 0

⎤
⎦,

À3 =
⎡
⎣0 0 0

0 0 1
0 1 0

⎤
⎦,

À4 =
⎡
⎣0 0 −i

0 0 0
i 0 0

⎤
⎦, (A1)

À5 =
⎡
⎣0 −i 0

i 0 0
0 0 0

⎤
⎦,

À6 =
⎡
⎣0 0 0

0 0 i

0 −i 0

⎤
⎦,

À7 =
⎡
⎣1 0 0

0 0 0
0 0 −1

⎤
⎦,

À8 =
⎡
⎣0 0 0

0 1 0
0 0 −1

⎤
⎦.

The results of −i[Àj ,Àj ′ ] are summarized in Table II. In the
basis {Àj |j = 1,2, . . . ,8}, the Lie transforms {L̀j } defined
by {Àj } (k = 1,2,3) are eight 8 × 8 matrices, which can

TABLE II. The results of −i[Àj ,Àj ′ ].

�
��Àl′
Àl

À1 À2 À3 À4 À5 À6 À7 À8

À1 0 −À6 −À5 −2À7 À3 À2 2À4 À4

À2 À6 0 −À4 À3 2(À8 − À7) −À1 À5 −À5

À3 À5 À4 0 −À2 −À1 2À8 −À6 −2À6

À4 2À7 −À3 À2 0 −À6 À5 −2À1 −À1

À5 −À3 2(À7 − À8) À1 À6 0 −À4 −À2 À2

À6 −À2 À1 −2À8 −À5 À4 0 À3 2À3

À7 −2À4 −À5 À6 2À1 À2 −À3 0 0

À8 −À4 À5 2À6 À1 −À2 −2À3 0 0

be derived in a way similar to the derivation of Eq. (14).
Here we do not list the matrix forms of {L̀j } since they
are very complex. In addition, we consider θ̀3 = π/2 and
θ̀4 = π/2 − θ̀2 to simplify the calculation. Then, by using
Eq. (9), we can derive Eqs. (26) and (27).

APPENDIX B: THE DERIVATION OF RABI FREQUENCIES
OF THE FOUR-LEVEL SYSTEM

Generators Al (l = 1,2, · · · ,6) shown in Sec. III B can be
written as

A1 =

⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎦,

A2 =

⎡
⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤
⎥⎦,

A3 =

⎡
⎢⎣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦, (B1)

A4 =

⎡
⎢⎣

0 0 −i 0
0 0 0 0
i 0 0 0
0 0 0 0

⎤
⎥⎦,

A5 =

⎡
⎢⎣

0 0 0 0
0 0 0 −i

0 0 0 0
0 i 0 0

⎤
⎥⎦,

A6 =

⎡
⎢⎣

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎦.

The results of −i[Al,Al′] can be summarized in Table III.
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TABLE III. The results of −i[Al,Al′ ].

�
��Al′

Al
A1 A2 A3 A4 A5 A6

A1 0 −A4 0 A2 A6 −A5

A2 A4 0 −A5 −A1 A3 0

A3 0 A5 0 −A6 −A2 A4

A4 −A2 A1 A6 0 0 −A3

A5 −A6 −A3 A2 0 0 A1

A6 A5 0 −A4 A3 −A1 0

Considering the commutation relations [A1,A3] = 0,
[A2,A6] = 0, and [A4,A5] = 0, we rearrange the six
operators as

B1 = A1, B2 = A3, B3 = A2,

B4 = A6, B5 = A4, B6 = A5 (B2)

to simplify the calculation. In the basis {Bl|l = 1,2, . . . ,6},
the matrices of the Lie transforms {L l} defined by {Bl} (k =
1,2,3) are

L 1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos θ1 0 sin θ1 0
0 0 0 cos θ1 0 sin θ1

0 0 − sin θ1 0 cos θ1 0
0 0 0 − sin θ1 0 cos θ1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L 2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 cos θ2 0 0 − sin θ2

0 0 0 cos θ2 − sin θ2 0
0 0 0 sin θ2 cos θ2 0
0 0 sin θ2 0 0 cos θ2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L 3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ3 0 0 0 − sin θ3 0
0 cos θ3 0 0 0 sin θ3

0 0 1 0 0 0
0 0 0 1 0 0

sin θ3 0 0 0 cos θ3 0
0 − sin θ3 0 0 0 cos θ3

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L 4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

cos θ4 0 0 0 0 − sin θ4

0 cos θ4 0 0 sin θ4 0
0 0 1 0 0 0
0 0 0 1 0 0
0 − sin θ4 0 0 cos θ4 0

sin θ4 0 0 0 0 cos θ4

⎤
⎥⎥⎥⎥⎥⎥⎦

,

L 5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ5 0 sin θ5 0 0 0

0 cos θ5 0 − sin θ5 0 0

− sin θ5 0 cos θ5 0 0 0

0 sin θ5 0 cos θ5 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L 6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ6 0 0 sin θ6 0 0

0 cos θ6 − sin θ6 0 0 0

0 sin θ6 cos θ6 0 0 0

− sin θ6 0 0 cos θ6 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(B3)

By using Eq. (9), we can derive Eq. (33) and the constraint
equations

θ̇5(cos θ1 cos θ2 cos θ3 cos θ4 − sin θ1 sin θ2 sin θ3 sin θ4)

+ θ̇6(sin θ1 sin θ2 cos θ3 cos θ4 − cos θ1 cos θ2 sin θ3 sin θ4)

+ θ̇3 sin θ1 cos θ2 − θ̇4 cos θ1 sin θ2 = 0, (B4)

θ̇5(cos θ1 sin θ2 cos θ3 cos θ4 + sin θ1 cos θ2 sin θ3 sin θ4)

− θ̇6(sin θ1 cos θ2 cos θ3 cos θ4 + cos θ1 sin θ2 sin θ3 sin θ4)

+ θ̇3 sin θ1 sin θ2 + θ̇4 cos θ1 cos θ2 = 0, (B5)

θ̇5(cos θ1 cos θ2 sin θ3 sin θ4 − sin θ1 sin θ2 cos θ3 cos θ4)

+ θ̇6(sin θ1 sin θ2 sin θ3 sin θ4 − cos θ1 cos θ2 cos θ3 cos θ4)

+ θ̇3 cos θ1 sin θ2 − θ̇4 sin θ1 cos θ2 = 0. (B6)

Combining Eqs. (B4)–(B6), Eq. (34) can be derived.
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